SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("adriansanz/ST-tramits-sitges-003-10ep")
sentences = [
"Els comerços locals obtenen un benefici principal de la implementació del projecte d'implantació i ús de la targeta de fidelització del comerç local de Sitges, que és la possibilitat d'augmentar les vendes i la fidelització dels clients.",
"Quin és el benefici que els comerços locals obtenen de la implementació del projecte d'implantació i ús de la targeta de fidelització?",
'Quin és el propòsit de la deixalleria municipal per a l’ambient?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1331 |
| cosine_accuracy@3 |
0.2624 |
| cosine_accuracy@5 |
0.3536 |
| cosine_accuracy@10 |
0.5243 |
| cosine_precision@1 |
0.1331 |
| cosine_precision@3 |
0.0875 |
| cosine_precision@5 |
0.0707 |
| cosine_precision@10 |
0.0524 |
| cosine_recall@1 |
0.1331 |
| cosine_recall@3 |
0.2624 |
| cosine_recall@5 |
0.3536 |
| cosine_recall@10 |
0.5243 |
| cosine_ndcg@10 |
0.2986 |
| cosine_mrr@10 |
0.2301 |
| cosine_map@100 |
0.2513 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1322 |
| cosine_accuracy@3 |
0.263 |
| cosine_accuracy@5 |
0.3541 |
| cosine_accuracy@10 |
0.5286 |
| cosine_precision@1 |
0.1322 |
| cosine_precision@3 |
0.0877 |
| cosine_precision@5 |
0.0708 |
| cosine_precision@10 |
0.0529 |
| cosine_recall@1 |
0.1322 |
| cosine_recall@3 |
0.263 |
| cosine_recall@5 |
0.3541 |
| cosine_recall@10 |
0.5286 |
| cosine_ndcg@10 |
0.3011 |
| cosine_mrr@10 |
0.2322 |
| cosine_map@100 |
0.253 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1342 |
| cosine_accuracy@3 |
0.2655 |
| cosine_accuracy@5 |
0.3589 |
| cosine_accuracy@10 |
0.5257 |
| cosine_precision@1 |
0.1342 |
| cosine_precision@3 |
0.0885 |
| cosine_precision@5 |
0.0718 |
| cosine_precision@10 |
0.0526 |
| cosine_recall@1 |
0.1342 |
| cosine_recall@3 |
0.2655 |
| cosine_recall@5 |
0.3589 |
| cosine_recall@10 |
0.5257 |
| cosine_ndcg@10 |
0.3011 |
| cosine_mrr@10 |
0.2329 |
| cosine_map@100 |
0.2538 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1266 |
| cosine_accuracy@3 |
0.2633 |
| cosine_accuracy@5 |
0.3564 |
| cosine_accuracy@10 |
0.5229 |
| cosine_precision@1 |
0.1266 |
| cosine_precision@3 |
0.0878 |
| cosine_precision@5 |
0.0713 |
| cosine_precision@10 |
0.0523 |
| cosine_recall@1 |
0.1266 |
| cosine_recall@3 |
0.2633 |
| cosine_recall@5 |
0.3564 |
| cosine_recall@10 |
0.5229 |
| cosine_ndcg@10 |
0.2972 |
| cosine_mrr@10 |
0.2285 |
| cosine_map@100 |
0.2496 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1274 |
| cosine_accuracy@3 |
0.2684 |
| cosine_accuracy@5 |
0.3553 |
| cosine_accuracy@10 |
0.521 |
| cosine_precision@1 |
0.1274 |
| cosine_precision@3 |
0.0895 |
| cosine_precision@5 |
0.0711 |
| cosine_precision@10 |
0.0521 |
| cosine_recall@1 |
0.1274 |
| cosine_recall@3 |
0.2684 |
| cosine_recall@5 |
0.3553 |
| cosine_recall@10 |
0.521 |
| cosine_ndcg@10 |
0.2973 |
| cosine_mrr@10 |
0.2293 |
| cosine_map@100 |
0.2507 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1224 |
| cosine_accuracy@3 |
0.2546 |
| cosine_accuracy@5 |
0.344 |
| cosine_accuracy@10 |
0.5165 |
| cosine_precision@1 |
0.1224 |
| cosine_precision@3 |
0.0849 |
| cosine_precision@5 |
0.0688 |
| cosine_precision@10 |
0.0516 |
| cosine_recall@1 |
0.1224 |
| cosine_recall@3 |
0.2546 |
| cosine_recall@5 |
0.344 |
| cosine_recall@10 |
0.5165 |
| cosine_ndcg@10 |
0.2909 |
| cosine_mrr@10 |
0.2225 |
| cosine_map@100 |
0.2429 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,399 training samples
- Columns:
positive and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
| type |
string |
string |
| details |
- min: 9 tokens
