c8b130c74f0482ff9eb4b90740c540e6

This model is a fine-tuned version of FacebookAI/xlm-roberta-large-finetuned-conll03-german on the dair-ai/emotion [split] dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5596
  • Data Size: 1.0
  • Epoch Runtime: 85.6823
  • Accuracy: 0.3488
  • F1 Macro: 0.0862

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro
No log 0 0 1.6597 0 3.6181 0.3337 0.0914
No log 1 500 1.5912 0.0078 4.8214 0.3397 0.1282
No log 2 1000 1.6571 0.0156 5.6805 0.3332 0.0992
No log 3 1500 1.6241 0.0312 7.6939 0.3488 0.0862
No log 4 2000 1.6578 0.0625 11.2933 0.2908 0.0751
0.0873 5 2500 1.5855 0.125 16.8917 0.2908 0.0751
1.6131 6 3000 1.5739 0.25 26.7367 0.2908 0.0751
0.2621 7 3500 1.5719 0.5 47.4582 0.3488 0.0862
1.5933 8.0 4000 1.5668 1.0 85.6839 0.2908 0.0751
1.598 9.0 4500 1.5573 1.0 84.7785 0.3488 0.0862
1.6062 10.0 5000 1.5613 1.0 86.8525 0.3488 0.0862
1.5933 11.0 5500 1.5649 1.0 86.4910 0.3488 0.0862
1.5714 12.0 6000 1.5628 1.0 85.2848 0.3488 0.0862
1.5707 13.0 6500 1.5596 1.0 85.6823 0.3488 0.0862

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
5
Safetensors
Model size
0.6B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for contemmcm/c8b130c74f0482ff9eb4b90740c540e6

Evaluation results