yalhessi commited on
Commit
d5923c3
·
verified ·
1 Parent(s): 399fb38

End of training

Browse files
Files changed (1) hide show
  1. README.md +122 -0
README.md ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: other
4
+ base_model: deepseek-ai/deepseek-coder-1.3b-base
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: lemexp-task1-v3-template_small_notypes-deepseek-coder-1.3b-base-8lr-12epochs-normal-eos
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # lemexp-task1-v3-template_small_notypes-deepseek-coder-1.3b-base-8lr-12epochs-normal-eos
16
+
17
+ This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.1698
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0008
39
+ - train_batch_size: 2
40
+ - eval_batch_size: 2
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 8
44
+ - total_train_batch_size: 16
45
+ - total_eval_batch_size: 16
46
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
47
+ - lr_scheduler_type: linear
48
+ - num_epochs: 12
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss |
54
+ |:-------------:|:-------:|:-----:|:---------------:|
55
+ | 0.43 | 0.2001 | 720 | 0.3401 |
56
+ | 0.3227 | 0.4001 | 1440 | 0.2910 |
57
+ | 0.2819 | 0.6002 | 2160 | 0.2751 |
58
+ | 0.2714 | 0.8002 | 2880 | 0.2636 |
59
+ | 0.2595 | 1.0003 | 3600 | 0.2653 |
60
+ | 0.2446 | 1.2003 | 4320 | 0.2640 |
61
+ | 0.2403 | 1.4004 | 5040 | 0.2476 |
62
+ | 0.2347 | 1.6004 | 5760 | 0.2459 |
63
+ | 0.235 | 1.8005 | 6480 | 0.2404 |
64
+ | 0.2278 | 2.0006 | 7200 | 0.2361 |
65
+ | 0.2191 | 2.2006 | 7920 | 0.2371 |
66
+ | 0.2162 | 2.4007 | 8640 | 0.2295 |
67
+ | 0.2117 | 2.6007 | 9360 | 0.2241 |
68
+ | 0.2106 | 2.8008 | 10080 | 0.2220 |
69
+ | 0.2112 | 3.0008 | 10800 | 0.2189 |
70
+ | 0.1977 | 3.2009 | 11520 | 0.2220 |
71
+ | 0.1992 | 3.4009 | 12240 | 0.2206 |
72
+ | 0.1942 | 3.6010 | 12960 | 0.2162 |
73
+ | 0.1937 | 3.8011 | 13680 | 0.2136 |
74
+ | 0.1947 | 4.0011 | 14400 | 0.2068 |
75
+ | 0.1813 | 4.2012 | 15120 | 0.2078 |
76
+ | 0.1831 | 4.4012 | 15840 | 0.2086 |
77
+ | 0.18 | 4.6013 | 16560 | 0.2040 |
78
+ | 0.1805 | 4.8013 | 17280 | 0.2126 |
79
+ | 0.177 | 5.0014 | 18000 | 0.2038 |
80
+ | 0.1662 | 5.2014 | 18720 | 0.2037 |
81
+ | 0.1665 | 5.4015 | 19440 | 0.2010 |
82
+ | 0.1682 | 5.6016 | 20160 | 0.1968 |
83
+ | 0.1686 | 5.8016 | 20880 | 0.1924 |
84
+ | 0.164 | 6.0017 | 21600 | 0.1909 |
85
+ | 0.1547 | 6.2017 | 22320 | 0.1906 |
86
+ | 0.1553 | 6.4018 | 23040 | 0.1864 |
87
+ | 0.1524 | 6.6018 | 23760 | 0.1870 |
88
+ | 0.1544 | 6.8019 | 24480 | 0.1832 |
89
+ | 0.151 | 7.0019 | 25200 | 0.1843 |
90
+ | 0.1425 | 7.2020 | 25920 | 0.1823 |
91
+ | 0.1414 | 7.4021 | 26640 | 0.1869 |
92
+ | 0.1414 | 7.6021 | 27360 | 0.1821 |
93
+ | 0.1385 | 7.8022 | 28080 | 0.1767 |
94
+ | 0.14 | 8.0022 | 28800 | 0.1760 |
95
+ | 0.1281 | 8.2023 | 29520 | 0.1759 |
96
+ | 0.126 | 8.4023 | 30240 | 0.1748 |
97
+ | 0.1277 | 8.6024 | 30960 | 0.1746 |
98
+ | 0.1256 | 8.8024 | 31680 | 0.1707 |
99
+ | 0.1261 | 9.0025 | 32400 | 0.1692 |
100
+ | 0.1138 | 9.2026 | 33120 | 0.1706 |
101
+ | 0.1134 | 9.4026 | 33840 | 0.1687 |
102
+ | 0.1147 | 9.6027 | 34560 | 0.1717 |
103
+ | 0.1143 | 9.8027 | 35280 | 0.1664 |
104
+ | 0.1111 | 10.0028 | 36000 | 0.1670 |
105
+ | 0.1012 | 10.2028 | 36720 | 0.1677 |
106
+ | 0.1009 | 10.4029 | 37440 | 0.1664 |
107
+ | 0.1001 | 10.6029 | 38160 | 0.1683 |
108
+ | 0.1002 | 10.8030 | 38880 | 0.1657 |
109
+ | 0.1006 | 11.0031 | 39600 | 0.1645 |
110
+ | 0.0909 | 11.2031 | 40320 | 0.1716 |
111
+ | 0.0902 | 11.4032 | 41040 | 0.1694 |
112
+ | 0.0889 | 11.6032 | 41760 | 0.1698 |
113
+ | 0.0885 | 11.8033 | 42480 | 0.1698 |
114
+
115
+
116
+ ### Framework versions
117
+
118
+ - PEFT 0.14.0
119
+ - Transformers 4.47.0
120
+ - Pytorch 2.5.1+cu124
121
+ - Datasets 4.2.0
122
+ - Tokenizers 0.21.0