Spaces:
Runtime error
Runtime error
added application file along with data
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +1231 -0
- db/2d/2d-how-many/embeddings.pkl +3 -0
- db/2d/2d-how-many/expanded_data.csv +0 -0
- db/2d/2d-how-many/gt.pkl +3 -0
- db/2d/2d-how-many/instructblip_vicuna13b_surprise.pkl +3 -0
- db/2d/2d-how-many/instructblip_vicuna7b_surprise.pkl +3 -0
- db/2d/2d-how-many/llava15_13b_surprise.pkl +3 -0
- db/2d/2d-how-many/llava15_7b_surprise.pkl +3 -0
- db/2d/2d-how-many/merged_data.csv +0 -0
- db/2d/2d-how-many/path.json +0 -0
- db/2d/2d-how-many/qa.pkl +3 -0
- db/2d/2d-how-many/qwenvl_chat_surprise.pkl +3 -0
- db/2d/2d-how-many/qwenvl_surprise.pkl +3 -0
- db/2d/2d-how-many/task_plan.pkl +3 -0
- db/2d/2d-what-attribute/embeddings.pkl +3 -0
- db/2d/2d-what-attribute/expanded_data.csv +0 -0
- db/2d/2d-what-attribute/gt.pkl +3 -0
- db/2d/2d-what-attribute/instructblip_vicuna13b_surprise.pkl +3 -0
- db/2d/2d-what-attribute/instructblip_vicuna7b_surprise.pkl +3 -0
- db/2d/2d-what-attribute/llava15_13b_surprise.pkl +3 -0
- db/2d/2d-what-attribute/llava15_7b_surprise.pkl +3 -0
- db/2d/2d-what-attribute/merged_data.csv +0 -0
- db/2d/2d-what-attribute/path.json +0 -0
- db/2d/2d-what-attribute/qa.pkl +3 -0
- db/2d/2d-what-attribute/qwenvl_chat_surprise.pkl +3 -0
- db/2d/2d-what-attribute/qwenvl_surprise.pkl +3 -0
- db/2d/2d-what-attribute/task_plan.pkl +3 -0
- db/2d/2d-what/embeddings.pkl +3 -0
- db/2d/2d-what/expanded_data.csv +0 -0
- db/2d/2d-what/gt.pkl +3 -0
- db/2d/2d-what/instructblip_vicuna13b_surprise.pkl +3 -0
- db/2d/2d-what/instructblip_vicuna7b_surprise.pkl +3 -0
- db/2d/2d-what/llava15_13b_surprise.pkl +3 -0
- db/2d/2d-what/llava15_7b_surprise.pkl +3 -0
- db/2d/2d-what/merged_data.csv +0 -0
- db/2d/2d-what/path.json +0 -0
- db/2d/2d-what/qa.pkl +3 -0
- db/2d/2d-what/qwenvl_chat_surprise.pkl +3 -0
- db/2d/2d-what/qwenvl_surprise.pkl +3 -0
- db/2d/2d-what/task_plan.pkl +3 -0
- db/2d/2d-where-attribute/embeddings.pkl +3 -0
- db/2d/2d-where-attribute/expanded_data.csv +0 -0
- db/2d/2d-where-attribute/gt.pkl +3 -0
- db/2d/2d-where-attribute/instructblip_vicuna13b_surprise.pkl +3 -0
- db/2d/2d-where-attribute/instructblip_vicuna7b_surprise.pkl +3 -0
- db/2d/2d-where-attribute/llava15_13b_surprise.pkl +3 -0
- db/2d/2d-where-attribute/llava15_7b_surprise.pkl +3 -0
- db/2d/2d-where-attribute/merged_data.csv +0 -0
- db/2d/2d-where-attribute/path.json +0 -0
- db/2d/2d-where-attribute/qa.pkl +3 -0
app.py
ADDED
|
@@ -0,0 +1,1231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
import os
|
| 4 |
+
from copy import deepcopy
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import altair as alt
|
| 8 |
+
alt.data_transformers.enable("vegafusion")
|
| 9 |
+
from dynabench.task_evaluator import *
|
| 10 |
+
|
| 11 |
+
BASE_DIR = "../db"
|
| 12 |
+
MODELS = ['qwenvl-chat', 'qwenvl', 'llava15-7b', 'llava15-13b', 'instructblip-vicuna13b', 'instructblip-vicuna7b']
|
| 13 |
+
VIDEO_MODELS = ['video-chat2-7b','video-llama2-7b','video-llama2-13b','chat-univi-7b','chat-univi-13b','video-llava-7b','video-chatgpt-7b']
|
| 14 |
+
domains = ["imageqa-2d-sticker", "imageqa-3d-tabletop", "imageqa-scene-graph", "videoqa-3d-tabletop", "videoqa-scene-graph"]
|
| 15 |
+
domain2folder = {"imageqa-2d-sticker": "2d",
|
| 16 |
+
"imageqa-3d-tabletop": "3d",
|
| 17 |
+
"imageqa-scene-graph": "sg",
|
| 18 |
+
"videoqa-3d-tabletop": "video-3d",
|
| 19 |
+
"videoqa-scene-graph": "video-sg",
|
| 20 |
+
None: '2d'}
|
| 21 |
+
|
| 22 |
+
def update_partition_and_models(domain):
|
| 23 |
+
domain = domain2folder[domain]
|
| 24 |
+
path = f"{BASE_DIR}/{domain}"
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
if os.path.exists(path):
|
| 28 |
+
partitions = list_directories(path)
|
| 29 |
+
if domain.find("video") > -1:
|
| 30 |
+
model = gr.Dropdown(VIDEO_MODELS, value=VIDEO_MODELS[0], label="model")
|
| 31 |
+
else:
|
| 32 |
+
model = gr.Dropdown(MODELS, value=MODELS[0], label="model")
|
| 33 |
+
|
| 34 |
+
partition = gr.Dropdown(partitions, value=partitions[0], label="task space of the following task generator")
|
| 35 |
+
return [partition, model]
|
| 36 |
+
else:
|
| 37 |
+
partition = gr.Dropdown([], value=None, label="task space of the following task generator")
|
| 38 |
+
model = gr.Dropdown([], value=None, label="model")
|
| 39 |
+
return [partition, model]
|
| 40 |
+
|
| 41 |
+
def update_partition_and_models_and_baselines(domain):
|
| 42 |
+
domain = domain2folder[domain]
|
| 43 |
+
path = f"{BASE_DIR}/{domain}"
|
| 44 |
+
|
| 45 |
+
if os.path.exists(path):
|
| 46 |
+
partitions = list_directories(path)
|
| 47 |
+
if domain.find("video") > -1:
|
| 48 |
+
model = gr.Dropdown(VIDEO_MODELS, value=VIDEO_MODELS[0], label="model")
|
| 49 |
+
baseline = gr.Dropdown(VIDEO_MODELS, value=VIDEO_MODELS[0], label="baseline")
|
| 50 |
+
else:
|
| 51 |
+
model = gr.Dropdown(MODELS, value=MODELS[0], label="model")
|
| 52 |
+
baseline = gr.Dropdown(MODELS, value=MODELS[0], label="baseline")
|
| 53 |
+
|
| 54 |
+
partition = gr.Dropdown(partitions, value=partitions[0], label="task space of the following task generator")
|
| 55 |
+
else:
|
| 56 |
+
partition = gr.Dropdown([], value=None, label="task space of the following task generator")
|
| 57 |
+
model = gr.Dropdown([], value=None, label="model")
|
| 58 |
+
baseline = gr.Dropdown([], value=None, label="baseline")
|
| 59 |
+
return [partition, model, baseline]
|
| 60 |
+
|
| 61 |
+
def get_filtered_task_ids(domain, partition, models, rank, k, threshold, baseline):
|
| 62 |
+
domain = domain2folder[domain]
|
| 63 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
| 64 |
+
if not os.path.exists(data_path):
|
| 65 |
+
return []
|
| 66 |
+
else:
|
| 67 |
+
merged_df = pd.read_csv(data_path)
|
| 68 |
+
merged_df.rename(columns={'llavav1.5-7b': 'llava15-7b', 'llavav1.5-13b': 'llava15-13b'}, inplace=True)
|
| 69 |
+
|
| 70 |
+
df = merged_df
|
| 71 |
+
|
| 72 |
+
select_top = rank == "top"
|
| 73 |
+
# Model X is good / bad at
|
| 74 |
+
for model in models:
|
| 75 |
+
if baseline:
|
| 76 |
+
df = df[df[model] >= df[baseline]]
|
| 77 |
+
else:
|
| 78 |
+
if select_top:
|
| 79 |
+
df = df[df[model] >= threshold]
|
| 80 |
+
else:
|
| 81 |
+
df = df[df[model] <= threshold]
|
| 82 |
+
if not baseline:
|
| 83 |
+
df['mean score'] = df[models].mean(axis=1)
|
| 84 |
+
df = df.sort_values(by='mean score', ascending=False)
|
| 85 |
+
df = df.iloc[:k, :] if select_top else df.iloc[-k:, :]
|
| 86 |
+
|
| 87 |
+
task_ids = list(df.index)
|
| 88 |
+
return task_ids
|
| 89 |
+
|
| 90 |
+
def plot_patterns(domain, partition, models, rank, k, threshold, baseline, pattern, order):
|
| 91 |
+
domain = domain2folder[domain]
|
| 92 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
|
| 93 |
+
if not os.path.exists(data_path):
|
| 94 |
+
return None
|
| 95 |
+
task_ids = get_filtered_task_ids(domain, partition, models, rank, k, threshold, baseline)
|
| 96 |
+
expand_df = pd.read_csv(data_path)
|
| 97 |
+
|
| 98 |
+
chart_df = expand_df[expand_df['model'].isin((models + [baseline]) if baseline else models)]
|
| 99 |
+
chart_df = chart_df[chart_df['task id'].isin(task_ids)]
|
| 100 |
+
print(pattern)
|
| 101 |
+
freq, cols = eval(pattern)
|
| 102 |
+
pattern_str = ""
|
| 103 |
+
df = chart_df
|
| 104 |
+
for col in cols:
|
| 105 |
+
col_name, col_val = col
|
| 106 |
+
try:
|
| 107 |
+
col_val = int(col_val)
|
| 108 |
+
except:
|
| 109 |
+
col_val = col_val
|
| 110 |
+
df = df[df[col_name] == col_val]
|
| 111 |
+
pattern_str += f"{col_name} = {col_val}, "
|
| 112 |
+
print(len(df))
|
| 113 |
+
|
| 114 |
+
if baseline:
|
| 115 |
+
model_str = (', '.join(models) if len(models) > 1 else models[0])
|
| 116 |
+
phrase = f'{model_str} perform' if len(models) > 1 else f'{model_str} performs'
|
| 117 |
+
title = f"{phrase} better than {baseline} on {freq} tasks where {pattern_str[:-2]}"
|
| 118 |
+
else:
|
| 119 |
+
title = f"Models are {'best' if rank == 'top' else 'worst'} at {freq} tasks where {pattern_str[:-2]}"
