Spaces:
Configuration error
Configuration error
de
Browse files
app.py
CHANGED
|
@@ -9,6 +9,7 @@ import cv2
|
|
| 9 |
import gradio as gr
|
| 10 |
from torchvision import transforms
|
| 11 |
from controlnet_aux import OpenposeDetector
|
|
|
|
| 12 |
|
| 13 |
ratios_map = {
|
| 14 |
0.5:{"width":704,"height":1408},
|
|
@@ -106,139 +107,139 @@ def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditio
|
|
| 106 |
return [pose_image,images[0]]
|
| 107 |
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
#
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
#
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
#
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
|
| 169 |
-
#
|
| 170 |
-
|
| 171 |
-
|
| 172 |
|
| 173 |
-
#
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
|
| 178 |
-
|
| 179 |
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
#
|
| 183 |
-
|
| 184 |
-
|
| 185 |
|
| 186 |
-
#
|
| 187 |
-
|
| 188 |
|
| 189 |
-
#
|
| 190 |
-
|
| 191 |
|
| 192 |
-
|
| 193 |
|
| 194 |
-
|
| 195 |
-
|
| 196 |
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
|
| 204 |
-
|
| 205 |
|
| 206 |
-
|
| 207 |
|
| 208 |
-
|
| 209 |
-
#
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
|
| 215 |
-
#
|
| 216 |
-
|
| 217 |
|
| 218 |
-
#
|
| 219 |
-
|
| 220 |
|
| 221 |
-
|
| 222 |
|
| 223 |
-
|
| 224 |
-
#
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
|
| 233 |
-
|
| 234 |
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
|
| 241 |
-
|
| 242 |
|
| 243 |
block = gr.Blocks().queue()
|
| 244 |
|
|
|
|
| 9 |
import gradio as gr
|
| 10 |
from torchvision import transforms
|
| 11 |
from controlnet_aux import OpenposeDetector
|
| 12 |
+
import random
|
| 13 |
|
| 14 |
ratios_map = {
|
| 15 |
0.5:{"width":704,"height":1408},
|
|
|
|
| 107 |
return [pose_image,images[0]]
|
| 108 |
|
| 109 |
|
| 110 |
+
@spaces.GPU
|
| 111 |
+
def predict_image(cond_image, prompt, negative_prompt, controlnet_conditioning_scale):
|
| 112 |
+
print("predict position map")
|
| 113 |
+
global pipe
|
| 114 |
+
generator = torch.Generator()
|
| 115 |
+
generator.manual_seed(random.randint(0, 2147483647))
|
| 116 |
+
image = pipe(
|
| 117 |
+
prompt,
|
| 118 |
+
negative_prompt=negative_prompt,
|
| 119 |
+
image = cond_image,
|
| 120 |
+
width=1024,
|
| 121 |
+
height=1024,
|
| 122 |
+
guidance_scale=8,
|
| 123 |
+
num_inference_steps=20,
|
| 124 |
+
generator=generator,
|
| 125 |
+
guess_mode = True,
|
| 126 |
+
controlnet_conditioning_scale = controlnet_conditioning_scale
|
| 127 |
+
).images[0]
|
| 128 |
|
| 129 |
+
return image
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def convert_pil_to_opencv(pil_image):
|
| 133 |
+
return np.array(pil_image)
|
| 134 |
+
|
| 135 |
+
def inv_func(y,
|
| 136 |
+
c = -712.380100,
|
| 137 |
+
a = 137.375240,
|
| 138 |
+
b = 192.435866):
|
| 139 |
+
return (np.exp((y - c) / a) - np.exp(-c/a)) / 964.8468371292845
|
| 140 |
+
|
| 141 |
+
def create_point_cloud(img1, img2):
|
| 142 |
+
if img1.shape != img2.shape:
|
| 143 |
+
raise ValueError("Both images must have the same dimensions.")
