Datasets:
File size: 13,392 Bytes
e631c1c 26982ec e631c1c 1b7011a a7a9e40 6f15e11 6379a2c 1b7011a 457fedc 26982ec e8aadd1 020ed0f 26982ec e8aadd1 1d19d6d 6f15e11 1b7011a 1d19d6d 1b7011a 6f15e11 1b7011a 1bd342d 5998e09 1bd342d 5998e09 1bd342d 5998e09 9c565f0 5998e09 1bd342d 5998e09 1bd342d 151a192 9c565f0 151a192 1bd342d 1b7011a 1bad6a0 1b7011a 1bad6a0 1b7011a 1bad6a0 6f15e11 1b7011a 1bd342d 1b7011a cdf2257 6f15e11 020ed0f 1bd342d 020ed0f cdf2257 020ed0f 10edc7e 020ed0f 10edc7e 6f15e11 1b7011a f7ac2d7 26d09c3 f7ac2d7 26d09c3 f7ac2d7 26982ec f7ac2d7 014d248 7c31824 014d248 7c31824 014d248 7c31824 014d248 e8ed798 014d248 26982ec f7ac2d7 1bd342d 1b7011a 5fccb9f 1b7011a 0a76bf5 1b7011a 1bad6a0 1b7011a 020ed0f 1bd342d 020ed0f 26982ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
---
license: etalab-2.0
size_categories:
- 100K<n<1M
task_categories:
- image-segmentation
pretty_name: FLAIR-HUB
tags:
- Multimodal
- Earth Observation
- Remote Sensing
- Aerial
- Satellite
- Environement
- LandCover
- Agriculture
---
# FLAIR-HUB : Large-scale Multimodal Dataset for Land Cover and Crop Mapping
FLAIR-HUB builds upon and includes the FLAIR#1 and FLAIR#2 datasets, expanding them into a unified, large-scale, multi-sensor land-cover resource with very-high-resolution
annotations. Spanning over 2,500 km² of diverse French ecoclimates and landscapes, it features 63 billion hand-annotated pixels across 19 land-cover and
23 crop type classes.<br>
The dataset integrates complementary data sources including aerial imagery, SPOT and Sentinel satellites, surface models, and historical aerial photos,
offering rich spatial, spectral, and temporal diversity. FLAIR-HUB supports the development of semantic segmentation, multimodal fusion, and self-supervised
learning methods, and will continue to grow with new modalities and annotations.
<p align="center"><img src="datacard_imgs/FLAIR-HUB_Overview.png" alt="" style="width:70%;max-width:1600px;" /></p>
<hr>
## 🔗 Links
📄 <a href="https://arxiv.org/abs/2506.07080" target="_blank"><b>Dataset Preprint</b></a><br>
📄 <a href="https://huggingface.co/papers/2508.10894" target="_blank"><b>MAESTRO Paper (using this dataset)</b></a><br>
📁 <a href="https://storage.gra.cloud.ovh.net/v1/AUTH_366279ce616242ebb14161b7991a8461/defi-ia/flair_hub/FLAIR-HUB_TOY_DATASET.zip" target="_blank"><b>Toy dataset (~750MB) -direct download-</b></a><br>
💻 <a href="https://github.com/IGNF/FLAIR-HUB" target="_blank"><b>Source Code (GitHub)</b></a><br>
💻 <a href="https://github.com/ignf/maestro" target="_blank"><b>MAESTRO Code (GitHub, uses this dataset)</b></a><br>
🏠 <a href="https://ignf.github.io/FLAIR/" target="_blank"><b>FLAIR datasets page </b></a><br>
✉️ <a href="mailto:[email protected]"><b>Contact Us</b></a> – [email protected] – Questions or collaboration inquiries welcome!<br>
<hr>
## 🎯 Key Figures
<table>
<tr><td>🗺️</td><td>ROI / Area Covered</td><td>➡️ 2,822 ROIs / 2,528 km²</td></tr>
<tr><td>🧠</td><td>Modalities</td><td>➡️ 6 modalities</td></tr>
<tr><td>🏛️</td><td>Departments (France)</td><td>➡️ 74</td></tr>
<tr><td>🧩</td><td>AI Patches (512×512 px @ 0.2m)</td><td>➡️ 241,100</td></tr>
<tr><td>🖼️</td><td>Annotated Pixels</td><td>➡️ 63.2 billion</td></tr>
<tr><td>🛰️</td><td>Sentinel-2 Acquisitions</td><td>➡️ 256,221</td></tr>
<tr><td>📡</td><td>Sentinel-1 Acquisitions</td><td>➡️ 532,696</td></tr>
<tr><td>📁</td><td>Total Files</td><td>➡️ ~2.5 million</td></tr>
<tr><td>💾</td><td>Total Dataset Size</td><td>➡️ ~750 GB</td></tr>
</table>
<hr>
## 🗃️ Dataset Structure
```
data/
├── DOMAIN_SENSOR_DATATYPE/
│ ├── ROI/
│ │ ├── <Patch>.tif # image file
│ │ ├── <Patch>.tif
| | ├── ...