|
| 120 |
+
|
| 121 |
+
chart = alt.Chart(df).mark_bar().encode(
|
| 122 |
+
alt.X('model:N',
|
| 123 |
+
sort=alt.EncodingSortField(field=f'score', order=order, op="mean"),
|
| 124 |
+
axis=alt.Axis(labels=False, tickSize=0)), # no title, no label angle),
|
| 125 |
+
alt.Y('mean(score):Q', scale=alt.Scale(zero=True)),
|
| 126 |
+
alt.Color('model:N').legend(),
|
| 127 |
+
).properties(
|
| 128 |
+
width=400,
|
| 129 |
+
height=300,
|
| 130 |
+
title=title
|
| 131 |
+
)
|
| 132 |
+
return chart
|
| 133 |
+
|
| 134 |
+
def plot_embedding(domain, partition, category):
|
| 135 |
+
domain = domain2folder[domain]
|
| 136 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
| 137 |
+
|
| 138 |
+
if os.path.exists(data_path):
|
| 139 |
+
merged_df = pd.read_csv(data_path)
|
| 140 |
+
# models = merged_df.columns
|
| 141 |
+
has_image = 'image' in merged_df
|
| 142 |
+
chart = alt.Chart(merged_df).mark_point(size=30, filled=True).encode(
|
| 143 |
+
alt.OpacityValue(0.5),
|
| 144 |
+
alt.X('x:Q'),
|
| 145 |
+
alt.Y('y:Q'),
|
| 146 |
+
alt.Color(f'{category}:N'),
|
| 147 |
+
tooltip=['question', 'answer'] + (['image'] if has_image else []),
|
| 148 |
+
).properties(
|
| 149 |
+
width=800,
|
| 150 |
+
height=800,
|
| 151 |
+
title="UMAP Projected Task Embeddings"
|
| 152 |
+
).configure_axis(
|
| 153 |
+
labelFontSize=25,
|
| 154 |
+
titleFontSize=25,
|
| 155 |
+
).configure_title(
|
| 156 |
+
fontSize=40
|
| 157 |
+
).configure_legend(
|
| 158 |
+
labelFontSize=25,
|
| 159 |
+
titleFontSize=25,
|
| 160 |
+
).interactive()
|
| 161 |
+
return chart
|
| 162 |
+
else:
|
| 163 |
+
return None
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def plot_multi_models(domain, partition, category, cat_options, models, order, pattern, aggregate="mean"):
|
| 168 |
+
domain = domain2folder[domain]
|
| 169 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
|
| 170 |
+
if not os.path.exists(data_path):
|
| 171 |
+
return None
|
| 172 |
+
expand_df = pd.read_csv(data_path)
|
| 173 |
+
print(pattern)
|
| 174 |
+
if pattern is not None:
|
| 175 |
+
df = expand_df
|
| 176 |
+
freq, cols = eval(pattern)
|
| 177 |
+
pattern_str = ""
|
| 178 |
+
for col in cols:
|
| 179 |
+
col_name, col_val = col
|
| 180 |
+
try:
|
| 181 |
+
col_val = int(col_val)
|
| 182 |
+
except:
|
| 183 |
+
col_val = col_val
|
| 184 |
+
df = df[df[col_name] == col_val]
|
| 185 |
+
pattern_str += f"{col_name} = {col_val}, "
|
| 186 |
+
chart = alt.Chart(df).mark_bar().encode(
|
| 187 |
+
alt.X('model:N',
|
| 188 |
+
sort=alt.EncodingSortField(field=f'score', order='ascending', op="mean"),
|
| 189 |
+
axis=alt.Axis(labels=False, tickSize=0)), # no title, no label angle),
|
| 190 |
+
alt.Y('mean(score):Q', scale=alt.Scale(zero=True)),
|
| 191 |
+
alt.Color('model:N').legend(),
|
| 192 |
+
).properties(
|
| 193 |
+
width=200,
|
| 194 |
+
height=100,
|
| 195 |
+
title=f"How do models perform on tasks where {pattern_str[:-2]} (N={freq})?"
|
| 196 |
+
)
|
| 197 |
+
return chart
|
| 198 |
+
else:
|
| 199 |
+
df = expand_df[(expand_df['model'].isin(models)) & (expand_df[category].isin(cat_options))]
|
| 200 |
+
if len(models) > 1:
|
| 201 |
+
chart = alt.Chart(df).mark_bar().encode(
|
| 202 |
+
alt.X('model:N',
|
| 203 |
+
sort=alt.EncodingSortField(field=f'score', order=order, op="mean"),
|
| 204 |
+
axis=alt.Axis(labels=False, tickSize=0, title=None)),
|
| 205 |
+
alt.Y('mean(score):Q', scale=alt.Scale(zero=True)),
|
| 206 |
+
alt.Color('model:N').legend(),
|
| 207 |
+
alt.Column(f'{category}:N', header=alt.Header(titleOrient='bottom', labelOrient='bottom'))
|
| 208 |
+
).properties(
|
| 209 |
+
width=200,
|
| 210 |
+
height=100,
|
| 211 |
+
title=f"How do models perform across {category}?"
|
| 212 |
+
)
|
| 213 |
+
else:
|
| 214 |
+
chart = alt.Chart(df).mark_bar().encode(
|
| 215 |
+
alt.X(f'{category}:N', sort=alt.EncodingSortField(field=f'score', order=order, op="mean")), # no title, no label angle),
|
| 216 |
+
alt.Y('mean(score):Q', scale=alt.Scale(zero=True)),
|
| 217 |
+
alt.Color(f'{category}:N').legend(None),
|
| 218 |
+
).properties(
|
| 219 |
+
width=200,
|
| 220 |
+
height=100,
|
| 221 |
+
title=f"How does {models[0]} perform across {category}?"
|
| 222 |
+
)
|
| 223 |
+
chart = chart.configure_title(fontSize=15, offset=5, orient='top', anchor='middle')
|
| 224 |
+
return chart
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def plot(domain, partition, models, rank, k, threshold, baseline, order, category, cat_options):
|
| 228 |
+
domain = domain2folder[domain]
|
| 229 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
| 230 |
+
expand_data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
|
| 231 |
+
# task_plan.reset_index(inplace=True)
|
| 232 |
+
if not os.path.exists(data_path) or not os.path.exists(expand_data_path):
|
| 233 |
+
return None
|
| 234 |
+
else:
|
| 235 |
+
merged_df = pd.read_csv(data_path)
|
| 236 |
+
merged_df.rename(columns={'llavav1.5-7b': 'llava15-7b', 'llavav1.5-13b': 'llava15-13b'}, inplace=True)
|
| 237 |
+
expand_df = pd.read_csv(expand_data_path)
|
| 238 |
+
|
| 239 |
+
df = merged_df
|
| 240 |
+
|
| 241 |
+
select_top = rank == "top"
|
| 242 |
+
# Model X is good / bad at
|
| 243 |
+
for model in models:
|
| 244 |
+
if baseline:
|
| 245 |
+
df = df[df[model] >= df[baseline]]
|
| 246 |
+
else:
|
| 247 |
+
if select_top:
|
| 248 |
+
df = df[df[model] >= threshold]
|
| 249 |
+
else:
|
| 250 |
+
df = df[df[model] <= threshold]
|
| 251 |
+
if not baseline:
|
| 252 |
+
df['mean score'] = df[models].mean(axis=1)
|
| 253 |
+
df = df.sort_values(by='mean score', ascending=False)
|
| 254 |
+
df = df.iloc[:k, :] if select_top else df.iloc[-k:, :]
|
| 255 |
+
|
| 256 |
+
task_ids = list(df.index)
|
| 257 |
+
if baseline:
|
| 258 |
+
models += [baseline]
|
| 259 |
+
|
| 260 |
+
chart_df = expand_df[expand_df['model'].isin(models)]
|
| 261 |
+
chart_df = chart_df[chart_df['task id'].isin(task_ids)]
|
| 262 |
+
|
| 263 |
+
if cat_options:
|
| 264 |
+
df = chart_df[chart_df[category].isin(cat_options)]
|
| 265 |
+
else:
|
| 266 |
+
df = chart_df
|
| 267 |
+
if baseline:
|
| 268 |
+
model_str = (', '.join(models) if len(models) > 1 else models[0])
|
| 269 |
+
phrase = f'{model_str} perform' if len(models) > 1 else f'{model_str} performs'
|
| 270 |
+
title = f"Are there any tasks where {phrase} better than {baseline} (by {category})?"
|
| 271 |
+
|
| 272 |
+
else:
|
| 273 |
+
title = f"What tasks are models {'best' if select_top else 'worst'} at by {category}?"
|
| 274 |
+
|
| 275 |
+
if len(models) > 1:
|
| 276 |
+
chart = alt.Chart(df).mark_bar().encode(
|
| 277 |
+
alt.X('model:N',
|
| 278 |
+
sort=alt.EncodingSortField(field=f'score', order=order, op="mean"),
|
| 279 |
+
axis=alt.Axis(labels=False, tickSize=0, title=None)),
|
| 280 |
+
alt.Y('mean(score):Q', scale=alt.Scale(zero=True)),
|
| 281 |
+
alt.Color('model:N').legend(),
|
| 282 |
+
alt.Column(f'{category}:N', header=alt.Header(titleOrient='bottom', labelOrient='bottom'))
|
| 283 |
+
).properties(
|
| 284 |
+
width=200,
|
| 285 |
+
height=100,
|
| 286 |
+
title=title
|
| 287 |
+
)
|
| 288 |
+
else:
|
| 289 |
+
chart = alt.Chart(df).mark_bar().encode(
|
| 290 |
+
alt.X(f'{category}:N', sort=alt.EncodingSortField(field=f'score', order=order, op="mean")), # no title, no label angle),
|
| 291 |
+
alt.Y('mean(score):Q', scale=alt.Scale(zero=True)),
|
| 292 |
+
alt.Color(f'{category}:N').legend(None),
|
| 293 |
+
).properties(
|
| 294 |
+
width=200,
|
| 295 |
+
height=100,
|
| 296 |
+
title=f"What tasks is model {models[0]} {'best' if select_top else 'worst'} at by {category}?"
|
| 297 |
+
)
|
| 298 |
+
chart = chart.configure_title(fontSize=15, offset=5, orient='top', anchor='middle')
|
| 299 |
+
return chart
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
def get_frequent_patterns(task_plan, scores):
|
| 303 |
+
find_frequent_patterns(k=10, df=task_plan, scores=scores)
|
| 304 |
+
|
| 305 |
+
def list_directories(path):
|
| 306 |
+
"""List all directories within a given path."""