|
| 144 |
+
|
| 145 |
+
h, w, _ = img1.shape
|
| 146 |
+
points = []
|
| 147 |
+
colors = []
|
| 148 |
+
for y in range(h):
|
| 149 |
+
for x in range(w):
|
| 150 |
+
# ピクセル位置 (x, y) のRGBをXYZとして取得
|
| 151 |
+
r, g, b = img1[y, x]
|
| 152 |
+
r = inv_func(r) * 0.9
|
| 153 |
+
g = inv_func(g) / 1.7 * 0.6
|
| 154 |
+
b = inv_func(b)
|
| 155 |
+
r *= 150
|
| 156 |
+
g *= 150
|
| 157 |
+
b *= 150
|
| 158 |
+
points.append([g, b, r]) # X, Y, Z
|
| 159 |
+
# 対応するピクセル位置の画像2の色を取得
|
| 160 |
+
colors.append(img2[y, x] / 255.0) # 色は0〜1にスケール
|
| 161 |
+
|
| 162 |
+
return np.array(points), np.array(colors)
|
| 163 |
+
|
| 164 |
+
def point_cloud_to_glb(points, colors):
|
| 165 |
+
# Open3Dでポイントクラウドを作成
|
| 166 |
+
pc = o3d.geometry.PointCloud()
|
| 167 |
+
pc.points = o3d.utility.Vector3dVector(points)
|
| 168 |
+
pc.colors = o3d.utility.Vector3dVector(colors)
|
| 169 |
|
| 170 |
+
# 一時的にPLY形式で保存
|
| 171 |
+
temp_ply_file = "temp_output.ply"
|
| 172 |
+
o3d.io.write_point_cloud(temp_ply_file, pc)
|
| 173 |
|
| 174 |
+
# PLYをGLBに変換
|
| 175 |
+
mesh = trimesh.load(temp_ply_file)
|
| 176 |
+
glb_file = "output.glb"
|
| 177 |
+
mesh.export(glb_file)
|
| 178 |
|
| 179 |
+
return glb_file
|
| 180 |
|
| 181 |
+
def visualize_3d(image1, image2):
|
| 182 |
+
print("Processing...")
|
| 183 |
+
# PIL画像をOpenCV形式に変換
|
| 184 |
+
img1 = convert_pil_to_opencv(image1)
|
| 185 |
+
img2 = convert_pil_to_opencv(image2)
|
| 186 |
|
| 187 |
+
# ポイントクラウド生成
|
| 188 |
+
points, colors = create_point_cloud(img1, img2)
|
| 189 |
|
| 190 |
+
# GLB形式に変換
|
| 191 |
+
glb_file = point_cloud_to_glb(points, colors)
|
| 192 |
|
| 193 |
+
return glb_file
|
| 194 |
|
| 195 |
+
def scale_image(original_image):
|
| 196 |
+
aspect_ratio = original_image.width / original_image.height
|
| 197 |
|
| 198 |
+
if original_image.width > original_image.height:
|
| 199 |
+
new_width = 1024
|
| 200 |
+
new_height = round(new_width / aspect_ratio)
|
| 201 |
+
else:
|
| 202 |
+
new_height = 1024
|
| 203 |
+
new_width = round(new_height * aspect_ratio)
|
| 204 |
|
| 205 |
+
resized_original = original_image.resize((new_width, new_height), Image.LANCZOS)
|
| 206 |
|
| 207 |
+
return resized_original
|
| 208 |
|
| 209 |
+
def get_edge_mode_color(img, edge_width=10):
|
| 210 |
+
# 外周の10ピクセル領域を取得
|
| 211 |
+
left = img.crop((0, 0, edge_width, img.height)) # 左端
|
| 212 |
+
right = img.crop((img.width - edge_width, 0, img.width, img.height)) # 右端
|
| 213 |
+
top = img.crop((0, 0, img.width, edge_width)) # 上端
|
| 214 |
+
bottom = img.crop((0, img.height - edge_width, img.width, img.height)) # 下端
|
| 215 |
|
| 216 |
+
# 各領域のピクセルデータを取得して結合
|
| 217 |
+
colors = list(left.getdata()) + list(right.getdata()) + list(top.getdata()) + list(bottom.getdata())
|
| 218 |
|
| 219 |
+
# 最頻値(mode)を計算
|
| 220 |
+
mode_color = Counter(colors).most_common(1)[0][0] # 最も頻繁に出現する色を取得
|
| 221 |
|
| 222 |
+
return mode_color
|
| 223 |
|
| 224 |
+
def paste_image(resized_img):
|
| 225 |
+
# 外周10pxの最頻値を背景色に設定
|
| 226 |
+
mode_color = get_edge_mode_color(resized_img, edge_width=10)
|
| 227 |
+
mode_background = Image.new("RGBA", (1024, 1024), mode_color)
|
| 228 |
+
mode_background = mode_background.convert('RGB')
|
| 229 |
|
| 230 |
+
x = (1024 - resized_img.width) // 2
|
| 231 |
+
y = (1024 - resized_img.height) // 2
|
| 232 |
+
mode_background.paste(resized_img, (x, y))
|
| 233 |
|
| 234 |
+
return mode_background
|
| 235 |
|
| 236 |
+
def outpaint_image(image):
|
| 237 |
+
if type(image) == type(None):
|
| 238 |
+
return None
|
| 239 |
+
resized_img = scale_image(image)
|
| 240 |
+
image = paste_image(resized_img)
|
| 241 |
|
| 242 |
+
return image
|
| 243 |
|
| 244 |
block = gr.Blocks().queue()
|
| 245 |
|