Datasets:

Modalities:
Image
ArXiv:
License:
File size: 13,392 Bytes
e631c1c
 
26982ec
 
 
 
 
e631c1c
 
 
 
 
 
 
 
 
1b7011a
 
 
 
 
 
 
 
 
 
 
 
a7a9e40
6f15e11
6379a2c
1b7011a
 
457fedc
26982ec
e8aadd1
020ed0f
26982ec
e8aadd1
1d19d6d
6f15e11
1b7011a
 
 
1d19d6d
1b7011a
 
 
 
 
 
 
 
 
 
 
6f15e11
1b7011a
 
1bd342d
 
 
 
5998e09
1bd342d
5998e09
 
1bd342d
5998e09
9c565f0
5998e09
1bd342d
5998e09
1bd342d
151a192
9c565f0
151a192
 
 
 
1bd342d
 
 
 
1b7011a
1bad6a0
1b7011a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bad6a0
1b7011a
1bad6a0
6f15e11
1b7011a
1bd342d
1b7011a
 
 
 
 
 
cdf2257
6f15e11
020ed0f
 
1bd342d
020ed0f
cdf2257
020ed0f
10edc7e
020ed0f
10edc7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f15e11
1b7011a
f7ac2d7
 
26d09c3
 
 
 
 
f7ac2d7
 
 
 
 
 
26d09c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7ac2d7
26982ec
f7ac2d7
014d248
 
 
 
 
7c31824
014d248
 
 
7c31824
014d248
 
 
 
7c31824
014d248
 
 
 
e8ed798
014d248
 
 
26982ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7ac2d7
1bd342d
1b7011a
 
 
 
 
5fccb9f
1b7011a
 
 
 
0a76bf5
 
1b7011a
1bad6a0
1b7011a
 
 
 
020ed0f
 
1bd342d
020ed0f
26982ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
---
license: etalab-2.0
size_categories:
- 100K<n<1M
task_categories:
- image-segmentation
pretty_name: FLAIR-HUB
tags:
- Multimodal
- Earth Observation
- Remote Sensing
- Aerial
- Satellite
- Environement
- LandCover
- Agriculture
---

# FLAIR-HUB : Large-scale Multimodal Dataset for Land Cover and Crop Mapping

FLAIR-HUB builds upon and includes the FLAIR#1 and FLAIR#2 datasets, expanding them into a unified, large-scale, multi-sensor land-cover resource with very-high-resolution 
annotations. Spanning over 2,500 km² of diverse French ecoclimates and landscapes, it features 63 billion hand-annotated pixels across 19 land-cover and 
23 crop type classes.<br>
The dataset integrates complementary data sources including aerial imagery, SPOT and Sentinel satellites, surface models, and historical aerial photos, 
offering rich spatial, spectral, and temporal diversity. FLAIR-HUB supports the development of semantic segmentation, multimodal fusion, and self-supervised 
learning methods, and will continue to grow with new modalities and annotations.


<p align="center"><img src="datacard_imgs/FLAIR-HUB_Overview.png" alt="" style="width:70%;max-width:1600px;" /></p>
<hr>

## 🔗 Links

📄 <a href="https://arxiv.org/abs/2506.07080" target="_blank"><b>Dataset Preprint</b></a><br>
📄 <a href="https://huggingface.co/papers/2508.10894" target="_blank"><b>MAESTRO Paper (using this dataset)</b></a><br>
📁 <a href="https://storage.gra.cloud.ovh.net/v1/AUTH_366279ce616242ebb14161b7991a8461/defi-ia/flair_hub/FLAIR-HUB_TOY_DATASET.zip" target="_blank"><b>Toy dataset (~750MB) -direct download-</b></a><br>
💻 <a href="https://github.com/IGNF/FLAIR-HUB" target="_blank"><b>Source Code (GitHub)</b></a><br>
💻 <a href="https://github.com/ignf/maestro" target="_blank"><b>MAESTRO Code (GitHub, uses this dataset)</b></a><br>
🏠 <a href="https://ignf.github.io/FLAIR/" target="_blank"><b>FLAIR datasets page </b></a><br>
✉️ <a href="mailto:[email protected]"><b>Contact Us</b></a>[email protected] – Questions or collaboration inquiries welcome!<br>
<hr>