|
| 307 |
+
return [d for d in os.listdir(path) if os.path.isdir(os.path.join(path, d))]
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
def update_category(domain, partition):
|
| 311 |
+
domain = domain2folder[domain]
|
| 312 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/task_plan.pkl"
|
| 313 |
+
if os.path.exists(data_path):
|
| 314 |
+
data = pickle.load(open(data_path, 'rb'))
|
| 315 |
+
categories = list(data.columns)
|
| 316 |
+
category = gr.Dropdown(categories+["task id"], value=None, label="task metadata", interactive=True)
|
| 317 |
+
return category
|
| 318 |
+
else:
|
| 319 |
+
return gr.Dropdown([], value=None, label="task metadata")
|
| 320 |
+
|
| 321 |
+
def update_category2(domain, partition, existing_category):
|
| 322 |
+
domain = domain2folder[domain]
|
| 323 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/task_plan.pkl"
|
| 324 |
+
if os.path.exists(data_path):
|
| 325 |
+
data = pickle.load(open(data_path, 'rb'))
|
| 326 |
+
categories = list(data.columns)
|
| 327 |
+
if existing_category and existing_category in categories:
|
| 328 |
+
categories.remove(existing_category)
|
| 329 |
+
category = gr.Dropdown(categories, value=None, label="Optional: second task metadata", interactive=True)
|
| 330 |
+
return category
|
| 331 |
+
else:
|
| 332 |
+
return gr.Dropdown([], value=None, label="task metadata")
|
| 333 |
+
|
| 334 |
+
def update_partition(domain):
|
| 335 |
+
domain = domain2folder[domain]
|
| 336 |
+
path = f"{BASE_DIR}/{domain}"
|
| 337 |
+
if os.path.exists(path):
|
| 338 |
+
partitions = list_directories(path)
|
| 339 |
+
return gr.Dropdown(partitions, value=partitions[0], label="task space of the following task generator")
|
| 340 |
+
else:
|
| 341 |
+
return gr.Dropdown([], value=None, label="task space of the following task generator")
|
| 342 |
+
|
| 343 |
+
def update_k(domain, partition, category=None):
|
| 344 |
+
domain = domain2folder[domain]
|
| 345 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
| 346 |
+
if os.path.exists(data_path):
|
| 347 |
+
data = pd.read_csv(data_path)
|
| 348 |
+
max_k = len(data[category].unique()) if category and category != "task id" else len(data)
|
| 349 |
+
mid = max_k // 2
|
| 350 |
+
return gr.Slider(1, max_k, mid, step=1.0, label="k")
|
| 351 |
+
else:
|
| 352 |
+
return gr.Slider(1, 1, 1, step=1.0, label="k")
|
| 353 |
+
|
| 354 |
+
# def update_category_values(domain, partition, category):
|
| 355 |
+
# data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
| 356 |
+
# if os.path.exists(data_path) and category is not None:
|
| 357 |
+
# data = pd.read_csv(data_path)
|
| 358 |
+
# uni_cats = list(data[category].unique())
|
| 359 |
+
# return gr.Dropdown(uni_cats, multiselect=True, value=None, interactive=True, label="category values")
|
| 360 |
+
# else:
|
| 361 |
+
# return gr.Dropdown([], multiselect=True, value=None, interactive=False, label="category values")
|
| 362 |
+
|
| 363 |
+
# def update_category_values(domain, partition, models, rank, k, threshold, baseline, category):
|
| 364 |
+
# data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
| 365 |
+
|
| 366 |
+
# if not os.path.exists(data_path):
|
| 367 |
+
# return gr.Dropdown([], multiselect=True, value=None, interactive=False, label="category values")
|
| 368 |
+
# else:
|
| 369 |
+
# merged_df = pd.read_csv(data_path)
|
| 370 |
+
# merged_df.rename(columns={'llavav1.5-7b': 'llava15-7b', 'llavav1.5-13b': 'llava15-13b'}, inplace=True)
|
| 371 |
+
|
| 372 |
+
# df = merged_df
|
| 373 |
+
|
| 374 |
+
# select_top = rank == "top"
|
| 375 |
+
# # Model X is good / bad at
|
| 376 |
+
# for model in models:
|
| 377 |
+
# if baseline:
|
| 378 |
+
# df = df[df[model] >= df[baseline]]
|
| 379 |
+
# else:
|
| 380 |
+
# if select_top:
|
| 381 |
+
# df = df[df[model] >= threshold]
|
| 382 |
+
# else:
|
| 383 |
+
# df = df[df[model] <= threshold]
|
| 384 |
+
# if not baseline:
|
| 385 |
+
# df['mean score'] = df[models].mean(axis=1)
|
| 386 |
+
# df = df.sort_values(by='mean score', ascending=False)
|
| 387 |
+
# df = df.iloc[:k, :] if select_top else df.iloc[-k:, :]
|
| 388 |
+
# uni_cats = list(df[category].unique())
|
| 389 |
+
# return gr.Dropdown(uni_cats, multiselect=True, value=None, interactive=True, label="category values")
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
def update_tasks(domain, partition, find_pattern):
|
| 393 |
+
domain = domain2folder[domain]
|
| 394 |
+
if find_pattern == "yes":
|
| 395 |
+
k1 = gr.Slider(1, 10000, 10, step=1.0, label="k", interactive=True)
|
| 396 |
+
pattern = gr.Dropdown([], value=None, interactive=True, label="pattern")
|
| 397 |
+
category1 = gr.Dropdown([], value=None, interactive=False, label="task metadata")
|
| 398 |
+
return [k1, pattern, category1]
|
| 399 |
+
else:
|
| 400 |
+
k1 = gr.Slider(1, 10000, 10, step=1.0, label="k", interactive=False)
|
| 401 |
+
pattern = gr.Dropdown([], value=None, interactive=False, label="pattern")
|
| 402 |
+
|
| 403 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
| 404 |
+
if os.path.exists(data_path):
|
| 405 |
+
data = pd.read_csv(data_path)
|
| 406 |
+
non_columns = MODELS + ['question', 'answer']
|
| 407 |
+
categories = [cat for cat in list(data.columns) if cat not in non_columns]
|
| 408 |
+
category1 = gr.Dropdown(categories, value=categories[0], interactive=True, label="task metadata")
|
| 409 |
+
else:
|
| 410 |
+
category1 = gr.Dropdown([], value=None, label="task metadata")
|
| 411 |
+
return [k1, pattern, category1]
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
def update_pattern(domain, partition, k):
|
| 415 |
+
domain = domain2folder[domain]
|
| 416 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/patterns.pkl"
|
| 417 |
+
if not os.path.exists(data_path):
|
| 418 |
+
return gr.Dropdown([], value=None, interactive=False, label="pattern")
|
| 419 |
+
else:
|
| 420 |
+
results = pickle.load(open(data_path, 'rb'))
|
| 421 |
+
patterns = results[0]
|
| 422 |
+
patterns = [str(p) for p in patterns]
|
| 423 |
+
print(patterns)
|
| 424 |
+
return gr.Dropdown(patterns[:k], value=None, interactive=True, label="pattern")
|
| 425 |
+
|
| 426 |
+
def update_threshold(domain, partition, baseline):
|
| 427 |
+
domain = domain2folder[domain]
|
| 428 |
+
print(baseline)
|
| 429 |
+
if baseline:
|
| 430 |
+
rank = gr.Radio(['top', 'bottom'], value='top', label="rank", interactive=False)
|
| 431 |
+
k = gr.Slider(1, 10000, 10, step=1.0, label="k", interactive=False)
|
| 432 |
+
threshold = gr.Slider(0, 1, 0.0, label="threshold", interactive=False)
|
| 433 |
+
return [rank, k, threshold]
|
| 434 |
+
else:
|
| 435 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
| 436 |
+
if os.path.exists(data_path):
|
| 437 |
+
data = pd.read_csv(data_path)
|
| 438 |
+
max_k = len(data)
|
| 439 |
+
print(max_k)
|
| 440 |
+
k = gr.Slider(1, max_k, 10, step=1.0, label="k", interactive=True)
|
| 441 |
+
else:
|
| 442 |
+
k = gr.Slider(1, 1, 1, step=1.0, label="k")
|
| 443 |
+
rank = gr.Radio(['top', 'bottom'], value='top', label="rank", interactive=True)
|
| 444 |
+
|
| 445 |
+
threshold = gr.Slider(0, 1, 0.0, label="threshold", interactive=True)
|
| 446 |
+
return [rank, k, threshold]
|
| 447 |
+
|
| 448 |
+
def calc_surprisingness(model, scores, embeddings, k):
|
| 449 |
+
scores = scores[model].to_numpy()
|
| 450 |
+
sim = embeddings @ embeddings.T
|
| 451 |
+
# print("sim values:", sim.shape, sim)
|
| 452 |
+
indices = np.argsort(-sim)[:, :k]
|
| 453 |
+
# print("indices:", indices.shape, indices)
|
| 454 |
+
score_diff = scores[:, None] - scores[indices]
|
| 455 |
+
# print("score differences:", score_diff.shape, score_diff)
|
| 456 |
+
sim = sim[np.arange(len(scores))[:, None], indices]
|
| 457 |
+
# print("top10 sim:", sim.shape, sim)
|
| 458 |
+
all_surprisingness = score_diff * sim
|
| 459 |
+
# print("all surprisingness:", all_surprisingness.shape, all_surprisingness)
|
| 460 |
+
mean_surprisingness = np.mean(score_diff * sim, axis=1)
|
| 461 |
+
res = {'similarity': sim,
|
| 462 |
+
'task index': indices,
|
| 463 |
+
'score difference': score_diff,
|
| 464 |
+
'all surprisingness': all_surprisingness,
|
| 465 |
+
'mean surprisingness': mean_surprisingness
|
| 466 |
+
}
|
| 467 |
+
return res
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
def plot_surprisingness(domain, partition, model, rank, k, num_neighbors):
|
| 471 |
+
domain = domain2folder[domain]
|
| 472 |
+
# model = model[0]
|
| 473 |
+
model_str = model.replace("-", "_")
|
| 474 |
+
|
| 475 |
+
# sp_path = f"{BASE_DIR}/{domain}/{partition}/surprise_data.csv"
|
| 476 |
+
sp_pkl = f"{BASE_DIR}/{domain}/{partition}/{model_str}_surprise.pkl"
|
| 477 |
+
merged_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
| 478 |
+
if os.path.exists(sp_pkl) and os.path.exists(merged_path): # and not os.path.exists(sp_path)
|
| 479 |
+
# if os.path.exists(sp_path):
|
| 480 |
+
# sp_df = pd.read_csv(sp_path)
|
| 481 |
+
# # res = calc_surprisingness(model, scores, embeds, num_neighbors)
|
| 482 |
+
# # k = 10
|
| 483 |
+
# model = 'qwenvl'
|
| 484 |
+
# num_neighbors = 10
|
| 485 |
+
# if os.path.exists(sp_pkl):
|
| 486 |
+
res = pickle.load(open(sp_pkl, 'rb'))
|
| 487 |
+
|
| 488 |
+
total_num_task = res['task index'].shape[0]
|
| 489 |
+
all_records = []
|
| 490 |
+
for i in range(total_num_task):
|
| 491 |
+
mean_surprisingness = np.mean(res['all surprisingness'][i, :num_neighbors])
|
| 492 |
+
for j in range(num_neighbors):
|
| 493 |
+
neighbor_id = res['task index'][i, j]
|
| 494 |
+
score_diff = res['score difference'][i, j]
|
| 495 |
+
surprisingness = res['all surprisingness'][i, j]
|
| 496 |
+
similarity = res['similarity'][i, j]
|
| 497 |
+
|
| 498 |
+
record = {"task id": i,
|
| 499 |
+
"neighbor rank": j,
|
| 500 |
+
"neighbor id": neighbor_id,
|
| 501 |
+
"score difference": score_diff,
|
| 502 |
+
"surprisingness": surprisingness,
|
| 503 |
+
"mean surprisingness": mean_surprisingness,
|
| 504 |
+
"similarity": similarity
|
| 505 |
+
}
|
| 506 |
+
# print(record)
|
| 507 |
+
all_records.append(record)
|
| 508 |
+
sp_df = pd.DataFrame.from_records(all_records)
|
| 509 |
+
sp_df = sp_df.sort_values(by="mean surprisingness", ascending=False)
|
| 510 |
+
|
| 511 |
+
num_rows = k * num_neighbors
|
| 512 |
+
df = sp_df.iloc[:num_rows, :] if rank == "top" else sp_df.iloc[-num_rows:, :]
|
| 513 |
+
print(len(df))
|
| 514 |
+
|
| 515 |
+
df['is target'] = df.apply(lambda row: int(row['task id'] == row['neighbor id']), axis=1)
|
| 516 |
+
|
| 517 |
+
merged_df = pd.read_csv(merged_path)
|
| 518 |
+
for col in merged_df.columns:
|
| 519 |
+
df[col] = df.apply(lambda row: merged_df.iloc[int(row['neighbor id']), :][col], axis=1)
|
| 520 |
+
|
| 521 |
+
tooltips = ['neighbor id'] + ['image', 'question', 'answer', model]
|
| 522 |
+
|
| 523 |
+
print(df.head())
|
| 524 |
+
pts = alt.selection_point(encodings=['x'])
|
| 525 |
+
embeds = alt.Chart(df).mark_point(size=30, filled=True).encode(
|
| 526 |
+
alt.OpacityValue(0.5),
|
| 527 |
+
alt.X('x:Q', scale=alt.Scale(zero=False)),
|
| 528 |
+
alt.Y('y:Q', scale=alt.Scale(zero=False)),
|
| 529 |
+
alt.Color(f'{model}:Q'), #scale=alt.Scale(domain=[1, 0.5, 0], range=['blue', 'white', 'red'], interpolate='rgb')
|
| 530 |
+
alt.Size("is target:N", legend=None, scale=alt.Scale(domain=[0, 1], range=[300, 500])),
|
| 531 |
+
alt.Shape("is target:N", legend=None, scale=alt.Scale(domain=[0, 1], range=['circle', 'triangle'])),
|
| 532 |
+
alt.Order("is target:N"),
|
| 533 |
+
tooltip=tooltips,
|
| 534 |
+
).properties(
|
| 535 |
+
width=400,
|
| 536 |
+
height=400,
|
| 537 |
+
title=f"What are the tasks {model} is surprisingly {'good' if rank == 'top' else 'bad'} at compared to {num_neighbors} similar tasks?"