│ └── ...
├── ...
├── DOMAIN_SENSOR_LABEL-XX/
│ ├── ROI/
│ │ ├── <Patch>.tif # supervision file
│ │ ├── <Patch>.tif
│ └── ...
├── ...
└── GLOBAL_ALL_MTD/
├── GLOABAL_SENSOR_MTD.gpkg # metadata file
├── GLOABAL_SENSOR_MTD.gpkg
└── ...
```
## 🗂️ Data Modalities Overview
<center>
<table>
<thead>
<tr>
<th>Modality</th>
<th>Description</th>
<th style="text-align: center">Resolution / Format</th>
<th style="text-align: center">Metadata</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>BD ORTHO (AERIAL_RGBI)</strong></td>
<td>Orthorectified aerial images with 4 bands (R, G, B, NIR).</td>
<td style="text-align: center">20 cm, 8-bit unsigned</td>
<td style="text-align: center">Radiometric stats, acquisition dates/cameras</td>
</tr>
<tr>
<td><strong>BD ORTHO HISTORIQUE (AERIAL-RLT_PAN)</strong></td>
<td>Historical panchromatic aerial images (1947–1965), resampled.</td>
<td style="text-align: center">~40 cm, real: 0.4–1.2 m, 8-bit</td>
<td style="text-align: center">Dates, original image references</td>
</tr>
<tr>
<td><strong>ELEVATION (DEM_ELEV)</strong></td>
<td>Elevation data with DSM (surface) and DTM (terrain) channels.</td>
<td style="text-align: center">DSM: 20 cm, DTM: 1 m, Float32</td>
<td style="text-align: center">Object heights via DSM–DTM difference</td>
</tr>
<tr>
<td><strong>SPOT (SPOT_RGBI)</strong></td>
<td>SPOT 6-7 satellite images, 4 bands, calibrated reflectance.</td>
<td style="text-align: center">1.6 m (resampled)</td>
<td style="text-align: center">Acquisition dates, radiometric stats</td>
</tr>
<tr>
<td><strong>SENTINEL-2 (SENTINEL2_TS)</strong></td>
<td>Annual time series with 10 spectral bands, calibrated reflectance.</td>
<td style="text-align: center">10.24 m (resampled)</td>
<td style="text-align: center">Dates, radiometric stats, cloud/snow masks</td>
</tr>
<tr>
<td><strong>SENTINEL-1 ASC/DESC (SENTINEL1-XXX_TS)</strong></td>
<td>Radar time series (VV, VH), SAR backscatter (σ0).</td>
<td style="text-align: center">10.24 m (resampled)</td>
<td style="text-align: center">Stats per ascending/descending series</td>
</tr>
<tr>
<td><strong>LABELS CoSIA (AERIAL_LABEL-COSIA)</strong></td>
<td>Land cover labels from aerial RGBI photo-interpretation.</td>
<td style="text-align: center">20 cm, 15–19 classes</td>
<td style="text-align: center">Aligned with BD ORTHO, patch statistics</td>
</tr>
<tr>
<td><strong>LABELS LPIS (ALL_LABEL-LPIS)</strong></td>
<td>Crop type data from CAP declarations, hierarchical class structure.</td>
<td style="text-align: center">20 cm</td>
<td style="text-align: center">Aligned with BD ORTHO, may differ from CoSIA</td>
</tr>
</tbody>
</table>
</center>
<p align="center"><img src="datacard_imgs/FLAIR-HUB_Patches_Hori.png" alt="" style="width:100%;max-width:1300px;" /></p>
<hr>
## 🏷️ Supervision
FLAIR-HUB includes two complementary supervision sources: AERIAL_LABEL-COSIA, a high-resolution land cover annotation derived from expert photo-interpretation
of RGBI imagery, offering pixel-level precision across 19 classes; and AERIAL_LABEL-LPIS, a crop-type annotation based on farmer-declared parcels
from the European Common Agricultural Policy, structured into a three-level taxonomy of up to 46 crop classes. While COSIA reflects actual land cover,
LPIS captures declared land use, and the two differ in purpose, precision, and spatial alignment.