## 🎯 Key Figures


<table>
  <tr><td>🗺️</td><td>ROI / Area Covered</td><td>➡️ 2,822 ROIs / 2,528 km²</td></tr>
  <tr><td>🧠</td><td>Modalities</td><td>➡️ 6 modalities</td></tr>
  <tr><td>🏛️</td><td>Departments (France)</td><td>➡️ 74</td></tr>
  <tr><td>🧩</td><td>AI Patches (512×512 px @ 0.2m)</td><td>➡️ 241,100</td></tr>
  <tr><td>🖼️</td><td>Annotated Pixels</td><td>➡️ 63.2 billion</td></tr>
  <tr><td>🛰️</td><td>Sentinel-2 Acquisitions</td><td>➡️ 256,221</td></tr>
  <tr><td>📡</td><td>Sentinel-1 Acquisitions</td><td>➡️ 532,696</td></tr>
  <tr><td>📁</td><td>Total Files</td><td>➡️ ~2.5 million</td></tr>
  <tr><td>💾</td><td>Total Dataset Size</td><td>➡️ ~750 GB</td></tr>
</table>
<hr>


## 🗃️ Dataset Structure

```
data/
├── DOMAIN_SENSOR_DATATYPE/ 
│   ├── ROI/
│   │   ├── <Patch>.tif # image file 
│   │   ├── <Patch>.tif
|   |   ├── ...
│   └── ...
├── ...
├── DOMAIN_SENSOR_LABEL-XX/
│   ├── ROI/
│   │   ├── <Patch>.tif # supervision file 
│   │   ├── <Patch>.tif
│   └── ...
├── ...
└── GLOBAL_ALL_MTD/
    ├── GLOABAL_SENSOR_MTD.gpkg # metadata file
    ├── GLOABAL_SENSOR_MTD.gpkg
    └── ...   
```


## 🗂️ Data Modalities Overview

<center>
<table>
  <thead>
    <tr>
      <th>Modality</th>
      <th>Description</th>
      <th style="text-align: center">Resolution / Format</th>
      <th style="text-align: center">Metadata</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td><strong>BD ORTHO (AERIAL_RGBI)</strong></td>
      <td>Orthorectified aerial images with 4 bands (R, G, B, NIR).</td>
      <td style="text-align: center">20 cm, 8-bit unsigned</td>
      <td style="text-align: center">Radiometric stats, acquisition dates/cameras</td>
    </tr>
    <tr>
      <td><strong>BD ORTHO HISTORIQUE (AERIAL-RLT_PAN)</strong></td>
      <td>Historical panchromatic aerial images (1947–1965), resampled.</td>
      <td style="text-align: center">~40 cm, real: 0.4–1.2 m, 8-bit</td>
      <td style="text-align: center">Dates, original image references</td>
    </tr>
    <tr>
      <td><strong>ELEVATION (DEM_ELEV)</strong></td>
      <td>Elevation data with DSM (surface) and DTM (terrain) channels.</td>
      <td style="text-align: center">DSM: 20 cm, DTM: 1 m, Float32</td>
      <td style="text-align: center">Object heights via DSM–DTM difference</td>
    </tr>
    <tr>
      <td><strong>SPOT (SPOT_RGBI)</strong></td>
      <td>SPOT 6-7 satellite images, 4 bands, calibrated reflectance.</td>
      <td style="text-align: center">1.6 m (resampled)</td>
      <td style="text-align: center">Acquisition dates, radiometric stats</td>
    </tr>
    <tr>
      <td><strong>SENTINEL-2 (SENTINEL2_TS)</strong></td>
      <td>Annual time series with 10 spectral bands, calibrated reflectance.</td>
      <td style="text-align: center">10.24 m (resampled)</td>
      <td style="text-align: center">Dates, radiometric stats, cloud/snow masks</td>
    </tr>
    <tr>
      <td><strong>SENTINEL-1 ASC/DESC (SENTINEL1-XXX_TS)</strong></td>
      <td>Radar time series (VV, VH), SAR backscatter (σ0).</td>
      <td style="text-align: center">10.24 m (resampled)</td>
      <td style="text-align: center">Stats per ascending/descending series</td>
    </tr>
    <tr>
      <td><strong>LABELS CoSIA (AERIAL_LABEL-COSIA)</strong></td>
      <td>Land cover labels from aerial RGBI photo-interpretation.</td>
      <td style="text-align: center">20 cm, 15–19 classes</td>
      <td style="text-align: center">Aligned with BD ORTHO, patch statistics</td>
    </tr>
    <tr>
      <td><strong>LABELS LPIS (ALL_LABEL-LPIS)</strong></td>
      <td>Crop type data from CAP declarations, hierarchical class structure.</td>
      <td style="text-align: center">20 cm</td>
      <td style="text-align: center">Aligned with BD ORTHO, may differ from CoSIA</td>
    </tr>
  </tbody>
</table>
</center>