|
| 538 |
+
).transform_filter(
|
| 539 |
+
pts
|
| 540 |
+
)
|
| 541 |
+
|
| 542 |
+
bar = alt.Chart(df).mark_bar().encode(
|
| 543 |
+
alt.Y('mean(mean surprisingness):Q'),
|
| 544 |
+
alt.X('task id:N', sort=alt.EncodingSortField(field='mean surprisingness', order='descending')),
|
| 545 |
+
color=alt.condition(pts, alt.ColorValue("steelblue"), alt.ColorValue("grey")), #
|
| 546 |
+
).add_params(pts).properties(
|
| 547 |
+
width=400,
|
| 548 |
+
height=200,
|
| 549 |
+
)
|
| 550 |
+
|
| 551 |
+
chart = alt.hconcat(
|
| 552 |
+
bar,
|
| 553 |
+
embeds
|
| 554 |
+
).resolve_legend(
|
| 555 |
+
color="independent",
|
| 556 |
+
size="independent"
|
| 557 |
+
).configure_title(
|
| 558 |
+
fontSize=20
|
| 559 |
+
).configure_legend(
|
| 560 |
+
labelFontSize=10,
|
| 561 |
+
titleFontSize=10,
|
| 562 |
+
)
|
| 563 |
+
return chart
|
| 564 |
+
else:
|
| 565 |
+
print(sp_pkl, merged_path)
|
| 566 |
+
return None
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
|
| 570 |
+
def plot_task_distribution(domain, partition, category):
|
| 571 |
+
domain = domain2folder[domain]
|
| 572 |
+
task_plan = pickle.load(open(f"{BASE_DIR}/{domain}/{partition}/task_plan.pkl", "rb"))
|
| 573 |
+
task_plan.reset_index(inplace=True)
|
| 574 |
+
col_name = category
|
| 575 |
+
task_plan_cnt = task_plan.groupby(col_name)['index'].count().reset_index()
|
| 576 |
+
task_plan_cnt.rename(columns={'index': 'count'}, inplace=True)
|
| 577 |
+
task_plan_cnt['frequency (%)'] = round(task_plan_cnt['count'] / len(task_plan) * 100, 2)
|
| 578 |
+
task_plan_cnt.head()
|
| 579 |
+
|
| 580 |
+
base = alt.Chart(task_plan_cnt).encode(
|
| 581 |
+
alt.Theta("count:Q").stack(True),
|
| 582 |
+
alt.Color(f"{col_name}:N").legend(),
|
| 583 |
+
tooltip=[col_name, 'count', 'frequency (%)']
|
| 584 |
+
)
|
| 585 |
+
pie = base.mark_arc(outerRadius=120)
|
| 586 |
+
return pie
|
| 587 |
+
|
| 588 |
+
def plot_all(domain, partition, models, category1, category2, agg):
|
| 589 |
+
domain = domain2folder[domain]
|
| 590 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
|
| 591 |
+
if not os.path.exists(data_path):
|
| 592 |
+
return None
|
| 593 |
+
expand_df = pd.read_csv(data_path)
|
| 594 |
+
chart_df = expand_df[expand_df['model'].isin(models)]
|
| 595 |
+
if category2:
|
| 596 |
+
|
| 597 |
+
color_val = f'{agg}(score):Q'
|
| 598 |
+
|
| 599 |
+
chart = alt.Chart(chart_df).mark_rect().encode(
|
| 600 |
+
alt.X(f'{category1}:N', sort=alt.EncodingSortField(field='score', order='ascending', op=agg)),
|
| 601 |
+
alt.Y(f'{category2}:N', sort=alt.EncodingSortField(field='score', order='descending', op=agg)), # no title, no label angle),
|
| 602 |
+
alt.Color(color_val),
|
| 603 |
+
alt.Tooltip('score', aggregate=agg, title=f"{agg} score"),
|
| 604 |
+
).properties(
|
| 605 |
+
width=800,
|
| 606 |
+
height=200,
|
| 607 |
+
)
|
| 608 |
+
else:
|
| 609 |
+
category = "index" if category1 == "task id" else category1
|
| 610 |
+
# cat_options = list(chart_df[category].unique())
|
| 611 |
+
# cat_options = cat_options[:5]
|
| 612 |
+
y_val = f'{agg}(score):Q'
|
| 613 |
+
df = chart_df
|
| 614 |
+
# df = chart_df[chart_df[category].isin(cat_options)]
|
| 615 |
+
if len(models) > 1:
|
| 616 |
+
chart = alt.Chart(df).mark_bar().encode(
|
| 617 |
+
alt.X('model:N',
|
| 618 |
+
sort=alt.EncodingSortField(field=f'score', order='ascending', op=agg),
|
| 619 |
+
axis=alt.Axis(labels=False, tickSize=0, title=None)),
|
| 620 |
+
alt.Y(y_val, scale=alt.Scale(zero=True)),
|
| 621 |
+
alt.Color('model:N').legend(),
|
| 622 |
+
alt.Column(f'{category}:N', header=alt.Header(titleOrient='bottom', labelOrient='bottom'))
|
| 623 |
+
).properties(
|
| 624 |
+
width=200,
|
| 625 |
+
height=100,
|
| 626 |
+
title=f"How do models perform across {category}?"
|
| 627 |
+
)
|
| 628 |
+
else:
|
| 629 |
+
chart = alt.Chart(df).mark_bar().encode(
|
| 630 |
+
alt.X(f'{category}:N', sort=alt.EncodingSortField(field=f'score', order='ascending', op=agg)), # no title, no label angle),
|
| 631 |
+
alt.Y(y_val, scale=alt.Scale(zero=True)),
|
| 632 |
+
alt.Color(f'{category}:N').legend(None),
|
| 633 |
+
).properties(
|
| 634 |
+
width=200,
|
| 635 |
+
height=100,
|
| 636 |
+
title=f"How does {models[0]} perform across {category}?"
|
| 637 |
+
)
|
| 638 |
+
chart = chart.configure_title(fontSize=20, offset=5, orient='top', anchor='middle').configure_axis(
|
| 639 |
+
labelFontSize=20,
|
| 640 |
+
titleFontSize=20,
|
| 641 |
+
).configure_legend(
|
| 642 |
+
labelFontSize=15,
|
| 643 |
+
titleFontSize=15,
|
| 644 |
+
)
|
| 645 |
+
return chart
|
| 646 |
+
|
| 647 |
+
def update_widgets(domain, partition, category, query_type):
|
| 648 |
+
domain = domain2folder[domain]
|
| 649 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
|
| 650 |
+
if not os.path.exists(data_path):
|
| 651 |
+
print("here?")