<p align="center"><img src="datacard_imgs/FLAIR-HUB_Labels.png" alt="" style="width:70%;max-width:1300px;" /></p>
<hr>
## 🌍 Spatial partition
FLAIR-HUB uses an <b>official split for benchmarking, corresponding to the split_1 fold</b>.
</div>
<div style="flex: 60%; margin: auto;"">
<table border="1">
<tr>
<th><font color="#c7254e">TRAIN / VALIDATION </font></th>
<td>D004, D005, D006, D007, D008, D009, D010, D011, D013, D014, D016, D017, D018, D020, D021, D023, D024047, D025039, D029,
D030, D031, D032, D033, D034, D035, D037, D038, D040, D041, D044, D045, D046, D049, D051, D052, D054057, D055, D056, D058, D059062,
D060, D063, D065, D066, D067, D070, D072, D074, D077, D078, D080, D081, D086, D091</td>
</tr>
<tr>
<th><font color="#c7254e">TEST</font></th>
<td>D012, D015, D022, D026, D036, D061, D064, D068, D069, D071, D073, D075, D076, D083, D084, D085</td>
</tr>
</table>
</div>
</div>
<p align="center"><img src="datacard_imgs/FLAIR-HUB_splits_oneline.png" alt="" style="width:80%;max-width:1300px;" /></p>
<hr>
## 🏆 Bechmark scores
Several model configurations were trained (see the accompanying data paper).
The best-performing configurations for both land-cover and crop-type classification tasks are summarized below:
<div align="center">
Task | Model ID | mIoU | O.A.
:------------ | :------------- | :-----------| :---------
🗺️ Land-cover | LC-L | 65.8 | 78.2
🌾 Crop-types | LPIS-I | 39.2 | 87.2
</div>
The **Model ID** can be used to retrieve the corresponding pre-trained model from the FLAIR-HUB-MODELS collection.
