Diabetic Retinopathy Model

Model Information:

  • Architecture: EfficientNet-B0
  • Task: Multi-class classification (5 severity levels)
  • Dataset: Diabetic Retinopathy Dataset
  • Input Size: 224×224 RGB images

Classes:

  1. No_DR (No Diabetic Retinopathy)
  2. Mild
  3. Moderate
  4. Severe
  5. Proliferate_DR

Performance Metrics:

  • Accuracy: 98.55%
  • Precision: 0.9861
  • Recall: 0.9855
  • F1-Score: 0.9856

Usage:

from shifaa.vision import VisionModelFactory

model = VisionModelFactory.create_model(
    model_type="classification",
    model_name="Diabetic_Retinopathy"
)

result = model.run("fundus_image.jpg", show_image=True)
print(f"Severity: {result['predicted_class']}")
print(f"Confidence: {result['confidence']:.2f}%")

Confusion Matrix:

Confusion Matrix

Preprocessing:

  • Resize to 224×224
  • Random horizontal flip (training)
  • Random rotation ±10° (training)
  • Normalize: mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]

Training Details:

  • Loss Function: CrossEntropyLoss
  • Optimizer: Adam (lr=0.001)
  • Batch Size: 64
  • Epochs: 30
  • Device: CUDA/CPU

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Ahmed-Selem/Shifaa-Diabetic-Retinopathy-EfficientNetB0

Finetuned
(42)
this model

Collection including Ahmed-Selem/Shifaa-Diabetic-Retinopathy-EfficientNetB0