text
stringlengths
0
107
# stars_types_with_best4_predictions.fits - Description
## Overview
This catalog contains effective temperature predictions for 2.1 million eclipsing binary stars.
It merges the base stars_types.dat catalog with ML predictions using a "best-of-four" ensemble
approach that selects the prediction with the lowest uncertainty for each object.
**Creation Date**: 2025-12-18
**Total Objects**: 2,145,310
**Objects with Teff**: 2,085,712 (97.2%)
**Temperature Range**: 2737 - 38456 K
## Temperature Sources
1. **Gaia GSP-Phot**: 1,251,127 objects (58.3%)
- High-quality spectrophotometric temperatures from Gaia DR3
- No uncertainty estimates provided
2. **ML Predictions**: 834,585 objects (38.9%)
- Best-of-four ensemble (selects lowest uncertainty)
- Four models compared:
* teff_only: Gaia photometry only (g, BP, RP, BP-RP)
* teff_logg: Gaia photometry + log(g) with uncertainty propagation
* teff_cluster: Gaia photometry + cluster probabilities
* teff_flag1: Gaia photometry (trained on flag 1 high-quality sources)
- Mean uncertainty: 203 K
3. **No Prediction**: 59,598 objects (2.8%)
- Objects without Gaia Teff and outside ML training domain
## Quality Flags
Quality assessment based on temperature source and uncertainty:
- **A**: Gaia GSP-Phot temperature (highest quality) - 1,251,127 objects (58.3%)
- **B**: ML prediction with uncertainty < 300 K (high confidence) - 736,974 objects (34.4%)
- **C**: ML prediction with uncertainty < 500 K (medium confidence) - 64,031 objects (3.0%)
- **D**: ML prediction with uncertainty >= 500 K (low confidence) - 33,580 objects (1.6%)
- **X**: No temperature available - 59,598 objects (2.8%)
## Model Selection Distribution (ML predictions only)
Best-of-four ensemble selects the model with lowest uncertainty for each object:
- **teff_cluster**: 160,931 objects (19.3%)
- **teff_flag1**: 243,801 objects (29.2%)
- **teff_logg**: 149,829 objects (18.0%)
- **teff_only**: 280,024 objects (33.6%)
## Uncertainty Statistics (ML predictions only)
- **Mean**: 203 K
- **Median**: 168 K
- **Std Dev**: 144 K
- **Min**: 17 K
- **Max**: 5372 K
- **25th percentile**: 124 K
- **75th percentile**: 239 K
## Column Descriptions
| Column | Type | Unit | Description |
|--------|------|------|-------------|
| source_id | int64 | - | Gaia DR3 source identifier |
| ra | float64 | deg | Right Ascension (J2000) |
| dec | float64 | deg | Declination (J2000) |
| period | float64 | d | Orbital period |
| teff_gaia | float64 | K | Effective temperature from Gaia GSP-Phot (null if unavailable) |
| binary_type | str | - | Binary type (D=detached, C=overcontact) |
| amplitude | float64 | mag | Light curve amplitude |
| teff_predicted | float64 | K | ML predicted temperature from best-of-four (null if no prediction) |
| teff_uncertainty | float64 | K | ML prediction uncertainty (null for Gaia temperatures) |
| teff_final | float64 | K | Final temperature (Gaia if available, else ML, null if neither) |
| teff_source | str | - | Temperature source (Gaia, teff_only, teff_logg, teff_cluster, teff_flag1, none) |
| quality_flag | str | - | Quality flag (A/B/C/D/X, see above) |
## Usage Examples
### Python (Astropy)
```python
from astropy.table import Table
# Load catalog
catalog = Table.read('stars_types_with_best4_predictions.fits')
# Filter by quality
high_quality = catalog[catalog['quality_flag'] <= 'B'] # Gaia or low-uncertainty ML
print(f"High-quality objects: {len(high_quality):,}")
# Access temperatures
teff = catalog['teff_final']
uncertainty = catalog['teff_uncertainty']
# Filter by temperature range
cool_stars = catalog[(catalog['teff_final'] > 3000) & (catalog['teff_final'] < 5000)]
```
### Python (Polars)