sequence_id
string | sequence_name
string | sequence_first_terms
list | sequence_next_term
string | is_easy
int64 |
|---|---|---|---|---|
A000203
|
a(n) = sigma(n), the sum of the divisors of n. Also called sigma_1(n).
|
[
"1",
"3",
"4",
"7",
"6",
"12",
"8",
"15",
"13",
"18",
"12",
"28",
"14",
"24",
"24",
"31",
"18",
"39",
"20"
] |
42
| 1
|
A000204
|
Lucas numbers (beginning with 1): L(n) = L(n-1) + L(n-2) with L(1) = 1, L(2) = 3.
|
[
"1",
"3",
"4",
"7",
"11",
"18",
"29",
"47",
"76",
"123",
"199",
"322",
"521",
"843",
"1364",
"2207",
"3571",
"5778",
"9349"
] |
15127
| 1
|
A000205
|
Number of positive integers <= 2^n of form x^2 + 3 y^2.
|
[
"1",
"1",
"3",
"4",
"8",
"14",
"25",
"45",
"82",
"151",
"282",
"531",
"1003",
"1907",
"3645",
"6993",
"13456",
"25978",
"50248"
] |
97446
| 0
|
A000206
|
Even sequences with period 2n.
|
[
"1",
"1",
"3",
"4",
"12",
"22",
"71",
"181",
"618",
"1957",
"6966",
"24367",
"89010",
"324766",
"1204815",
"4482400",
"16802826",
"63195016",
"238711285"
] |
904338163
| 1
|
A000207
|
Number of inequivalent ways of dissecting a regular (n+2)-gon into n triangles by n-1 non-intersecting diagonals under rotations and reflections; also the number of (unlabeled) maximal outerplanar graphs on n+2 vertices.
|
[
"1",
"1",
"1",
"3",
"4",
"12",
"27",
"82",
"228",
"733",
"2282",
"7528",
"24834",
"83898",
"285357",
"983244",
"3412420",
"11944614",
"42080170"
] |
149197152
| 1
|
A000208
|
Number of even sequences with period 2n.
|
[
"1",
"1",
"3",
"4",
"12",
"28",
"94",
"298",
"1044",
"3658",
"13164",
"47710",
"174948",
"645436",
"2397342",
"8948416",
"33556500",
"126324496",
"477225962"
] |
1808414182
| 1
|
A000209
|
Nearest integer to tan n.
|
[
"0",
"2",
"-2",
"0",
"1",
"-3",
"0",
"1",
"-7",
"0",
"1",
"-226",
"-1",
"0",
"7",
"-1",
"0",
"3",
"-1"
] |
0
| 0
|
A000210
|
A Beatty sequence: floor(n*(e-1)).
|
[
"1",
"3",
"5",
"6",
"8",
"10",
"12",
"13",
"15",
"17",
"18",
"20",
"22",
"24",
"25",
"27",
"29",
"30",
"32"
] |
34
| 0
|
A000211
|
a(n) = a(n-1) + a(n-2) - 2, a(0) = 4, a(1) = 3.
|
[
"4",
"3",
"5",
"6",
"9",
"13",
"20",
"31",
"49",
"78",
"125",
"201",
"324",
"523",
"845",
"1366",
"2209",
"3573",
"5780"
] |
9351
| 1
|
A000212
|
a(n) = floor(n^2/3).
|
[
"0",
"0",
"1",
"3",
"5",
"8",
"12",
"16",
"21",
"27",
"33",
"40",
"48",
"56",
"65",
"75",
"85",
"96",
"108"
] |
120
| 1
|
A000213
|
Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) with a(0)=a(1)=a(2)=1.
|
[
"1",
"1",
"1",
"3",
"5",
"9",
"17",
"31",
"57",
"105",
"193",
"355",
"653",
"1201",
"2209",
"4063",
"7473",
"13745",
"25281"
] |
46499
| 1
|
A000214
|
Number of equivalence classes of Boolean functions of n variables under action of AG(n,2).
|
[
"3",
"5",
"10",
"32",
"382",
"15768919",
"16224999167506438730294"
] |
84575066435667906978109556031081616704183639810103015118
| 1
|
A000215
|
Fermat numbers: a(n) = 2^(2^n) + 1.