|
| 652 |
+
return [None] * 11
|
| 653 |
+
df = pd.read_csv(data_path)
|
| 654 |
+
max_k = len(df[category].unique()) if category and category != "task id" else len(df)
|
| 655 |
+
|
| 656 |
+
widgets = []
|
| 657 |
+
|
| 658 |
+
if query_type == "top k":
|
| 659 |
+
# aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
|
| 660 |
+
rank = gr.Radio(['top', 'bottom'], value='top', label=" ", interactive=True, visible=True)
|
| 661 |
+
k = gr.Slider(1, max_k, max_k // 2, step=1.0, label="k", interactive=True, visible=True)
|
| 662 |
+
model = gr.Dropdown(MODELS, value=MODELS, label="of model(s)'", multiselect=True, interactive=True, visible=True)
|
| 663 |
+
# model_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task category aggregate", interactive=True, visible=True)
|
| 664 |
+
model_aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
|
| 665 |
+
|
| 666 |
+
baseline = gr.Dropdown(MODELS, value=None, label="baseline", visible=False)
|
| 667 |
+
direction = gr.Radio(['above', 'below'], value='above', label=" ", visible=False)
|
| 668 |
+
threshold = gr.Slider(0, 1, 0.0, label="threshold", visible=False)
|
| 669 |
+
baseline_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="baseline aggregate", visible=False)
|
| 670 |
+
md1 = gr.Markdown(r"<h2>ranked by the </h2>")
|
| 671 |
+
md2 = gr.Markdown(r"<h2>accuracy</h2>")
|
| 672 |
+
md3 = gr.Markdown(r"")
|
| 673 |
+
|
| 674 |
+
elif query_type == "threshold":
|
| 675 |
+
|
| 676 |
+
# aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task aggregate", interactive=True, visible=True)
|
| 677 |
+
# aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
|
| 678 |
+
model = gr.Dropdown(MODELS, value=MODELS[0], label="of model(s)'", multiselect=True, interactive=True, visible=True)
|
| 679 |
+
direction = gr.Radio(['above', 'below'], value='above', label=" ", interactive=True, visible=True)
|
| 680 |
+
threshold = gr.Slider(0, 1, 0.0, label="threshold", interactive=True, visible=True)
|
| 681 |
+
# model_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task category aggregate", interactive=True, visible=True)
|
| 682 |
+
model_aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
|
| 683 |
+
|
| 684 |
+
rank = gr.Radio(['top', 'bottom'], value='top', label=" ", visible=False)
|
| 685 |
+
k = gr.Slider(1, max_k, max_k // 2, step=1.0, label="k", visible=False)
|
| 686 |
+
baseline = gr.Dropdown(MODELS, value=None, label="baseline", visible=False)
|
| 687 |
+
baseline_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="baseline aggregate", visible=False)
|
| 688 |
+
md1 = gr.Markdown(r"<h2>where the</h2>")
|
| 689 |
+
md2 = gr.Markdown(r"<h2>accuracy is</h2>")
|
| 690 |
+
md3 = gr.Markdown(r"")
|
| 691 |
+
|
| 692 |
+
elif query_type == "model comparison":
|
| 693 |
+
|
| 694 |
+
model = gr.Dropdown(MODELS, value=MODELS[0], label="of model(s)' accuracy", multiselect=True, interactive=True, visible=True)
|
| 695 |
+
baseline = gr.Dropdown(MODELS, value=None, label="of baseline(s)' accuracy", multiselect=True, interactive=True, visible=True)
|
| 696 |
+
direction = gr.Radio(['above', 'below'], value='above', label=" ", interactive=True, visible=True)
|
| 697 |
+
threshold = gr.Slider(0, 1, 0.0, label="threshold", interactive=True, visible=True)
|
| 698 |
+
model_aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
|
| 699 |
+
# baseline_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task category aggregate (over baselines)", interactive=True, visible=True)
|
| 700 |
+
baseline_aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
|
| 701 |
+
|
| 702 |
+
# aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task aggregate", interactive=True, visible=False)
|
| 703 |
+
rank = gr.Radio(['top', 'bottom'], value='top', label=" ", visible=False)
|
| 704 |
+
k = gr.Slider(1, max_k, max_k // 2, step=1.0, label="k", visible=False)
|
| 705 |
+
md1 = gr.Markdown(r"<h2>where the difference between the </h2>")
|
| 706 |
+
md2 = gr.Markdown(r"<h2>is </h2>")
|
| 707 |
+
md3 = gr.Markdown(r"<h2>and the</h2>")
|
| 708 |
+
|
| 709 |
+
elif query_type == "model debugging":
|
| 710 |
+
model = gr.Dropdown(MODELS, value=MODELS[0], label="model's", multiselect=False, interactive=True, visible=True)
|
| 711 |
+
|
| 712 |
+
# aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", visible=False)
|
| 713 |
+
baseline = gr.Dropdown(MODELS, value=None, label="baseline", visible=False)
|
| 714 |
+
direction = gr.Radio(['above', 'below'], value='above', label=" ", visible=False)
|
| 715 |
+
threshold = gr.Slider(0, 1, 0.0, label="threshold", visible=False)
|
| 716 |
+
rank = gr.Radio(['top', 'bottom'], value='top', label=" ", visible=False)
|
| 717 |
+
k = gr.Slider(1, max_k, max_k // 2, step=1.0, label="k", visible=False)
|
| 718 |
+
model_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task category aggregate (over models)", visible=False)
|
| 719 |
+
baseline_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="baseline aggregate", visible=False)
|
| 720 |
+
md1 = gr.Markdown(r"<h2>where </h2>")
|
| 721 |
+
md2 = gr.Markdown(r"<h2>mean accuracy is below its overall mean accuracy by one standard deviation</h2>")
|
| 722 |
+
md3 = gr.Markdown(r"")
|
| 723 |
+
else:
|
| 724 |
+
widgets = [None] * 11
|
| 725 |
+
widgets = [rank, k, direction, threshold, model, model_aggregate, baseline, baseline_aggregate, md1, md2, md3]
|
| 726 |
+
|
| 727 |
+
return widgets
|
| 728 |
+
|
| 729 |
+
def select_tasks(domain, partition, category, query_type, task_agg, models, model_agg, rank, k, direction, threshold, baselines, baseline_agg):
|
| 730 |
+
domain = domain2folder[domain]
|
| 731 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
|
| 732 |
+
merged_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
| 733 |
+
|
| 734 |
+
if not os.path.exists(data_path) or not os.path.exists(merged_path):
|
| 735 |
+
return gr.DataFrame(None)
|
| 736 |
+
df = pd.read_csv(data_path)
|
| 737 |
+
merged_df = pd.read_csv(merged_path)
|
| 738 |
+
task_plan = pickle.load(open(f"{BASE_DIR}/{domain}/{partition}/task_plan.pkl", 'rb'))
|
| 739 |
+
task_plan.reset_index(inplace=True)
|
| 740 |
+
if not category or category == "task id":
|
| 741 |
+
category = 'index'
|
| 742 |
+
|
| 743 |
+
if query_type == "top k":
|
| 744 |
+
df = df[df['model'].isin(models)]
|
| 745 |
+
df = df.groupby([category, 'model'])['score'].agg(task_agg).reset_index()
|
| 746 |
+
df = df.groupby([category])['score'].agg(model_agg).reset_index()
|
| 747 |
+
df = df.sort_values(by='score', ascending=False)
|
| 748 |
+
if rank == "bottom":
|
| 749 |
+
df = df.iloc[-k:, :]
|
| 750 |
+
else:
|
| 751 |
+
df = df.iloc[:k, :]
|
| 752 |
+
elif query_type == "threshold":
|
| 753 |
+
df = df[df['model'].isin(models)]
|
| 754 |
+
df = df.groupby([category, 'model'])['score'].agg(task_agg).reset_index()
|
| 755 |
+
df = df.groupby([category])['score'].agg(model_agg).reset_index()
|
| 756 |
+
if direction == "below":
|
| 757 |
+
df = df[df['score'] <= threshold]
|
| 758 |
+
else:
|
| 759 |
+
df = df[df['score'] >= threshold]
|
| 760 |
+
elif query_type == "model comparison":
|
| 761 |
+
# df = merged_df
|
| 762 |
+
# df.reset_index(inplace=True)
|
| 763 |
+
# df = df.groupby([category])[[model, baseline]].agg(task_agg).reset_index()
|
| 764 |
+
# df = df[(df[model] - df[baseline] > threshold)]
|
| 765 |
+
df_baseline = deepcopy(df)
|
| 766 |
+
|
| 767 |
+
df = df[df['model'].isin(models)]
|
| 768 |
+
df = df.groupby([category, 'model'])['score'].agg(task_agg).reset_index()
|
| 769 |
+
df = df.groupby([category])['score'].agg(model_agg).reset_index()
|
| 770 |
+
model_str = ', '.join(models)
|
| 771 |
+
exp_score_id = f'{model_agg}({model_str})' if len(models) > 1 else model_str
|
| 772 |
+
df = df.sort_values(by=category)
|
| 773 |
+
|
| 774 |
+
df_baseline = df_baseline[df_baseline['model'].isin(baselines)]
|
| 775 |
+
df_baseline = df_baseline.groupby([category, 'model'])['score'].agg(task_agg).reset_index()
|
| 776 |
+
df_baseline = df_baseline.groupby([category])['score'].agg(baseline_agg).reset_index()
|
| 777 |
+
model_str = ', '.join(baselines)
|
| 778 |
+
baseline_score_id = f'{baseline_agg}({model_str})' if len(baselines) > 1 else model_str
|
| 779 |
+
df_baseline = df_baseline.sort_values(by=category)
|
| 780 |
+
|
| 781 |
+
|
| 782 |
+
df.rename(columns={'score': exp_score_id}, inplace=True)
|
| 783 |
+
df_baseline.rename(columns={'score': baseline_score_id}, inplace=True)
|
| 784 |
+
df = pd.merge(df, df_baseline, on=category)
|
| 785 |
+
df = df[(df[exp_score_id] - df[baseline_score_id] > threshold)]
|
| 786 |
+
|
| 787 |
+
elif query_type == "model debugging":
|
| 788 |
+
model = models
|
| 789 |
+
print(models)
|
| 790 |
+
avg_acc = merged_df[model].mean()
|
| 791 |
+
std = merged_df[model].std()
|
| 792 |
+
t = avg_acc - std
|
| 793 |
+
df = df[df['model'] == model]
|
| 794 |
+
df = df.groupby(['model', category])['score'].agg(task_agg).reset_index()
|
| 795 |
+
df = df[df['score'] < t]
|
| 796 |
+
df['mean'] = round(avg_acc, 4)
|
| 797 |
+
df['std'] = round(std, 4)
|
| 798 |
+
|
| 799 |
+
print(df.head())
|
| 800 |
+
if category == 'index':
|
| 801 |
+
task_attrs = list(df[category])
|
| 802 |
+
selected_tasks = task_plan[task_plan[category].isin(task_attrs)]
|
| 803 |
+
|
| 804 |
+
if len(selected_tasks) == 0:
|
| 805 |
+
return gr.DataFrame(None, label="There is no such task.")
|
| 806 |
+
|
| 807 |
+
if query_type == "model comparison" and (models and baselines):
|
| 808 |
+
# selected_tasks[model] = selected_tasks.apply(lambda row: df[df['index'] == row['index']][model].values[0], axis=1)
|
| 809 |
+
# selected_tasks[baseline] = selected_tasks.apply(lambda row: df[df['index'] == row['index']][baseline].values[0], axis=1)
|
| 810 |
+
selected_tasks[exp_score_id] = selected_tasks.apply(lambda row: df[df['index'] == row['index']][exp_score_id].values[0], axis=1)
|
| 811 |
+
selected_tasks[baseline_score_id] = selected_tasks.apply(lambda row: df[df['index'] == row['index']][baseline_score_id].values[0], axis=1)
|
| 812 |
+
else:
|
| 813 |
+
selected_tasks['score'] = selected_tasks.apply(lambda row: df[df['index'] == row['index']]['score'].values[0], axis=1)
|
| 814 |
+
|
| 815 |
+
print(selected_tasks.head())
|
| 816 |
+
return gr.DataFrame(selected_tasks, label=f"There are {len(selected_tasks)} (out of {len(task_plan)}) tasks in total.")
|
| 817 |
+
else:
|
| 818 |
+
if len(df) == 0:
|
| 819 |
+
return gr.DataFrame(None, label=f"There is no such {category}.")
|
| 820 |
+
else:
|
| 821 |
+
return gr.DataFrame(df, label=f"The total number of such {category} is {len(df)}.")
