File size: 14,999 Bytes
e489ad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
"""
Comprehensive benchmarking script for Helion-V2.0-Thinking
Measures performance, throughput, latency, and memory usage
"""

import torch
from transformers import AutoModelForCausalLM, AutoProcessor
from typing import List, Dict, Any
import time
import psutil
import numpy as np
from PIL import Image
import json
from tqdm import tqdm
import gc


class HelionBenchmark:
    """Performance benchmarking for Helion-V2.0-Thinking"""
    
    def __init__(self, model_name: str = "DeepXR/Helion-V2.0-Thinking"):
        """Initialize benchmark suite"""
        print(f"Loading model for benchmarking: {model_name}")
        
        self.model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=torch.bfloat16,
            device_map="auto",
            trust_remote_code=True
        )
        self.processor = AutoProcessor.from_pretrained(model_name)
        self.model.eval()
        
        print("Model loaded successfully")
        
        # Get device info
        if torch.cuda.is_available():
            self.device = "cuda"
            self.device_name = torch.cuda.get_device_name(0)
            self.total_vram = torch.cuda.get_device_properties(0).total_memory / (1024**3)
        else:
            self.device = "cpu"
            self.device_name = "CPU"
            self.total_vram = 0
        
        print(f"Device: {self.device_name}")
        if self.device == "cuda":
            print(f"Total VRAM: {self.total_vram:.2f} GB")
    
    def measure_memory_usage(self) -> Dict[str, float]:
        """Measure current memory usage"""
        memory_stats = {}
        
        if self.device == "cuda":
            memory_stats['vram_allocated_gb'] = torch.cuda.memory_allocated() / (1024**3)
            memory_stats['vram_reserved_gb'] = torch.cuda.memory_reserved() / (1024**3)
            memory_stats['vram_peak_gb'] = torch.cuda.max_memory_allocated() / (1024**3)
        
        # System RAM
        memory_stats['ram_used_gb'] = psutil.Process().memory_info().rss / (1024**3)
        
        return memory_stats
    
    def benchmark_text_generation(
        self,
        prompts: List[str],
        max_new_tokens: int = 256
    ) -> Dict[str, Any]:
        """
        Benchmark text generation performance
        
        Returns:
            Dict with latency, throughput, and token metrics
        """
        print("\n=== Benchmarking Text Generation ===")
        
        latencies = []
        tokens_per_second = []
        
        # Warmup
        warmup_prompt = "Test prompt for warmup."
        inputs = self.processor(text=warmup_prompt, return_tensors="pt").to(self.model.device)
        with torch.no_grad():
            _ = self.model.generate(**inputs, max_new_tokens=50)
        
        if self.device == "cuda":
            torch.cuda.synchronize()
            torch.cuda.reset_peak_memory_stats()
        
        # Benchmark
        for prompt in tqdm(prompts, desc="Text Generation"):
            inputs = self.processor(text=prompt, return_tensors="pt").to(self.model.device)
            
            start_time = time.time()
            
            with torch.no_grad():
                outputs = self.model.generate(
                    **inputs,
                    max_new_tokens=max_new_tokens,
                    do_sample=False
                )
            
            if self.device == "cuda":
                torch.cuda.synchronize()
            
            end_time = time.time()
            latency = end_time - start_time
            
            # Calculate tokens generated
            generated_tokens = outputs.shape[1] - inputs['input_ids'].shape[1]
            tps = generated_tokens / latency
            
            latencies.append(latency)
            tokens_per_second.append(tps)
        
        # Memory stats
        memory_stats = self.measure_memory_usage()
        
        return {
            "text_generation": {
                "avg_latency_ms": np.mean(latencies) * 1000,
                "p50_latency_ms": np.percentile(latencies, 50) * 1000,
                "p95_latency_ms": np.percentile(latencies, 95) * 1000,
                "p99_latency_ms": np.percentile(latencies, 99) * 1000,
                "avg_tokens_per_second": np.mean(tokens_per_second),
                "total_prompts": len(prompts),
                **memory_stats
            }
        }
    
    def benchmark_vision(
        self,
        image_prompts: List[tuple[Image.Image, str]],
        max_new_tokens: int = 256
    ) -> Dict[str, Any]:
        """
        Benchmark vision + text generation
        
