SentenceTransformer based on google-bert/bert-base-multilingual-cased
This is a sentence-transformers model finetuned from google-bert/bert-base-multilingual-cased on the all-nli-pair, all-nli-pair-class, all-nli-pair-score, all-nli-triplet, stsb and quora datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-multilingual-cased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Datasets:
- all-nli-pair
- all-nli-pair-class
- all-nli-pair-score
- all-nli-triplet
- stsb
- quora
- Language: ar
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Omartificial-Intelligence-Space/Arabic-base-all-nli-stsb-quora")
sentences = [
'ما هي الدروس التي يمكن أن نتعلمها من أدولف هتلر؟',
'ما هي الدروس التي يمكن أن نتعلمها من أدولف هتلر؟',
'ما مدى قربنا من الحرب العالمية؟',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Training Details
Training Datasets
all-nli-pair
all-nli-pair-class
- Dataset: all-nli-pair-class
- Size: 942,069 training samples
- Columns:
premise, hypothesis, and label
- Approximate statistics based on the first 1000 samples:
|
premise |
hypothesis |
label |
| type |
string |
string |
int |
| details |
- min: 8 tokens
- mean: 24.78 tokens
- max: 72 tokens
|
- min: 4 tokens
- mean: 13.55 tokens
- max: 55 tokens
|
- 0: ~33.40%
- 1: ~33.30%
- 2: ~33.30%
|
- Samples:
| premise |
hypothesis |
label |
شخص على حصان يقفز فوق طائرة معطلة |
شخص يقوم بتدريب حصانه للمنافسة |
1 |
شخص على حصان يقفز فوق طائرة معطلة |
شخص في مطعم، يطلب عجة. |
2 |
شخص على حصان يقفز فوق طائرة معطلة |
شخص في الهواء الطلق، على حصان. |
0 |
- Loss:
SoftmaxLoss
all-nli-pair-score
all-nli-triplet
stsb
quora
Evaluation Datasets
all-nli-triplet
stsb
quora
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 128
num_train_epochs: 1
warmup_ratio: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
prediction_loss_only: True
per_device_train_batch_size: 128
per_device_eval_batch_size: 8
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 1
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
| 0.0231 |
500 |
5.0061 |
| 0.0462 |
1000 |
4.7876 |
| 0.0693 |
1500 |
4.6618 |
| 0.0923 |
2000 |
4.7337 |
| 0.1154 |
2500 |
4.5945 |
| 0.1385 |
3000 |
4.7536 |
| 0.1616 |
3500 |
4.619 |
| 0.1847 |
4000 |
4.4761 |
| 0.2078 |
4500 |
4.4454 |
| 0.2309 |
5000 |
4.6376 |
| 0.2539 |
5500 |
4.5513 |
| 0.2770 |
6000 |
4.5619 |
| 0.3001 |
6500 |
4.3416 |
| 0.3232 |
7000 |
4.7372 |
| 0.3463 |
7500 |
4.5906 |
| 0.3694 |
8000 |
4.6546 |
| 0.3924 |
8500 |
4.2452 |
| 0.4155 |
9000 |
4.684 |
| 0.4386 |
9500 |
4.426 |
| 0.4617 |
10000 |
4.2539 |
| 0.4848 |
10500 |
4.3224 |
| 0.5079 |
11000 |
4.4046 |
| 0.5310 |
11500 |
4.4644 |
| 0.5540 |
12000 |
4.4542 |
| 0.5771 |
12500 |
4.6026 |
| 0.6002 |
13000 |
4.3519 |
| 0.6233 |
13500 |
4.5135 |
| 0.6464 |
14000 |
4.3318 |
| 0.6695 |
14500 |
4.4465 |
| 0.6926 |
15000 |
3.9692 |
| 0.7156 |
15500 |
4.2084 |
| 0.7387 |
16000 |
4.2217 |
| 0.7618 |
16500 |
4.2791 |
| 0.7849 |
17000 |
4.5962 |
| 0.8080 |
17500 |
4.5871 |
| 0.8311 |
18000 |
4.3271 |
| 0.8541 |
18500 |
4.1688 |
| 0.8772 |
19000 |
4.2081 |
| 0.9003 |
19500 |
4.2867 |
| 0.9234 |
20000 |
4.5474 |
| 0.9465 |
20500 |
4.5257 |
| 0.9696 |
21000 |
3.8461 |
| 0.9927 |
21500 |
4.1254 |
Framework Versions
- Python: 3.9.18
- Sentence Transformers: 3.0.1
- Transformers: 4.40.0
- PyTorch: 2.2.2+cu121
- Accelerate: 0.26.1
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers and SoftmaxLoss
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}