- mean: 49.44 tokens
- max: 178 tokens
|
- min: 9 tokens
- mean: 21.17 tokens
- max: 48 tokens
|
- Samples:
| positive |
anchor |
L'Ajuntament de Sitges atorga subvencions per a projectes i activitats d'interès públic o social que tinguin per finalitat les activitats esportives federades, escolars o populars desenvolupades per les entitats esportives i esportistes del municipi de Sitges. |
Quin és el benefici de les subvencions per a les entitats esportives? |
L'Ajuntament de Sitges atorga subvencions per a projectes i activitats d'interès públic o social que tinguin per finalitat les activitats esportives federades, escolars o populars desenvolupades per les entitats esportives i esportistes del municipi de Sitges al llarg de l'exercici per la qual es sol·licita la subvenció, i reuneixin les condicions assenyalades a les bases. |
Quin és el període d'execució dels projectes i activitats esportives? |
Certificat on s'indica el nombre d'habitatges que configuren el padró de l'Impost sobre Béns Immobles del municipi o bé d'una part d'aquest. |
Quin és el contingut del certificat del nombre d'habitatges? |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
gradient_accumulation_steps: 16
learning_rate: 2e-05
num_train_epochs: 10
lr_scheduler_type: cosine
warmup_ratio: 0.2
bf16: True
tf32: True
load_best_model_at_end: True
optim: adamw_torch_fused
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 16
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 10
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.2
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: True
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
eval_use_gather_object: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
dim_1024_cosine_map@100 |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
| 0.4 |
10 |
3.5464 |
- |
- |
- |
- |
- |
- |
| 0.8 |
20 |
2.3861 |
- |
- |
- |
- |
- |
- |
| 1.0 |
25 |
- |
0.2327 |
0.2144 |
0.2252 |
0.2286 |
0.1938 |
0.2329 |
| 1.1975 |
30 |
1.8712 |
- |
- |
- |
- |
- |
- |
| 1.5975 |
40 |
1.3322 |
- |
- |
- |
- |
- |
- |
| 1.9975 |
50 |
0.9412 |
0.2410 |
0.2310 |
0.2383 |
0.2415 |
0.2236 |
0.2436 |
| 2.395 |
60 |
0.806 |
- |
- |
- |
- |
- |
- |
| 2.795 |
70 |
0.5024 |
- |
- |
- |
- |
- |
- |
| 2.995 |
75 |
- |
0.2451 |
0.2384 |
0.2455 |
0.2487 |
0.2323 |
0.2423 |
| 3.1925 |
80 |
0.4259 |
- |
- |
- |
- |
- |
- |
| 3.5925 |
90 |
0.3556 |
- |
- |
- |
- |
- |
- |
| 3.9925 |
100 |
0.2555 |
0.2477 |
0.2443 |
0.2417 |
0.2485 |
0.2369 |
0.2470 |
| 4.39 |
110 |
0.2611 |
- |
- |
- |
- |
- |
- |
| 4.79 |
120 |
0.1939 |
- |
- |
- |
- |
- |
- |
| 4.99 |
125 |
- |
0.2490 |
0.2425 |
0.2479 |
0.2485 |
0.2386 |
0.2495 |
| 5.1875 |
130 |
0.2021 |
- |
- |
- |
- |
- |
- |
| 5.5875 |
140 |
0.1537 |
- |
- |
- |
- |
- |
- |
| 5.9875 |
150 |
0.1277 |
0.2535 |
0.2491 |
0.2491 |
0.2534 |
0.2403 |
0.2541 |
| 6.385 |
160 |
0.1213 |
- |
- |
- |
- |
- |
- |
| 6.785 |
170 |
0.1035 |
- |
- |
- |
- |
- |
- |
| 6.985 |
175 |
- |
0.2513 |
0.2493 |
0.2435 |
0.2515 |
0.2380 |
0.2528 |
| 7.1825 |
180 |
0.0965 |
- |
- |
- |
- |
- |
- |
| 7.5825 |
190 |
0.0861 |
- |
- |
- |
- |
- |
- |
| 7.9825 |
200 |
0.0794 |
0.2529 |
0.2536 |
0.2526 |
0.2545 |
0.2438 |
0.2570 |
| 8.38 |
210 |
0.0734 |
- |
- |
- |
- |
- |
- |
| 8.78 |
220 |
0.066 |
- |
- |
- |
- |
- |
- |
| 8.98 |
225 |
- |
0.2538 |
0.2523 |
0.2519 |
0.2542 |
0.2457 |
0.2572 |
| 9.1775 |
230 |
0.0731 |
- |
- |
- |
- |
- |
- |
| 9.5775 |
240 |
0.0726 |
- |
- |
- |
- |
- |
- |
| 9.9775 |
250 |
0.0632 |
0.2513 |
0.2507 |
0.2496 |
0.2538 |
0.2429 |
0.2530 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.35.0.dev0
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}