twscrape-prepared-regression-e5-base-4k-3epochs

This model is a fine-tuned version of dwzhu/e5-base-4k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4350
  • Mse: 0.0003
  • Target 0 Mse: 0.0009
  • Target 0 Distributions: <wandb.sdk.data_types.image.Image object at 0x7f5b2a1ac610>
  • Target 0 Error Distribution: <wandb.sdk.data_types.image.Image object at 0x7f5c314b43a0>
  • Target 1 Mse: 0.0003
  • Target 1 Distributions: <wandb.sdk.data_types.image.Image object at 0x7f5c3131fdf0>
  • Target 1 Error Distribution: <wandb.sdk.data_types.image.Image object at 0x7f5c180ffaf0>
  • Target 2 Mse: 0.0001
  • Target 2 Distributions: <wandb.sdk.data_types.image.Image object at 0x7f5c1809f5e0>
  • Target 2 Error Distribution: <wandb.sdk.data_types.image.Image object at 0x7f5c3015e920>
  • Target 3 Mse: 0.0000
  • Target 3 Distributions: <wandb.sdk.data_types.image.Image object at 0x7f5c312b04f0>
  • Target 3 Error Distribution: <wandb.sdk.data_types.image.Image object at 0x7f5c312b3340>

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 256
  • total_eval_batch_size: 256
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Mse Target 0 Mse Target 0 Distributions Target 0 Error Distribution Target 1 Mse Target 1 Distributions Target 1 Error Distribution Target 2 Mse Target 2 Distributions Target 2 Error Distribution Target 3 Mse Target 3 Distributions Target 3 Error Distribution
1.4561 1.0 1589 1.4744 0.0003 0.0010 <wandb.sdk.data_types.image.Image object at 0x7f5c32c2e530> <wandb.sdk.data_types.image.Image object at 0x7f5c32c2e620> 0.0003 <wandb.sdk.data_types.image.Image object at 0x7f5c4414f610> <wandb.sdk.data_types.image.Image object at 0x7f5c473e3340> 0.0001 <wandb.sdk.data_types.image.Image object at 0x7f5c47230ac0> <wandb.sdk.data_types.image.Image object at 0x7f5c4711f820> 0.0000 <wandb.sdk.data_types.image.Image object at 0x7f5c440fb250> <wandb.sdk.data_types.image.Image object at 0x7f5c474deb60>
1.4648 2.0 3178 1.4401 0.0003 0.0009 <wandb.sdk.data_types.image.Image object at 0x7f5c47483f40> <wandb.sdk.data_types.image.Image object at 0x7f5c442efa30> 0.0003 <wandb.sdk.data_types.image.Image object at 0x7f5c3639dfc0> <wandb.sdk.data_types.image.Image object at 0x7f5c1839de40> 0.0001 <wandb.sdk.data_types.image.Image object at 0x7f5c1843d9c0> <wandb.sdk.data_types.image.Image object at 0x7f5c182ce5f0> 0.0000 <wandb.sdk.data_types.image.Image object at 0x7f5c3627e980> <wandb.sdk.data_types.image.Image object at 0x7f5c36151f00>
1.1685 3.0 4767 1.4350 0.0003 0.0009 <wandb.sdk.data_types.image.Image object at 0x7f5c32e8c2b0> <wandb.sdk.data_types.image.Image object at 0x7f5c3610c1c0> 0.0003 <wandb.sdk.data_types.image.Image object at 0x7f5a8ea24640> <wandb.sdk.data_types.image.Image object at 0x7f5c32defee0> 0.0001 <wandb.sdk.data_types.image.Image object at 0x7f5c315609a0> <wandb.sdk.data_types.image.Image object at 0x7f5a8ea248b0> 0.0000 <wandb.sdk.data_types.image.Image object at 0x7f5b2a27d900> <wandb.sdk.data_types.image.Image object at 0x7f5c316b6710>

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.0.1
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
0.1B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for AlekseyKorshuk/twscrape-prepared-regression-e5-base-4k-3epochs

Base model

dwzhu/e5-base-4k
Finetuned
(5)
this model

Evaluation results