|
| 822 |
+
|
| 823 |
+
|
| 824 |
+
def find_patterns(selected_tasks, num_patterns, models, baselines, model_agg, baseline_agg):
|
| 825 |
+
if len(selected_tasks) == 0:
|
| 826 |
+
return gr.DataFrame(None)
|
| 827 |
+
print(selected_tasks.head())
|
| 828 |
+
if 'score' in selected_tasks:
|
| 829 |
+
scores = selected_tasks['score']
|
| 830 |
+
# elif model in selected_tasks:
|
| 831 |
+
# scores = selected_tasks[model]
|
| 832 |
+
else:
|
| 833 |
+
scores = None
|
| 834 |
+
print(scores)
|
| 835 |
+
|
| 836 |
+
model_str = ', '.join(models)
|
| 837 |
+
exp_score_id = f'{model_agg}({model_str})' if len(models) > 1 else model_str
|
| 838 |
+
if baselines:
|
| 839 |
+
baseline_str = ', '.join(baselines)
|
| 840 |
+
baseline_score_id = f'{baseline_agg}({baseline_str})' if len(baselines) > 1 else baseline_str
|
| 841 |
+
|
| 842 |
+
tasks_only = selected_tasks
|
| 843 |
+
all_score_cols = ['score', exp_score_id]
|
| 844 |
+
if baselines:
|
| 845 |
+
all_score_cols += [baseline_score_id]
|
| 846 |
+
for name in all_score_cols:
|
| 847 |
+
if name in selected_tasks:
|
| 848 |
+
tasks_only = tasks_only.drop(name, axis=1)
|
| 849 |
+
results = find_frequent_patterns(k=num_patterns, df=tasks_only, scores=scores)
|
| 850 |
+
records = []
|
| 851 |
+
if scores is not None:
|
| 852 |
+
patterns, scores = results[0], results[1]
|
| 853 |
+
for pattern, score in zip(patterns, scores):
|
| 854 |
+
pattern_str = ""
|
| 855 |
+
for t in pattern[1]:
|
| 856 |
+
col_name, col_val = t
|
| 857 |
+
pattern_str += f"{col_name} = {col_val}, "
|
| 858 |
+
|
| 859 |
+
record = {'pattern': pattern_str[:-2], 'count': pattern[0], 'score': score} #{model}
|
| 860 |
+
records.append(record)
|
| 861 |
+
else:
|
| 862 |
+
patterns = results
|
| 863 |
+
for pattern in patterns:
|
| 864 |
+
pattern_str = ""
|
| 865 |
+
for t in pattern[1]:
|
| 866 |
+
col_name, col_val = t
|
| 867 |
+
pattern_str += f"{col_name} = {col_val}, "
|
| 868 |
+
|
| 869 |
+
record = {'pattern': pattern_str[:-2], 'count': pattern[0]}
|
| 870 |
+
records.append(record)
|
| 871 |
+
|
| 872 |
+
df = pd.DataFrame.from_records(records)
|
| 873 |
+
return gr.DataFrame(df)
|
| 874 |
+
|
| 875 |
+
def visualize_task_distribution(selected_tasks, col_name, model1, model2):
|
| 876 |
+
if not col_name:
|
| 877 |
+
return None
|
| 878 |
+
task_plan_cnt = selected_tasks.groupby(col_name)['index'].count().reset_index()
|
| 879 |
+
task_plan_cnt.rename(columns={'index': 'count'}, inplace=True)
|
| 880 |
+
task_plan_cnt['frequency (%)'] = round(task_plan_cnt['count'] / len(selected_tasks) * 100, 2)
|
| 881 |
+
print(task_plan_cnt.head())
|
| 882 |
+
|
| 883 |
+
tooltips = [col_name, 'count', 'frequency (%)']
|
| 884 |
+
base = alt.Chart(task_plan_cnt).encode(
|
| 885 |
+
alt.Theta("count:Q").stack(True),
|
| 886 |
+
alt.Color(f"{col_name}:N").legend(),
|
| 887 |
+
tooltip=tooltips
|
| 888 |
+
)
|
| 889 |
+
pie = base.mark_arc(outerRadius=120)
|
| 890 |
+
|
| 891 |
+
return pie
|
| 892 |
+
|
| 893 |
+
def plot_performance_for_selected_tasks(domain, partition, df, query_type, models, baselines, select_category, vis_category, task_agg, model_agg, baseline_agg, rank, direction, threshold):
|
| 894 |
+
domain = domain2folder[domain]
|
| 895 |
+
task_agg = "mean"
|
| 896 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
|
| 897 |
+
mereged_data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
|
| 898 |
+
|
| 899 |
+
if not os.path.exists(data_path) or not os.path.exists(mereged_data_path) or len(df) == 0:
|
| 900 |
+
return None
|
| 901 |
+
|
| 902 |
+
select_tasks = select_category == "task id" and vis_category
|
| 903 |
+
if select_tasks: # select tasks
|
| 904 |
+
y_val = f'{task_agg}(score):Q'
|
| 905 |
+
else: # select task categories
|
| 906 |
+
y_val = f'score:Q'
|
| 907 |
+
|
| 908 |
+
if select_category == "task id":
|
| 909 |
+
select_category = "index"
|
| 910 |
+
print(df.head())
|
| 911 |
+
if query_type == "model comparison":
|
| 912 |
+
# re-format the data for plotting
|
| 913 |
+
model_str = ', '.join(models)
|
| 914 |
+
exp_score_id = f'{model_agg}({model_str})' if len(models) > 1 else model_str
|
| 915 |
+
baseline_str = ', '.join(baselines)
|
| 916 |
+
baseline_score_id = f'{baseline_agg}({baseline_str})' if len(baselines) > 1 else baseline_str
|
| 917 |
+
# other_cols = list(df.columns)
|
| 918 |
+
# other_cols.remove(select_category)
|
| 919 |
+
print(exp_score_id, baseline_score_id)
|
| 920 |
+
df = df.melt(id_vars=[select_category], value_vars=[exp_score_id, baseline_score_id])
|
| 921 |
+
df.rename(columns={'variable': 'model', 'value': 'score'}, inplace=True)
|
| 922 |
+
print(df.head())
|
| 923 |
+
|
| 924 |
+
if select_tasks:
|
| 925 |
+
merged_df = pd.read_csv(mereged_data_path)
|
| 926 |
+
df[vis_category] = df.apply(lambda row: merged_df[merged_df.index == row['index']][vis_category].values[0], axis=1)
|
| 927 |
+
|
| 928 |
+
num_columns = len(df['model'].unique()) * len(df[f'{vis_category}'].unique())
|
| 929 |
+
chart = alt.Chart(df).mark_bar().encode(
|
| 930 |
+
alt.X('model:N',
|
| 931 |
+
sort=alt.EncodingSortField(field=f'score', order='descending', op=task_agg),
|
| 932 |
+
axis=alt.Axis(labels=False, tickSize=0, title=None)),
|
| 933 |
+
alt.Y(y_val, scale=alt.Scale(zero=True), title="accuracy"),
|
| 934 |
+
alt.Color('model:N').legend(),
|
| 935 |
+
alt.Column(f'{vis_category}:N', header=alt.Header(titleOrient='bottom', labelOrient='bottom', labelFontSize=20, titleFontSize=20,))
|
| 936 |
+
).properties(
|
| 937 |
+
width=num_columns * 30,
|
| 938 |
+
height=200,
|
| 939 |
+
title=f"How do models perform by {vis_category}?"
|
| 940 |
+
)
|
| 941 |
+
print(num_columns * 50)
|
| 942 |
+
else:
|
| 943 |
+
if query_type == "model debugging":
|
| 944 |
+
y_title = "accuracy"
|
| 945 |
+
plot_title = f"{models} performs worse than its (mean - std) on these {vis_category}s"
|
| 946 |
+
models = [models]
|
| 947 |
+
else:
|
| 948 |
+
model_str = ', '.join(models)
|
| 949 |
+
y_title = f"{model_agg} accuracy" if len(models) > 0 else "accuracy"
|
| 950 |
+
suffix = f"on these tasks (by {vis_category})" if select_category == "index" else f"on these {vis_category}s"
|
| 951 |
+
if query_type == "top k":
|
| 952 |
+
plot_title = f"The {model_agg} accuracy of {model_str} is the {'highest' if rank == 'top' else 'lowest'} " + suffix
|
| 953 |
+
elif query_type == "threshold":
|
| 954 |
+
plot_title = f"The {model_agg} accuracy of {model_str} is {direction} {threshold} " + suffix
|
| 955 |
+
|
| 956 |
+
if select_tasks:
|
| 957 |
+
expand_df = pd.read_csv(data_path)
|
| 958 |
+
task_ids = list(df['index'].unique())
|
| 959 |
+
|
| 960 |
+
# all_models = (models + baselines) if baselines else models
|
| 961 |
+
df = expand_df[(expand_df['model'].isin(models)) & (expand_df['task id'].isin(task_ids))]
|
| 962 |
+
|
| 963 |
+
num_columns = len(df[f'{vis_category}'].unique())
|
| 964 |
+
chart = alt.Chart(df).mark_bar().encode(
|
| 965 |
+
alt.X(f'{vis_category}:N', sort=alt.EncodingSortField(field=f'score', order='ascending', op=task_agg), axis=alt.Axis(labelAngle=-20)), # no title, no label angle),
|
| 966 |
+
alt.Y(y_val, scale=alt.Scale(zero=True), title=y_title),
|
| 967 |
+
alt.Color(f'{vis_category}:N').legend(None),
|
| 968 |
+
).properties(
|
| 969 |
+
width=num_columns * 30,
|
| 970 |
+
height=200,
|
| 971 |
+
title=plot_title
|
| 972 |
+
)
|
| 973 |
+
|
| 974 |
+
chart = chart.configure_title(fontSize=20, offset=5, orient='top', anchor='middle').configure_axis(
|
| 975 |
+
labelFontSize=20,
|
| 976 |
+
titleFontSize=20,
|
| 977 |
+
).configure_legend(
|
| 978 |
+
labelFontSize=20,
|
| 979 |
+
titleFontSize=20,
|
| 980 |
+
labelLimit=200,
|
| 981 |
+
)
|
| 982 |
+
return chart
|
| 983 |
+
|
| 984 |
+
def sync_vis_category(domain, partition, category):
|
| 985 |
+
domain = domain2folder[domain]
|
| 986 |
+
if category and category != "task id":
|
| 987 |
+
return [gr.Dropdown([category], value=category, label="by task metadata", interactive=False), gr.Dropdown([category], value=category, label="by task metadata", interactive=False)]
|
| 988 |
+
else:
|
| 989 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/task_plan.pkl"
|
| 990 |
+
if os.path.exists(data_path):
|
| 991 |
+
data = pickle.load(open(data_path, 'rb'))
|
| 992 |
+
categories = list(data.columns)
|
| 993 |
+
return [gr.Dropdown(categories, value=categories[0], label="by task metadata", interactive=True), gr.Dropdown(categories, value=categories[0], label="by task metadata", interactive=True)]
|
| 994 |
+
else:
|
| 995 |
+
return [None, None]
|
| 996 |
+
|
| 997 |
+
def hide_fpm_and_dist_components(domain, partition, category):
|
| 998 |
+
domain = domain2folder[domain]
|
| 999 |
+
print(category)
|
| 1000 |
+
if category and category != "task id":
|
| 1001 |
+
num_patterns = gr.Slider(1, 100, 50, step=1.0, label="number of patterns", visible=False)
|
| 1002 |
+
btn_pattern = gr.Button(value="Find patterns among tasks", visible=False)
|
| 1003 |
+
|
| 1004 |
+
table = gr.DataFrame({}, height=250, visible=False)
|
| 1005 |
+
dist_chart = gr.Plot(visible=False)
|
| 1006 |
+
|
| 1007 |
+
col_name = gr.Dropdown([], value=None, label="by task metadata", visible=False)
|
| 1008 |
+
btn_dist = gr.Button(value="Visualize task distribution", visible=False)
|
| 1009 |
+
else:
|
| 1010 |
+
data_path = f"{BASE_DIR}/{domain}/{partition}/task_plan.pkl"
|
| 1011 |
+
if os.path.exists(data_path):
|
| 1012 |
+
data = pickle.load(open(data_path, 'rb'))
|
| 1013 |
+
categories = list(data.columns)
|
| 1014 |
+
col_name = gr.Dropdown(categories, value=categories[0], label="by task metadata", interactive=True, visible=True)
|
| 1015 |
+
else:
|
| 1016 |
+
col_name = gr.Dropdown([], value=None, label="by task metadata", interactive=True, visible=True)
|
| 1017 |
+
|
| 1018 |
+
num_patterns = gr.Slider(1, 100, 50, step=1.0, label="number of patterns", interactive=True, visible=True)
|
| 1019 |
+