|
[
"3",
"5",
"17",
"257",
"65537",
"4294967297",
"18446744073709551617",
"340282366920938463463374607431768211457"
] |
115792089237316195423570985008687907853269984665640564039457584007913129639937
| 1
|
A000216
|
Take sum of squares of digits of previous term, starting with 2.
|
[
"2",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16"
] |
37
| 1
|
A000217
|
Triangular numbers: a(n) = binomial(n+1,2) = n*(n+1)/2 = 0 + 1 + 2 + ... + n.
|
[
"0",
"1",
"3",
"6",
"10",
"15",
"21",
"28",
"36",
"45",
"55",
"66",
"78",
"91",
"105",
"120",
"136",
"153",
"171"
] |
190
| 1
|
A000218
|
Take sum of squares of digits of previous term; start with 3.
|
[
"3",
"9",
"81",
"65",
"61",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20"
] |
4
| 1
|
A000219
|
Number of plane partitions (or planar partitions) of n.
|
[
"1",
"1",
"3",
"6",
"13",
"24",
"48",
"86",
"160",
"282",
"500",
"859",
"1479",
"2485",
"4167",
"6879",
"11297",
"18334",
"29601"
] |
47330
| 1
|
A000220
|
Number of asymmetric trees with n nodes (also called identity trees).
|
[
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"3",
"6",
"15",
"29",
"67",
"139",
"310",
"667",
"1480",
"3244",
"7241"
] |
16104
| 0
|
A000221
|
Take sum of squares of digits of previous term; start with 5.
|
[
"5",
"25",
"29",
"85",
"89",
"145",
"42",
"20",
"4",
"16",
"37",
"58",
"89",
"145",
"42",
"20",
"4",
"16",
"37"
] |
58
| 1
|
A000222
|
Coefficients of ménage hit polynomials.
|
[
"0",
"0",
"1",
"3",
"6",
"38",
"213",
"1479",
"11692",
"104364",
"1036809",
"11344859",
"135548466",
"1755739218",
"24504637741",
"366596136399",
"5852040379224",
"99283915922264",
"1783921946910417"
] |
33840669046326579
| 0
|
A000223
|
Let A(n) = #{(i,j,k): i^2 + j^2 + k^2 <= n}, V(n) = (4/3)Pi*n^(3/2), P(n) = A(n) - V(n); A000092 gives values of n where |P(n)| sets a new record; sequence gives (nearest integer to, I believe) P(A000092(n)).
|
[
"3",
"7",
"10",
"19",
"32",
"34",
"37",
"51",
"81",
"119",
"122",
"134",
"157",
"160",
"161",
"174",
"221",
"252",
"254"
] |
294
| 0
|
A000224
|
Number of squares mod n.
|
[
"1",
"2",
"2",
"2",
"3",
"4",
"4",
"3",
"4",
"6",
"6",
"4",
"7",
"8",
"6",
"4",
"9",
"8",
"10"
] |
6
| 1
|
A000225
|
a(n) = 2^n - 1. (Sometimes called Mersenne numbers, although that name is usually reserved for A001348.)
|
[
"0",
"1",
"3",
"7",
"15",
"31",
"63",
"127",
"255",
"511",
"1023",
"2047",
"4095",
"8191",
"16383",
"32767",
"65535",
"131071",
"262143"
] |
524287
| 1
|
A000226
|
Number of n-node unlabeled connected graphs with one cycle of length 3.
|
[
"1",
"1",
"3",
"7",
"18",
"44",
"117",
"299",
"793",
"2095",
"5607",
"15047",
"40708",
"110499",
"301541",
"825784",
"2270211",
"6260800",
"17319689"
] |
48042494
| 0
|
A000227
|
Nearest integer to e^n.
|
[
"1",
"3",
"7",
"20",
"55",
"148",
"403",
"1097",
"2981",
"8103",
"22026",
"59874",
"162755",
"442413",
"1202604",
"3269017",
"8886111",
"24154953",
"65659969"
] |
178482301
| 1
|
A000228
|
Number of hexagonal polyominoes (or hexagonal polyforms, or planar polyhexes) with n cells.