🗺️ Land-cover
| Model ID | Aerial VHR | Elevation | SPOT | S2 t.s. | S1 t.s. | Historical | PARA. | EP. | O.A. | mIoU |
|----------|------------|-----------|------|---------|---------|------------|--------|-----|------|------|
| LC-A | ✓ | | | | | | 89.4 | 79 | 77.5 | 64.1 |
| LC-B | ✓ | ✓ | | | | | 181.4 | 124 | 78.1 | 65.1 |
| LC-C | ✓ | ✓ | ✓ | | | | 270.6 | 129 | 78.2 | 65.2 |
| LC-D | ✓ | | | ✓ | | | 93.9 | 85 | 77.6 | 64.7 |
| LC-E | ✓ | | | | ✓ | | 95.8 | 98 | 77.7 | 64.5 |
| LC-F | ✓ | | | ✓ | ✓ | | 97.7 | 64 | 77.7 | 64.9 |
| LC-G | | | | ✓ | | | 0.9 | 89 | 57.8 | 34.2 |
| LC-H | | | | | ✓ | | 1.8 | 106 | 54.5 | 28.2 |
| LC-I | | | ✓ | | | | 89.2 | 94 | 64.1 | 43.5 |
| LC-J | | ✓ | | | | | 89.4 | 97 | 67.4 | 51.2 |
| LC-K | ✓ | | | | | ✓ | 181.4 | 45 | 77.6 | 64.3 |
| LC-L | ✓ | ✓ | ✓ | ✓ | ✓ | | 276.4 | 121 | **78.2** | **65.8** |
| LC-ALL | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 365.8 | 129 | **78.2** | 65.6 |
🌾 Crop-types
| Model ID | Aerial VHR | SPOT | S2 t.s. | S1 t.s. | PARA. | EP. | O.A. | mIoU |
|----------|------------|------|---------|---------|--------|-----|------|------|
| **LV.1 - 23 classes (2 classes removed)** |||||||||
| LPIS-A | ✓ | | | | 89.4 | 91 | 86.6 | 24.4 |
| LPIS-B | ✓ | ✓ | | | 181.2 | 99 | 87.1 | 26.1 |
| LPIS-C | ✓ | | ✓ | | 93.9 | 100 | 87.5 | 29.8 |
| LPIS-D | ✓ | | ✓ | ✓ | 97.7 | 45 | **88.0** | 36.1 |
| LPIS-E | ✓ | ✓ | ✓ | | 183.1 | 46 | 87.6 | 30.3 |
| LPIS-F | | | ✓ | | 0.9 | 61 | 85.3 | 23.8 |
| LPIS-G | | | | ✓ | 1.8 | 77 | 84.5 | 18.1 |
| LPIS-H | | | ✓ | ✓ | 2.8 | 61 | 84.9 | 23.8 |
| LPIS-I | | ✓ | ✓ | ✓ | 97.5 | 49 | 87.2 | **39.2** |
| LPIS-J | ✓ | ✓ | ✓ | ✓ | 186.9 | 53 | **88.0** | 35.4 |
| LPIS-K | | ✓ | | | 89.2 | 14 | 84.5 | 15.1 |
<hr>
## 🔎 Filter dataset with the FLAIR-HUB Dataset Browser
A small desktop GUI to browse and download subsets
of the **IGNF/FLAIR-HUB** dataset from Hugging Face with filters for: Domain, Year, Modality or Data type.
Requirements:
- Python **3.9+**
- Tkinter (usually included; on Linux you may need: sudo apt-get install python3-tk)
- Python packages: pip install `huggingface_hub`
Run:
1. Download the file `flair-hub-HF-dl.py` from the *Files* section of this dataset.
2. In a terminal: ```pip install huggingface_hub```
3. Launch: ```python flair-hub-HF-dl.py```
<hr>
## ✨ MAESTRO basecode
This dataset is extensively used by the [MAESTRO model](https://huggingface.co/papers/2508.10894) for masked autoencoding on multimodal Earth observation data. You can find the MAESTRO model's code on its [GitHub repository](https://github.com/ignf/maestro).
A minimal example for using FLAIR-HUB with the MAESTRO framework:
```bash
poetry run python main.py \
model.model=mae \
model.model_size=medium \
run.exp_name=mae-m_flair \
run.exp_dir=/path/to/experiments/dir \
datasets.root_dir=/path/to/dataset/dir \
datasets.flair.rel_dir=FLAIR-HUB \
datasets.filter_pretrain=[flair] \
datasets.filter_finetune=[flair]
```
<hr>
## 📚 How to Cite
```
Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier.
FLAIR-HUB: semantic segmentation and domain adaptation dataset. (2025).
DOI: https://doi.org/10.48550/arXiv.2506.07080
```
```bibtex
@article{ign2025flairhub,
doi = {10.48550/arXiv.2506.07080},
url = {https://arxiv.org/abs/2506.07080},
author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
title = {FLAIR-HUB : Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
publisher = {arXiv},
year = {2025}
}
```
## ⚙️ Acknowledgement
Experiments have been conducted using HPC/AI resources provided by GENCI-IDRIS (Grant 2024-A0161013803, 2024-AD011014286R2 and 2025-A0181013803). |