Spaces:
Running
Running
Commit
·
1abf617
1
Parent(s):
5a107ba
⚡ Switched to Flan-T5 for faster response on CPU
Browse files
app.py
CHANGED
|
@@ -6,6 +6,7 @@ import torch
|
|
| 6 |
import gradio as gr
|
| 7 |
from PyPDF2 import PdfReader
|
| 8 |
from docx import Document as DocxDocument
|
|
|
|
| 9 |
from pptx import Presentation
|
| 10 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 11 |
from langchain_community.vectorstores import FAISS
|
|
@@ -13,16 +14,19 @@ from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
| 13 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 14 |
from langchain_core.documents import Document
|
| 15 |
|
| 16 |
-
# Load Reasoning Model
|
| 17 |
-
model_id = "
|
| 18 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 19 |
-
model =
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
)
|
| 24 |
-
reasoning_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer,
|
| 25 |
-
max_new_tokens=512, temperature=0.7, top_p=0.9)
|
| 26 |
|
| 27 |
# Embedding Model
|
| 28 |
embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
from PyPDF2 import PdfReader
|
| 8 |
from docx import Document as DocxDocument
|
| 9 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 10 |
from pptx import Presentation
|
| 11 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 12 |
from langchain_community.vectorstores import FAISS
|
|
|
|
| 14 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 15 |
from langchain_core.documents import Document
|
| 16 |
|
| 17 |
+
# Load Reasoning Model (lightweight + CPU friendly)
|
| 18 |
+
model_id = "google/flan-t5-base"
|
| 19 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 20 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
| 21 |
+
|
| 22 |
+
reasoning_pipeline = pipeline(
|
| 23 |
+
"text2text-generation",
|
| 24 |
+
model=model,
|
| 25 |
+
tokenizer=tokenizer,
|
| 26 |
+
max_new_tokens=512,
|
| 27 |
+
temperature=0.7,
|
| 28 |
+
top_p=0.9
|
| 29 |
)
|
|
|
|
|
|
|
| 30 |
|
| 31 |
# Embedding Model
|
| 32 |
embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|