btn_pattern = gr.Button(value="Find patterns among tasks", interactive=True, visible=True)
|
| 1020 |
+
|
| 1021 |
+
table = gr.DataFrame({}, height=250, interactive=True, visible=True)
|
| 1022 |
+
dist_chart = gr.Plot(visible=True)
|
| 1023 |
+
|
| 1024 |
+
btn_dist = gr.Button(value="Visualize task distribution", interactive=True, visible=True)
|
| 1025 |
+
return [num_patterns, btn_pattern, table, col_name, btn_dist, dist_chart]
|
| 1026 |
+
|
| 1027 |
+
|
| 1028 |
+
|
| 1029 |
+
# domains = list_directories(BASE_DIR)
|
| 1030 |
+
theme = gr.Theme.from_hub('sudeepshouche/minimalist')
|
| 1031 |
+
theme.font = [gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"] # gr.themes.GoogleFont("Source Sans Pro") # [gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"]
|
| 1032 |
+
theme.text_size = gr.themes.sizes.text_lg
|
| 1033 |
+
# theme = theme.set(font=)
|
| 1034 |
+
|
| 1035 |
+
demo = gr.Blocks(theme=theme, title="TaskVerse-UI") #
|
| 1036 |
+
with demo:
|
| 1037 |
+
with gr.Row():
|
| 1038 |
+
with gr.Column(scale=1):
|
| 1039 |
+
gr.Markdown(
|
| 1040 |
+
r""
|
| 1041 |
+
)
|
| 1042 |
+
with gr.Column(scale=1):
|
| 1043 |
+
gr.Markdown(
|
| 1044 |
+
r"<h1>Welcome to TaskVerse-UI! </h1>"
|
| 1045 |
+
)
|
| 1046 |
+
with gr.Column(scale=1):
|
| 1047 |
+
gr.Markdown(
|
| 1048 |
+
r""
|
| 1049 |
+
)
|
| 1050 |
+
|
| 1051 |
+
with gr.Tab("📊 Overview"):
|
| 1052 |
+
gr.Markdown(
|
| 1053 |
+
r"<h2>📊 Visualize the overall task distribution and model performance </h2>"
|
| 1054 |
+
)
|
| 1055 |
+
|
| 1056 |
+
with gr.Row():
|
| 1057 |
+
domain = gr.Radio(domains, label="scenario", scale=2)
|
| 1058 |
+
partition = gr.Dropdown([], value=None, label="task space of the following task generator", scale=1)
|
| 1059 |
+
# domain.change(fn=update_partition, inputs=domain, outputs=partition)
|
| 1060 |
+
|
| 1061 |
+
|
| 1062 |
+
gr.Markdown(
|
| 1063 |
+
r"<h2>Overall task metadata distribution</h2>"
|
| 1064 |
+
)
|
| 1065 |
+
|
| 1066 |
+
with gr.Row():
|
| 1067 |
+
category = gr.Dropdown([], value=None, label="task metadata")
|
| 1068 |
+
partition.change(fn=update_category, inputs=[domain, partition], outputs=category)
|
| 1069 |
+
with gr.Row():
|
| 1070 |
+
output = gr.Plot()
|
| 1071 |
+
with gr.Row():
|
| 1072 |
+
btn = gr.Button(value="Plot")
|
| 1073 |
+
btn.click(plot_task_distribution, [domain, partition, category], output)
|
| 1074 |
+
|
| 1075 |
+
gr.Markdown(
|
| 1076 |
+
r"<h2>Models' overall performance by task metadata</h2>"
|
| 1077 |
+
)
|
| 1078 |
+
with gr.Row():
|
| 1079 |
+
with gr.Column(scale=2):
|
| 1080 |
+
models = gr.CheckboxGroup(MODELS, label="model(s)", value=MODELS)
|
| 1081 |
+
with gr.Column(scale=1):
|
| 1082 |
+
aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="aggregate models' accuracy by")
|
| 1083 |
+
with gr.Row():
|
| 1084 |
+
# with gr.Column(scale=1):
|
| 1085 |
+
category1 = gr.Dropdown([], value=None, label="task metadata", interactive=True)
|
| 1086 |
+
category2 = gr.Dropdown([], value=None, label="Optional: second task metadata", interactive=True)
|
| 1087 |
+
partition.change(fn=update_category, inputs=[domain, partition], outputs=category1)
|
| 1088 |
+
category1.change(fn=update_category2, inputs=[domain, partition, category1], outputs=category2)
|
| 1089 |
+
domain.change(fn=update_partition_and_models, inputs=domain, outputs=[partition, models])
|
| 1090 |
+
with gr.Row():
|
| 1091 |
+
output = gr.Plot()
|
| 1092 |
+
with gr.Row():
|
| 1093 |
+
btn = gr.Button(value="Plot")
|
| 1094 |
+
btn.click(plot_all, [domain, partition, models, category1, category2, aggregate], output)
|
| 1095 |
+
# gr.Examples(["hello", "bonjour", "merhaba"], input_textbox)
|
| 1096 |
+
|
| 1097 |
+
|
| 1098 |
+
with gr.Tab("✨ Embedding"):
|
| 1099 |
+
gr.Markdown(
|
| 1100 |
+
r"<h2>✨ Visualize the tasks' embeddings in the 2D space </h2>"
|
| 1101 |
+
)
|
| 1102 |
+
with gr.Row():
|
| 1103 |
+
domain2 = gr.Radio(domains, label="scenario", scale=2)
|
| 1104 |
+
# domain = gr.Dropdown(domains, value=domains[0], label="scenario")
|
| 1105 |
+
partition2 = gr.Dropdown([], value=None, label="task space of the following task generator", scale=1)
|
| 1106 |
+
category2 = gr.Dropdown([], value=None, label="colored by task metadata", scale=1)
|
| 1107 |
+
domain2.change(fn=update_partition, inputs=domain2, outputs=partition2)
|
| 1108 |
+
partition2.change(fn=update_category, inputs=[domain2, partition2], outputs=category2)
|
| 1109 |
+
|
| 1110 |
+
with gr.Row():
|
| 1111 |
+
output2 = gr.Plot()
|
| 1112 |
+
with gr.Row():
|
| 1113 |
+
btn = gr.Button(value="Run")
|
| 1114 |
+
btn.click(plot_embedding, [domain2, partition2, category2], output2)
|
| 1115 |
+
|
| 1116 |
+
|
| 1117 |
+
with gr.Tab("❓ Query"):
|
| 1118 |
+
gr.Markdown(
|
| 1119 |
+
r"<h2>❓ Find out the answers to your queries by finding and visualizing the relevant tasks and models' performance </h2>"
|
| 1120 |
+
)
|
| 1121 |
+
with gr.Row(equal_height=True):
|
| 1122 |
+
domain = gr.Radio(domains, label="scenario", scale=2)
|
| 1123 |
+
partition = gr.Dropdown([], value=None, label="task space of the following task generator", scale=1)
|
| 1124 |
+
with gr.Row():
|
| 1125 |
+
query1 = "top k"
|
| 1126 |
+
query2 = "threshold"
|
| 1127 |
+
query3 = "model debugging"
|
| 1128 |
+
query4 = "model comparison"
|
| 1129 |
+
query_type = gr.Radio([query1, query2, query3, query4], value="top k", label=r"query type")
|
| 1130 |
+
with gr.Row():
|
| 1131 |
+
with gr.Accordion("See more details about the query type"):
|
| 1132 |
+
gr.Markdown(
|
| 1133 |
+
r"<ul><li>Top k: Find the k tasks or task metadata that the model(s) perform the best or worst on</li><li>Threshold: Find the tasks or task metadata where the model(s)' performance is greater or lower than a given threshold t</li><li>Model debugging: Find the tasks or task metadata where a model performs significantly worse than its average performance (by one standard deviation)</li><li>Model comparison: Find the tasks or task metadata where some model(s) perform better or worse than the baseline(s) by a given threshold t</li></ul>"
|
| 1134 |
+
)
|
| 1135 |
+
|
| 1136 |
+
with gr.Row():
|
| 1137 |
+
gr.Markdown(r"<h2>Help me find the</h2>")
|
| 1138 |
+
with gr.Row(equal_height=True):
|
| 1139 |
+
# with gr.Column(scale=1):
|
| 1140 |
+
rank = gr.Radio(['top', 'bottom'], value='top', label=" ", interactive=True, visible=True)
|
| 1141 |
+
# with gr.Column(scale=2):
|
| 1142 |
+
k = gr.Slider(1, 10, 5 // 2, step=1.0, label="k", interactive=True, visible=True)
|
| 1143 |
+
# with gr.Column(scale=2):
|
| 1144 |
+
category = gr.Dropdown([], value=None, label="tasks / task metadata", interactive=True)
|
| 1145 |
+
|
| 1146 |
+
with gr.Row():
|
| 1147 |
+
md1 = gr.Markdown(r"<h2>ranked by the </h2>")
|
| 1148 |
+
|
| 1149 |
+
with gr.Row(equal_height=True):
|
| 1150 |
+
# with gr.Column(scale=1, min_width=100):
|
| 1151 |
+
# model_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
|
| 1152 |
+
model_aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True, scale=1)
|
| 1153 |
+
# with gr.Column(scale=8):
|
| 1154 |
+
model = gr.Dropdown(MODELS, value=MODELS, label="of model(s)", multiselect=True, interactive=True, visible=True, scale=2)
|
| 1155 |
+
# with gr.Column(scale=1, min_width=100):
|
| 1156 |
+
# aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True, scale=1)
|
| 1157 |
+
with gr.Row():
|
| 1158 |
+
md3 = gr.Markdown(r"")
|
| 1159 |
+
with gr.Row(equal_height=True):
|
| 1160 |
+
baseline_aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=False, scale=1)
|
| 1161 |
+
baseline = gr.Dropdown(MODELS, value=None, label="of baseline(s)'", visible=False, scale=2)
|
| 1162 |
+
# aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
|
| 1163 |
+
# with gr.Column(scale=1, min_width=50):
|
| 1164 |
+
with gr.Row():
|
| 1165 |
+
md2 = gr.Markdown(r"<h2>accuracy</h2>")
|
| 1166 |
+
|
| 1167 |
+
with gr.Row():
|
| 1168 |
+
# baseline_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task category aggregate (over baselines)", visible=False)
|
| 1169 |
+
direction = gr.Radio(['above', 'below'], value='above', label=" ", visible=False)
|
| 1170 |
+
threshold = gr.Slider(0, 1, 0.0, label="threshold", visible=False)
|
| 1171 |
+
|
| 1172 |
+
widgets = [rank, k, direction, threshold, model, model_aggregate, baseline, baseline_aggregate, md1, md2, md3]
|
| 1173 |
+
partition.change(fn=update_category, inputs=[domain, partition], outputs=category)
|
| 1174 |
+
query_type.change(update_widgets, [domain, partition, category, query_type], widgets)
|
| 1175 |
+
domain.change(fn=update_partition_and_models_and_baselines, inputs=domain, outputs=[partition, model, baseline])
|
| 1176 |
+
with gr.Row():
|
| 1177 |
+
df = gr.DataFrame({}, height=200)
|
| 1178 |
+
btn = gr.Button(value="Find tasks / task metadata")
|
| 1179 |
+
btn.click(select_tasks, [domain, partition, category, query_type, aggregate, model, model_aggregate, rank, k, direction, threshold, baseline, baseline_aggregate], df)
|
| 1180 |
+
|
| 1181 |
+
with gr.Row():
|
| 1182 |
+
plot = gr.Plot()
|
| 1183 |
+
with gr.Row():
|
| 1184 |
+
col_name2 = gr.Dropdown([], value=None, label="by task metadata", interactive=True)
|
| 1185 |
+
partition.change(fn=update_category, inputs=[domain, partition], outputs=col_name2)
|
| 1186 |
+
btn_plot = gr.Button(value="Plot model performance", interactive=True)
|
| 1187 |
+
btn_plot.click(plot_performance_for_selected_tasks, [domain, partition, df, query_type, model, baseline, category, col_name2, aggregate, model_aggregate, baseline_aggregate, rank, direction, threshold], plot)
|
| 1188 |
+
|
| 1189 |
+
with gr.Row():
|
| 1190 |
+
dist_chart = gr.Plot()
|
| 1191 |
+
with gr.Row():
|
| 1192 |
+
col_name = gr.Dropdown([], value=None, label="by task metadata", interactive=True)
|
| 1193 |
+
partition.change(fn=update_category, inputs=[domain, partition], outputs=col_name)