        Args:
            image_prompts: List of (image, prompt) tuples
        
        Returns:
            Performance metrics
        """
        print("\n=== Benchmarking Vision Tasks ===")
        
        latencies = []
        tokens_per_second = []
        
        # Warmup
        if image_prompts:
            warmup_image, warmup_prompt = image_prompts[0]
            inputs = self.processor(
                text=warmup_prompt,
                images=warmup_image,
                return_tensors="pt"
            ).to(self.model.device)
            with torch.no_grad():
                _ = self.model.generate(**inputs, max_new_tokens=50)
        
        if self.device == "cuda":
            torch.cuda.synchronize()
            torch.cuda.reset_peak_memory_stats()
        
        # Benchmark
        for image, prompt in tqdm(image_prompts, desc="Vision Tasks"):
            inputs = self.processor(
                text=prompt,
                images=image,
                return_tensors="pt"
            ).to(self.model.device)
            
            start_time = time.time()
            
            with torch.no_grad():
                outputs = self.model.generate(
                    **inputs,
                    max_new_tokens=max_new_tokens,
                    do_sample=False
                )
            
            if self.device == "cuda":
                torch.cuda.synchronize()
            
            end_time = time.time()
            latency = end_time - start_time
            
            generated_tokens = outputs.shape[1] - inputs['input_ids'].shape[1]
            tps = generated_tokens / latency
            
            latencies.append(latency)
            tokens_per_second.append(tps)
        
        memory_stats = self.measure_memory_usage()
        
        return {
            "vision_tasks": {
                "avg_latency_ms": np.mean(latencies) * 1000,
                "p50_latency_ms": np.percentile(latencies, 50) * 1000,
                "p95_latency_ms": np.percentile(latencies, 95) * 1000,
                "p99_latency_ms": np.percentile(latencies, 99) * 1000,
                "avg_tokens_per_second": np.mean(tokens_per_second),
                "total_image_prompts": len(image_prompts),
                **memory_stats
            }
        }
    
    def benchmark_long_context(
        self,
        context_lengths: List[int] = [1000, 5000, 10000, 50000, 100000]
    ) -> Dict[str, Any]:
        """
        Benchmark performance with varying context lengths
        
        Args:
            context_lengths: List of context lengths to test
        
        Returns:
            Performance metrics by context length
        """
        print("\n=== Benchmarking Long Context Performance ===")
        
        results = {}
        
        for length in tqdm(context_lengths, desc="Context Lengths"):
            # Generate synthetic context
            context = "This is a test sentence. " * (length // 6)  # Approx tokens
            prompt = f"{context}\n\nQuestion: What is the main topic of this text?\nAnswer:"
            
            inputs = self.processor(text=prompt, return_tensors="pt").to(self.model.device)
            
            # Check if context fits
            if inputs['input_ids'].shape[1] > length:
                print(f"Skipping {length} - generated context too long")
                continue
            
            if self.device == "cuda":
                torch.cuda.synchronize()
                torch.cuda.reset_peak_memory_stats()
            
            start_time = time.time()
            
            try:
                with torch.no_grad():
                    outputs = self.model.generate(
                        **inputs,
                        max_new_tokens=128,
                        do_sample=False
                    )
                
                if self.device == "cuda":
                    torch.cuda.synchronize()
                
                end_time = time.time()
                latency = end_time - start_time
                
                memory_stats = self.measure_memory_usage()
                
                results[f"context_{length}"] = {
                    "latency_ms": latency * 1000,
                    "input_tokens": inputs['input_ids'].shape[1],
                    **memory_stats
                }
            
            except Exception as e:
                results[f"context_{length}"] = {
                    "error": str(e)
                }
            
            # Cleanup
            del inputs, outputs
            gc.collect()
            if self.device == "cuda":
                torch.cuda.empty_cache()
        
        return {"long_context": results}
    
    def benchmark_throughput(
        self,
        batch_sizes: List[int] = [1, 2, 4, 8],
        sequence_length: int = 512
    ) -> Dict[str, Any]:
        """
        Benchmark throughput with different batch sizes
        
        Args:
            batch_sizes: List of batch sizes to test
            sequence_length: Target sequence length
        