|
[
"1",
"1",
"3",
"7",
"22",
"82",
"333",
"1448",
"6572",
"30490",
"143552",
"683101",
"3274826",
"15796897",
"76581875",
"372868101",
"1822236628",
"8934910362",
"43939164263"
] |
216651036012
| 0
|
A000229
|
a(n) is the least number m such that the n-th prime is the least quadratic nonresidue modulo m.
|
[
"3",
"7",
"23",
"71",
"311",
"479",
"1559",
"5711",
"10559",
"18191",
"31391",
"422231",
"701399",
"366791",
"3818929",
"9257329",
"22000801",
"36415991",
"48473881"
] |
175244281
| 0
|
A000230
|
a(0)=2; for n>=1, a(n) = smallest prime p such that there is a gap of exactly 2n between p and next prime, or -1 if no such prime exists.
|
[
"2",
"3",
"7",
"23",
"89",
"139",
"199",
"113",
"1831",
"523",
"887",
"1129",
"1669",
"2477",
"2971",
"4297",
"5591",
"1327",
"9551"
] |
30593
| 0
|
A000231
|
Number of inequivalent Boolean functions of n variables under action of complementing group.
|
[
"2",
"3",
"7",
"46",
"4336",
"134281216",
"288230380379570176",
"2658455991569831764110243006194384896"
] |
452312848583266388373324160190187140390789016525312000869601987902398529536
| 1
|
A000232
|
Construct a triangle as in A036262. Sequence is one less than the position of the first number larger than 2 in the n-th row (n-th difference).
|
[
"3",
"8",
"14",
"14",
"25",
"24",
"23",
"22",
"25",
"59",
"98",
"97",
"98",
"97",
"174",
"176",
"176",
"176",
"176"
] |
291
| 0
|
A000233
|
Generalized class numbers c_(n,1).
|
[
"1",
"3",
"8",
"16",
"30",
"46",
"64",
"96",
"126",
"158",
"216",
"256",
"302",
"396",
"448",
"512",
"636",
"702",
"792"
] |
960
| 1
|
A000234
|
Partitions into non-integral powers (see Comments for precise definition).
|
[
"1",
"3",
"8",
"18",
"37",
"72",
"136",
"251",
"445",
"770",
"1312",
"2202",
"3632",
"5908",
"9501",
"15111",
"23781",
"37083",
"57293"
] |
87813
| 0
|
A000235
|
Number of n-node rooted trees of height 3.
|
[
"0",
"0",
"0",
"1",
"3",
"8",
"18",
"38",
"76",
"147",
"277",
"509",
"924",
"1648",
"2912",
"5088",
"8823",
"15170",
"25935"
] |
44042
| 0
|
A000236
|
Maximum m such that there are no two adjacent elements belonging to the same n-th power residue class modulo some prime p in the sequence 1,2,...,m (equivalently, there is no n-th power residue modulo p in the sequence 1/2,2/3,...,(m-1)/m).
|
[
"3",
"8",
"20",
"44",
"80",
"343",
"288",
"608",
"1023",
"2848",
"4095",
"40959",
"16383",
"32768",
"11375",
"655360",
"262143",
"3670016",
"1048575"
] |
2097151
| 0
|
A000237
|
Number of mixed Husimi trees with n nodes; or rooted polygonal cacti with bridges.
|
[
"0",
"1",
"1",
"3",
"8",
"26",
"84",
"297",
"1066",
"3976",
"15093",
"58426",
"229189",
"910127",
"3649165",
"14756491",
"60103220",
"246357081",
"1015406251"
] |
4205873378
| 1
|
A000238
|
Number of oriented trees with n nodes.
|
[
"1",
"1",
"3",
"8",
"27",
"91",
"350",
"1376",
"5743",
"24635",
"108968",
"492180",
"2266502",
"10598452",
"50235931",
"240872654",
"1166732814",
"5702001435",
"28088787314"
] |
139354922608
| 0
|
A000239
|
One-half of number of permutations of [n] with exactly one run of adjacent symbols differing by 1.
