suwesh commited on
Commit
8bed6bc
·
verified ·
1 Parent(s): c96ad2a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -0
README.md CHANGED
@@ -2,6 +2,8 @@
2
  license: apache-2.0
3
  datasets:
4
  - suwesh/RACECAR-multislow_poli
 
 
5
  ---
6
 
7
  # Parallel Neural Computing for Scene Understanding from LiDAR Perception in Autonomous Racing
@@ -12,5 +14,29 @@ Implementation is available at: https://github.com/suwesh/Parallel-Perception-Ne
12
 
13
  This model is also available on Kaggle- https://www.kaggle.com/models/suwesh/parallel-perception-network
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  # Training Details:
16
  learning rate = 0.001 | loss function for recnet = Mean Square Smooth Canny Edge loss | training iterations = 700 | dataset = [Racecar dataset's multislow_poli scenario](https://huggingface.co/datasets/suwesh/RACECAR-multislow_poli)
 
2
  license: apache-2.0
3
  datasets:
4
  - suwesh/RACECAR-multislow_poli
5
+ tags:
6
+ - ImageSegmentation
7
  ---
8
 
9
  # Parallel Neural Computing for Scene Understanding from LiDAR Perception in Autonomous Racing
 
14
 
15
  This model is also available on Kaggle- https://www.kaggle.com/models/suwesh/parallel-perception-network
16
 
17
+ # Requirements to load RACECAR dataset in nuScenes format:
18
+ <pre>pip install nuscenes-devkit</pre>
19
+
20
+ # Use with PyTorch:
21
+ <pre>import torch
22
+ import torch.nn as nn
23
+ class Model(nn.Module):
24
+ #define architecture here
25
+
26
+ model = Model()
27
+ model.load_state_dict(torch.load('path_to_pytorch_model.bin_file'))</pre>
28
+
29
+ Or load the weights for each network separately using .pth files:
30
+ <pre>
31
+ import torch
32
+ import torch.nn as nn
33
+ class Model(nn.Module):
34
+ #define architecture here
35
+
36
+ model = Model()
37
+ model.load_state_dict(torch. Load('path_to_learned_parameters.pth'))
38
+ </pre>
39
+
40
+
41
  # Training Details:
42
  learning rate = 0.001 | loss function for recnet = Mean Square Smooth Canny Edge loss | training iterations = 700 | dataset = [Racecar dataset's multislow_poli scenario](https://huggingface.co/datasets/suwesh/RACECAR-multislow_poli)