        Returns:
            Throughput metrics
        """
        print("\n=== Benchmarking Throughput ===")
        
        results = {}
        prompt = "Explain the concept of artificial intelligence. " * 10
        
        for batch_size in tqdm(batch_sizes, desc="Batch Sizes"):
            try:
                # Create batch
                prompts = [prompt] * batch_size
                inputs = self.processor(
                    text=prompts,
                    return_tensors="pt",
                    padding=True
                ).to(self.model.device)
                
                if self.device == "cuda":
                    torch.cuda.synchronize()
                    torch.cuda.reset_peak_memory_stats()
                
                start_time = time.time()
                
                with torch.no_grad():
                    outputs = self.model.generate(
                        **inputs,
                        max_new_tokens=256,
                        do_sample=False
                    )
                
                if self.device == "cuda":
                    torch.cuda.synchronize()
                
                end_time = time.time()
                latency = end_time - start_time
                
                # Calculate throughput
                total_tokens = outputs.shape[0] * outputs.shape[1]
                throughput = total_tokens / latency
                
                memory_stats = self.measure_memory_usage()
                
                results[f"batch_{batch_size}"] = {
                    "latency_ms": latency * 1000,
                    "throughput_tokens_per_sec": throughput,
                    "tokens_per_sample": outputs.shape[1],
                    **memory_stats
                }
            
            except Exception as e:
                results[f"batch_{batch_size}"] = {
                    "error": str(e)
                }
            
            # Cleanup
            del inputs, outputs
            gc.collect()
            if self.device == "cuda":
                torch.cuda.empty_cache()
        
        return {"throughput": results}
    
    def run_full_benchmark(self) -> Dict[str, Any]:
        """Run complete benchmark suite"""
        print("\n" + "="*60)
        print("Starting Full Benchmark Suite")
        print(f"Device: {self.device_name}")
        print("="*60)
        
        results = {
            "system_info": {
                "device": self.device,
                "device_name": self.device_name,
                "total_vram_gb": self.total_vram if self.device == "cuda" else None,
                "pytorch_version": torch.__version__,
                "cuda_available": torch.cuda.is_available()
            }
        }
        
        # Text generation benchmark
        text_prompts = [
            "Explain quantum mechanics in simple terms.",
            "Write a short story about space exploration.",
            "What are the benefits of machine learning?",
            "Describe the process of photosynthesis.",
            "How does blockchain technology work?"
        ]
        results.update(self.benchmark_text_generation(text_prompts, max_new_tokens=256))
        
        # Long context benchmark
        results.update(self.benchmark_long_context([1000, 5000, 10000, 50000]))
        
        # Throughput benchmark
        results.update(self.benchmark_throughput([1, 2, 4]))
        
        print("\n" + "="*60)
        print("Benchmark Complete")
        print("="*60)
        
        return results
    
    def print_results(self, results: Dict[str, Any]):
        """Print benchmark results in a readable format"""
        print("\n" + "="*60)
        print("BENCHMARK RESULTS")
        print("="*60)
        
        def print_dict(d, indent=0):
            for key, value in d.items():
                if isinstance(value, dict):
                    print("  " * indent + f"{key}:")
                    print_dict(value, indent + 1)
                elif isinstance(value, float):
                    print("  " * indent + f"{key}: {value:.4f}")
                else:
                    print("  " * indent + f"{key}: {value}")
        
        print_dict(results)
        print("="*60 + "\n")
    
    def save_results(self, results: Dict[str, Any], filename: str = "benchmark_results.json"):
        """Save results to JSON file"""
        with open(filename, 'w') as f:
            json.dump(results, f, indent=2)
        print(f"Results saved to {filename}")


def main():
    """Main benchmark function"""
    import argparse
    
    parser = argparse.ArgumentParser(description="Benchmark Helion-V2.0-Thinking")
    parser.add_argument(
        "--model",
        type=str,
        default="DeepXR/Helion-V2.0-Thinking",
        help="Model name or path"
    )
    parser.add_argument(
        "--output",
        type=str,
        default="benchmark_results.json",
        help="Output file for results"
    )
    
    args = parser.parse_args()
    
    # Run benchmark
    benchmark = HelionBenchmark(args.model)
    results = benchmark.run_full_benchmark()
    benchmark.print_results(results)
    benchmark.save_results(results, args.output)


if __name__ == "__main__":
    main()