|
| 1194 |
+
btn_dist = gr.Button(value="Visualize task distribution", interactive=True)
|
| 1195 |
+
btn_dist.click(visualize_task_distribution, [df, col_name, model, baseline], dist_chart)
|
| 1196 |
+
|
| 1197 |
+
with gr.Row():
|
| 1198 |
+
table = gr.DataFrame({}, height=250)
|
| 1199 |
+
with gr.Row():
|
| 1200 |
+
num_patterns = gr.Slider(1, 100, 50, step=1.0, label="number of patterns")
|
| 1201 |
+
btn_pattern = gr.Button(value="Find patterns among tasks")
|
| 1202 |
+
btn_pattern.click(find_patterns, [df, num_patterns, model, baseline], table)
|
| 1203 |
+
|
| 1204 |
+
category.change(fn=hide_fpm_and_dist_components, inputs=[domain, partition, category], outputs=[num_patterns, btn_pattern, table, col_name, btn_dist, dist_chart])
|
| 1205 |
+
category.change(fn=sync_vis_category, inputs=[domain, partition, category], outputs=[col_name, col_name2])
|
| 1206 |
+
category.change(fn=update_k, inputs=[domain, partition, category], outputs=k)
|
| 1207 |
+
|
| 1208 |
+
|
| 1209 |
+
with gr.Tab("😮 Surprisingness"):
|
| 1210 |
+
gr.Markdown(r"<h2>😮 Find out the tasks a model is surprisingly good or bad at compared to similar tasks</h2>")
|
| 1211 |
+
with gr.Row():
|
| 1212 |
+
domain3 = gr.Radio(domains, label="scenario", scale=2)
|
| 1213 |
+
partition3 = gr.Dropdown([], value=None, label="task space of the following task generator", scale=1)
|
| 1214 |
+
with gr.Row():
|
| 1215 |
+
model3 = gr.Dropdown(MODELS, value=MODELS[0], label="model", interactive=True, visible=True)
|
| 1216 |
+
k3 = gr.Slider(1, 100, 50, step=1.0, label="number of surprising tasks", interactive=True)
|
| 1217 |
+
num_neighbors = gr.Slider(1, 100, 50, step=1.0, label="number of neighbors", interactive=True)
|
| 1218 |
+
rank3 = gr.Radio(['top', 'bottom'], value='top', label=" ", interactive=True, visible=True)
|
| 1219 |
+
domain3.change(fn=update_partition_and_models, inputs=domain3, outputs=[partition3, model3])
|
| 1220 |
+
# partition3.change(fn=update_k, inputs=[domain3, partition3], outputs=k3)
|
| 1221 |
+
with gr.Row():
|
| 1222 |
+
output3 = gr.Plot()
|
| 1223 |
+
with gr.Row():
|
| 1224 |
+
btn = gr.Button(value="Plot")
|
| 1225 |
+
btn.click(plot_surprisingness, [domain3, partition3, model3, rank3, k3, num_neighbors], output3)
|
| 1226 |
+
|
| 1227 |
+
|
| 1228 |
+
# if __name__ == "__main__":
|
| 1229 |
+
demo.launch(share=True)
|
| 1230 |
+
|
| 1231 |
+
|
db/2d/2d-how-many/embeddings.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:35cfc281579e9d837218ac6edd58db0475c4728e526eb7d0f005d95772229692
|
| 3 |
+
size 52955299
|
db/2d/2d-how-many/expanded_data.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
db/2d/2d-how-many/gt.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1afea495ff6a5425049d71163c4607af0942d1d750cc3625ecc310ddec123031
|
| 3 |
+
size 828220
|
db/2d/2d-how-many/instructblip_vicuna13b_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e358eb20d0793cef91ee2e78c9257baa270f9ba5d96964b6605651048c7e0c1e
|
| 3 |
+
size 48404804
|
db/2d/2d-how-many/instructblip_vicuna7b_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4347576213a57fdbc4a62c450072db4488ff83f922920daf8a5f8e48423be26e
|
| 3 |
+
size 48404804
|
db/2d/2d-how-many/llava15_13b_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b2cae2611f360876a8e9386cd4cae2491512fece11f3c1c963dafedaa5a7b3d4
|
| 3 |
+
size 48404804
|
db/2d/2d-how-many/llava15_7b_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2f1afdc0e89ee8acbcf31992b66c746b1e56e0f6b6b295f78a63a3e7f624b33e
|
| 3 |
+
size 48404804
|
db/2d/2d-how-many/merged_data.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
db/2d/2d-how-many/path.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
db/2d/2d-how-many/qa.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e82b51a17f31e4f053b7c6cdc22a3f9dd437dc22436757a4e553ba8506f9cf22
|
| 3 |
+
size 901939
|
db/2d/2d-how-many/qwenvl_chat_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:75307671d6e0c9f8be5375113acac6b53dcaae4a9e5fd3b0ce2ba00fc76c30da
|
| 3 |
+
size 48404804
|
db/2d/2d-how-many/qwenvl_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0035392b47d7158672b56f54b13d4f738c161cc8939e88b242e909458c6d3ad2
|
| 3 |
+
size 48404804
|
db/2d/2d-how-many/task_plan.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:deaa99058099c23f6011e923e8abcd4e16b0f941a7172462c606b287a599d0a0
|
| 3 |
+
size 861565
|
db/2d/2d-what-attribute/embeddings.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6956526b21a3ee60a05e86f0c2bad028644d03d42f0216a538ce97016f1b699c
|
| 3 |
+
size 39137443
|
db/2d/2d-what-attribute/expanded_data.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
db/2d/2d-what-attribute/gt.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5b367e0455f641e152fe469a0a7832d8f626a4b9657052342d494ad7a180ff42
|
| 3 |
+
size 612316
|
db/2d/2d-what-attribute/instructblip_vicuna13b_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9a20ad832ca2a26f5efe5328c1f3e9a88fda8e55b5e26cad3817e1223ec889af
|
| 3 |
+
size 35774420
|
db/2d/2d-what-attribute/instructblip_vicuna7b_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d0632f15894b374a7e67a8bb6f53fdcf84d344cc310e097adc1f724364eaf2e7
|
| 3 |
+
size 35774420
|
db/2d/2d-what-attribute/llava15_13b_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:99c5a95c3e2de9bd0371060a6886f5bf1b4553120dccdcf38f790116e0712b76
|
| 3 |
+
size 35774420
|
db/2d/2d-what-attribute/llava15_7b_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e0ee4d8a941b1f3176e74bea7e158141c2102f4403acf6b7aa3723b7f2e462a4
|
| 3 |
+
size 35774420
|
db/2d/2d-what-attribute/merged_data.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
db/2d/2d-what-attribute/path.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
db/2d/2d-what-attribute/qa.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2e5c3b625e90eea95aac69a176772422c1fb0b882cdee838a7e6c56fbe17b50a
|
| 3 |
+
size 980447
|
db/2d/2d-what-attribute/qwenvl_chat_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ac6c585bebeb3aaaed8dac2c7c4420d7d2e780a735f57b3e1e5b617f87ea8160
|
| 3 |
+
size 35774420
|
db/2d/2d-what-attribute/qwenvl_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c3d7d5aec0726c1f51b7c65ce5c21e9beb9fda2598efe29e96c9788a8b60bdd
|
| 3 |
+
size 35774420
|
db/2d/2d-what-attribute/task_plan.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e56dc9b74b81ec36a32811ddc3b6a85fbcf23992185f801d52fbce40516974cd
|
| 3 |
+
size 783662
|
db/2d/2d-what/embeddings.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b089c1028a5d2f63609739d53e1c7630f66e4cba66d39a93bdf427565ef29104
|
| 3 |
+
size 39137443
|
db/2d/2d-what/expanded_data.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
db/2d/2d-what/gt.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f7fffa0ff67eab9da2ea4dae3a005e1f9b75c10d12e6ca376dd5072297edf2d5
|
| 3 |
+
size 612316
|
db/2d/2d-what/instructblip_vicuna13b_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e224cfb927268e4a43d289bc5b2025d1b2c767bfca14e284c32b1612a3e4d452
|
| 3 |
+
size 35774420
|
db/2d/2d-what/instructblip_vicuna7b_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9fef83cca3ed3fa7fce662b37e6085bb1f3373c91e4306eb2a79e79e807854f7
|
| 3 |
+
size 35774420
|
db/2d/2d-what/llava15_13b_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6cea6a0cc75170114f6f2725fe71c7fd353038b22d144a1afa2545579cdb5894
|
| 3 |
+
size 35774420
|
db/2d/2d-what/llava15_7b_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1ec12e11122cc629c502de7b8981a482692d20779704659feda4250f01bd5e9d
|
| 3 |
+
size 35774420
|
db/2d/2d-what/merged_data.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
db/2d/2d-what/path.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
db/2d/2d-what/qa.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:907fb5a1fe2442e5e4c5837020633d970911f187043e0fc481cf9c06940ab643
|
| 3 |
+
size 807018
|
db/2d/2d-what/qwenvl_chat_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ad629744d9f58f163e74cf6e7126617c331681aae15700f5279df8949155b881
|
| 3 |
+
size 35774420
|
db/2d/2d-what/qwenvl_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7bf48191df156d0618c524296077992fd75417fa2d7b03dbcc1628319d3989a5
|
| 3 |
+
size 35774420
|
db/2d/2d-what/task_plan.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3113b3b2adbb2bb8088ca4ae86d654da511f783ddbf1ce98fff86cd864336225
|
| 3 |
+
size 783652
|
db/2d/2d-where-attribute/embeddings.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b8b38f46605548c2fc198a3b3d751a999aa28495a95a52e22a29b859f6a820e7
|
| 3 |
+
size 39137443
|
db/2d/2d-where-attribute/expanded_data.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
db/2d/2d-where-attribute/gt.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:22fe402eebadfb265f0186a2aee934da6d8144daa10a52173cf583ff4b0acec5
|
| 3 |
+
size 612316
|
db/2d/2d-where-attribute/instructblip_vicuna13b_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:48ad5886d1c0f90903c8857883b4b589f147f89e1aaa2bb68cff3e1d5707d8ce
|
| 3 |
+
size 35774420
|
db/2d/2d-where-attribute/instructblip_vicuna7b_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:855e2037394af1adfe6d30906aeb038a2672d3d1ee8773c98844a63bc6aa66f1
|
| 3 |
+
size 35774420
|
db/2d/2d-where-attribute/llava15_13b_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5a438d2b5617d58e08e9321b6a9c0907c08fdd2165103617331ebb3d288410d7
|
| 3 |
+
size 35774420
|
db/2d/2d-where-attribute/llava15_7b_surprise.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:93f420d01d0c87147c218eb76277c78d220acab084cf91443704cd5fb25daaf3
|
| 3 |
+
size 35774420
|
db/2d/2d-where-attribute/merged_data.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
db/2d/2d-where-attribute/path.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
db/2d/2d-where-attribute/qa.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e45587db39e2316974b4119d2825a27dc8284b46e1d7da643241c5c100ce879
|
| 3 |
+
size 601802
|