<p align="center"><img src="datacard_imgs/FLAIR-HUB_Patches_Hori.png" alt="" style="width:100%;max-width:1300px;" /></p>
<hr>

## 🏷️ Supervision 

FLAIR-HUB includes two complementary supervision sources: AERIAL_LABEL-COSIA, a high-resolution land cover annotation derived from expert photo-interpretation 
of RGBI imagery, offering pixel-level precision across 19 classes; and AERIAL_LABEL-LPIS, a crop-type annotation based on farmer-declared parcels 
from the European Common Agricultural Policy, structured into a three-level taxonomy of up to 46 crop classes. While COSIA reflects actual land cover, 
LPIS captures declared land use, and the two differ in purpose, precision, and spatial alignment.

<p align="center"><img src="datacard_imgs/FLAIR-HUB_Labels.png" alt="" style="width:70%;max-width:1300px;" /></p>
<hr>


## 🌍 Spatial partition 

FLAIR-HUB uses an <b>official split for benchmarking, corresponding to the split_1 fold</b>. 

</div>

  <div style="flex: 60%; margin: auto;"">
  <table border="1">
    <tr>
      <th><font color="#c7254e">TRAIN / VALIDATION </font></th>
      <td>D004, D005, D006, D007, D008, D009, D010, D011, D013, D014, D016, D017, D018, D020, D021, D023, D024047, D025039, D029, 
        D030, D031, D032, D033, D034, D035, D037, D038, D040, D041, D044, D045, D046, D049, D051, D052, D054057, D055, D056, D058, D059062, 
        D060, D063, D065, D066, D067, D070, D072, D074, D077, D078, D080, D081, D086, D091</td>
    </tr>
    <tr>
      <th><font color="#c7254e">TEST</font></th>
      <td>D012, D015, D022, D026, D036, D061, D064, D068, D069, D071, D073, D075, D076, D083, D084, D085</td>
    </tr>   
  </table>
  </div>
</div>

<p align="center"><img src="datacard_imgs/FLAIR-HUB_splits_oneline.png" alt="" style="width:80%;max-width:1300px;" /></p>
<hr>

## 🏆 Bechmark scores 


Several model configurations were trained (see the accompanying data paper). 
The best-performing configurations for both land-cover and crop-type classification tasks are summarized below:

<div align="center">
  
Task | Model ID | mIoU | O.A. 
:------------ | :------------- | :-----------| :---------
🗺️ Land-cover | LC-L | 65.8 | 78.2
🌾 Crop-types | LPIS-I | 39.2 | 87.2

</div>

The **Model ID** can be used to retrieve the corresponding pre-trained model from the FLAIR-HUB-MODELS collection.

🗺️ Land-cover 

| Model ID | Aerial VHR | Elevation | SPOT | S2 t.s. | S1 t.s. | Historical | PARA. | EP. | O.A. | mIoU |
|----------|------------|-----------|------|---------|---------|------------|--------|-----|------|------|
| LC-A     | ✓          |           |      |         |         |            | 89.4   | 79  | 77.5 | 64.1 |
| LC-B     | ✓          | ✓         |      |         |         |            | 181.4  | 124 | 78.1 | 65.1 |
| LC-C     | ✓          | ✓         | ✓    |         |         |            | 270.6  | 129 | 78.2 | 65.2 |
| LC-D     | ✓          |           |      | ✓       |         |            | 93.9   | 85  | 77.6 | 64.7 |
| LC-E     | ✓          |           |      |         | ✓       |            | 95.8   | 98  | 77.7 | 64.5 |
| LC-F     | ✓          |           |      | ✓       | ✓       |            | 97.7   | 64  | 77.7 | 64.9 |
| LC-G     |            |           |      | ✓       |         |            | 0.9    | 89  | 57.8 | 34.2 |
| LC-H     |            |           |      |         | ✓       |            | 1.8    | 106 | 54.5 | 28.2 |
| LC-I     |            |           | ✓    |         |         |            | 89.2   | 94  | 64.1 | 43.5 |
| LC-J     |            | ✓         |      |         |         |            | 89.4   | 97  | 67.4 | 51.2 |
| LC-K     | ✓          |           |      |         |         | ✓          | 181.4  | 45  | 77.6 | 64.3 |
| LC-L     | ✓          | ✓         | ✓    | ✓       | ✓       |            | 276.4  | 121 | **78.2** | **65.8** |
| LC-ALL   | ✓          | ✓         | ✓    | ✓       | ✓       | ✓          | 365.8  | 129 | **78.2** | 65.6 |

