Dataset Viewer
The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
⚠️ !!! 等待信息,填充链接
Contents
About the Dataset
- This dataset was created using LeRobot
- ~200 hours real world scenarios across 1 main task, 3 sub tasks
- A clothing organization task that involves identifying the type of clothing and determining the next action based on its category
- sub-tasks
- Folding
- Randomly pick a piece of clothing from the basket and place it on the workbench
- If it is a short T-shirt, fold it
- Hanging Preparation
- Randomly pick a piece of clothing from the basket and place it on the workbench
- If it is a dress shirt, locate the collar and drag the clothing to the right side
- Hanging
- Hang the dress shirt properly
- Folding
Dataset Structure
Folder hierarchy
dataset_root/
├── data/
│ ├── chunk-000/
│ │ ├── episode_000000.parquet
│ │ ├── episode_000001.parquet
│ │ └── ...
│ └── ...
├── videos/
│ ├── chunk-000/
│ │ ├── observation.images.hand_left
│ │ │ ├── episode_000000.mp4
│ │ │ ├── episode_000001.mp4
│ │ │ └── ...
│ │ ├── observation.images.hand_right
│ │ │ ├── episode_000000.mp4
│ │ │ ├── episode_000001.mp4
│ │ │ └── ...
│ │ ├── observation.images.top_head
│ │ │ ├── episode_000000.mp4
│ │ │ ├── episode_000001.mp4
│ │ │ └── ...
│ │ └── ...
├── meta/
│ ├── info.json
│ ├── episodes.jsonl
│ ├── tasks.jsonl
│ └── episodes_stats.jsonl
└ README.md
Details
info.json
the basic struct of the info.json
{
"codebase_version": "v2.1",
"robot_type": "agilex",
"total_episodes": ...,
"total_frames": ...,
"total_tasks": ...,
"total_videos": ...,
"total_chunks": ...,
"chunks_size": ...,
"fps": ...,
"splits": {
"train": ...
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"observation.images.top_head": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channel"
],
"info": {
"video.height": 480,
"video.width": 640,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"video.fps": 30,
"video.channels": 3,
"has_audio": false
}
},
"observation.images.hand_left": {
...
},
"observation.images.hand_right": {
...
},
"observation.state": {
"dtype": "float32",
"shape": [
14
],
"names": null
},
"action": {
"dtype": "float32",
"shape": [
14
],
"names": null
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
Parquet file format
| Field Name | shape | Meaning |
|---|---|---|
| observation.state | [N, 14] | left [:, :6], right [:, 7:13], joint angleleft [:, 6], right [:, 13] , gripper open range |
| action | [N, 14] | left [:, :6], right [:, 7:13], joint angleleft [:, 6], right [:, 13] , gripper open range |
| timestamp | [N, 1] | Time elapsed since the start of the episode (in seconds) |
| frame_index | [N, 1] | Index of this frame within the current episode (0-indexed) |
| episode_index | [N, 1] | Index of the episode this frame belongs to |
| index | [N, 1] | Global unique index across all frames in the dataset |
| task_index | [N, 1] | Index identifying the task type being performed |
tasks.jsonl
positive/negitive: Labels indicating the advantage of each frame's action, where "positive" means the action benefits future outcomes and "negative" means otherwise.
Download the Dataset
Python Script
from huggingface_hub import hf_hub_download, snapshot_download
from datasets import load_dataset
# Download a single file
hf_hub_download(
repo_id="OpenDriveLab-org/kai0",
filename="episodes.jsonl",
subfolder="meta",
repo_type="dataset",
local_dir="where/you/want/to/save"
)
# Download a specific folder
snapshot_download(
repo_id="OpenDriveLab-org/kai0",
local_dir="/where/you/want/to/save",
repo_type="dataset",
allow_patterns=["data/*"]
)
# Load the entire dataset
dataset = load_dataset("OpenDriveLab-org/kai0")
Terminal (CLI)
# Download a single file
hf download OpenDriveLab-org/kai0 \
--include "meta/info.json" \
--repo-type dataset \
--local-dir "/where/you/want/to/save"
# Download a specific folder
hf download OpenDriveLab-org/kai0 \
--repo-type dataset \
--include "meta/*" \
--local-dir "/where/you/want/to/save"
# Download the entire dataset
hf download OpenDriveLab-org/kai0 \
--repo-type dataset \
--local-dir "/where/you/want/to/save"
Load the dataset
For LeRobot version < 0.4.0
Choose the appropriate import based on your version:
| Version | Import Path |
|---|---|
<= 0.1.0 |
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset |
> 0.1.0 and < 0.4.0 |
from lerobot.datasets.lerobot_dataset import LeRobotDataset |
# For version <= 0.1.0
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
# For version > 0.1.0 and < 0.4.0
from lerobot.datasets.lerobot_dataset import LeRobotDataset
# Load the dataset
dataset = LeRobotDataset(repo_id='where/the/dataset/you/stored')
For LeRobot version >= 0.4.0
You need to migrate the dataset from v2.1 to v3.0 first. See the official documentation: Migrate the dataset from v2.1 to v3.0
python -m lerobot.datasets.v30.convert_dataset_v21_to_v30 --repo-id=<HF_USER/DATASET_ID>
⚠️ !!! 等待信息填充
License and Citation
All the data and code within this repo are under . Please consider citing our project if it helps your research.
@misc{,
title={},
author={},
howpublished={\url{}},
year={}
}
- Downloads last month
- 1