🌾 Crop-types

| Model ID | Aerial VHR | SPOT | S2 t.s. | S1 t.s. | PARA. | EP. | O.A. | mIoU |
|----------|------------|------|---------|---------|--------|-----|------|------|
| **LV.1 - 23 classes (2 classes removed)** |||||||||  
| LPIS-A   | ✓          |      |         |         | 89.4   | 91  | 86.6 | 24.4 |
| LPIS-B   | ✓          | ✓    |         |         | 181.2  | 99  | 87.1 | 26.1 |
| LPIS-C   | ✓          |      | ✓       |         | 93.9   | 100 | 87.5 | 29.8 |
| LPIS-D   | ✓          |      | ✓       | ✓       | 97.7   | 45  | **88.0** | 36.1 |
| LPIS-E   | ✓          | ✓    | ✓       |         | 183.1  | 46  | 87.6 | 30.3 |
| LPIS-F   |            |      | ✓       |         | 0.9    | 61  | 85.3 | 23.8 |
| LPIS-G   |            |      |         | ✓       | 1.8    | 77  | 84.5 | 18.1 |
| LPIS-H   |            |      | ✓       | ✓       | 2.8    | 61  | 84.9 | 23.8 |
| LPIS-I   |            | ✓    | ✓       | ✓       | 97.5   | 49  | 87.2 | **39.2** |
| LPIS-J   | ✓          | ✓    | ✓       | ✓       | 186.9  | 53  | **88.0** | 35.4 |
| LPIS-K   |            | ✓    |         |         | 89.2   | 14  | 84.5 | 15.1 |

<hr>



## 🔎 Filter dataset with the FLAIR-HUB Dataset Browser

A small desktop GUI to browse and download subsets 
of the **IGNF/FLAIR-HUB** dataset from Hugging Face with filters for: Domain, Year, Modality or Data type.

Requirements: 

- Python **3.9+**
- Tkinter (usually included; on Linux you may need: sudo apt-get install python3-tk)
- Python packages: pip install `huggingface_hub`

Run:
1. Download the file `flair-hub-HF-dl.py` from the *Files* section of this dataset.
2. In a terminal: ```pip install huggingface_hub```
3. Launch: ```python flair-hub-HF-dl.py```


<hr>


## ✨ MAESTRO basecode

This dataset is extensively used by the [MAESTRO model](https://huggingface.co/papers/2508.10894) for masked autoencoding on multimodal Earth observation data. You can find the MAESTRO model's code on its [GitHub repository](https://github.com/ignf/maestro).

A minimal example for using FLAIR-HUB with the MAESTRO framework:
```bash
poetry run python main.py \
        model.model=mae \
        model.model_size=medium \
        run.exp_name=mae-m_flair \
        run.exp_dir=/path/to/experiments/dir \
        datasets.root_dir=/path/to/dataset/dir \
        datasets.flair.rel_dir=FLAIR-HUB \
        datasets.filter_pretrain=[flair] \
        datasets.filter_finetune=[flair]
```
<hr>

## 📚 How to Cite


```
Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier. 
FLAIR-HUB: semantic segmentation and domain adaptation dataset. (2025). 
DOI: https://doi.org/10.48550/arXiv.2506.07080
```

```bibtex
@article{ign2025flairhub,
  doi = {10.48550/arXiv.2506.07080},
  url = {https://arxiv.org/abs/2506.07080},
  author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
  title = {FLAIR-HUB : Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
  publisher = {arXiv},
  year = {2025}
}
```


## ⚙️ Acknowledgement

Experiments have been conducted using HPC/AI resources provided by GENCI-IDRIS (Grant 2024-A0161013803, 2024-AD011014286R2 and 2025-A0181013803).