|
[
"1",
"1",
"3",
"8",
"28",
"143",
"933",
"7150",
"62310",
"607445",
"6545935",
"77232740",
"989893248",
"13692587323",
"203271723033",
"3223180454138",
"54362625941818",
"971708196867905",
"18347779304380995"
] |
364911199401630640
| 0
|
A000240
|
Rencontres numbers: number of permutations of [n] with exactly one fixed point.
|
[
"1",
"0",
"3",
"8",
"45",
"264",
"1855",
"14832",
"133497",
"1334960",
"14684571",
"176214840",
"2290792933",
"32071101048",
"481066515735",
"7697064251744",
"130850092279665",
"2355301661033952",
"44750731559645107"
] |
895014631192902120
| 1
|
A000241
|
Crossing number of complete graph with n nodes.
|
[
"0",
"0",
"0",
"0",
"0",
"1",
"3",
"9",
"18",
"36",
"60",
"100",
"150",
"225"
] |
315
| 0
|
A000242
|
3rd power of rooted tree enumerator; number of linear forests of 3 rooted trees.
|
[
"1",
"3",
"9",
"25",
"69",
"186",
"503",
"1353",
"3651",
"9865",
"26748",
"72729",
"198447",
"543159",
"1491402",
"4107152",
"11342826",
"31408719",
"87189987"
] |
242603970
| 1
|
A000243
|
Number of trees with n nodes, 2 of which are labeled.
|
[
"1",
"3",
"9",
"26",
"75",
"214",
"612",
"1747",
"4995",
"14294",
"40967",
"117560",
"337830",
"972027",
"2800210",
"8075889",
"23315775",
"67380458",
"194901273"
] |
564239262
| 1
|
A000244
|
Powers of 3: a(n) = 3^n.
|
[
"1",
"3",
"9",
"27",
"81",
"243",
"729",
"2187",
"6561",
"19683",
"59049",
"177147",
"531441",
"1594323",
"4782969",
"14348907",
"43046721",
"129140163",
"387420489"
] |
1162261467
| 1
|
A000245
|
a(n) = 3*(2*n)!/((n+2)!*(n-1)!).
|
[
"0",
"1",
"3",
"9",
"28",
"90",
"297",
"1001",
"3432",
"11934",
"41990",
"149226",
"534888",
"1931540",
"7020405",
"25662825",
"94287120",
"347993910",
"1289624490"
] |
4796857230
| 1
|
A000246
|
Number of permutations in the symmetric group S_n that have odd order.
|
[
"1",
"1",
"1",
"3",
"9",
"45",
"225",
"1575",
"11025",
"99225",
"893025",
"9823275",
"108056025",
"1404728325",
"18261468225",
"273922023375",
"4108830350625",
"69850115960625",
"1187451971330625"
] |
22561587455281875
| 1
|
A000247
|
a(n) = 2^n - n - 2.
|
[
"0",
"3",
"10",
"25",
"56",
"119",
"246",
"501",
"1012",
"2035",
"4082",
"8177",
"16368",
"32751",
"65518",
"131053",
"262124",
"524267",
"1048554"
] |
2097129
| 1
|
A000248
|
Expansion of e.g.f. exp(x*exp(x)).
|
[
"1",
"1",
"3",
"10",
"41",
"196",
"1057",
"6322",
"41393",
"293608",
"2237921",
"18210094",
"157329097",
"1436630092",
"13810863809",
"139305550066",
"1469959371233",
"16184586405328",
"185504221191745"
] |
2208841954063318
| 1
|
A000249
|
Nearest integer to modified Bessel function K_n(5).
|
[
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"3",
"10",
"42",
"193",
"966",
"5215",
"30170",
"186234",
"1222065",
"8496274"
] |
62395234
| 0
|
A000250
|
Number of symmetric reflexive relations on n nodes: (1/2)*A000666.
|
[
"1",
"3",
"10",
"45",
"272",
"2548",
"39632",
"1104306",
"56871880",
"5463113568",
"978181717680",
"326167542296048",
"202701136710498400",
"235284321080559981952",
"511531711735594715527360",
"2089424601541011618029114896",
"16084004145036771186002041099712",
"234026948449058790311618594954430848"
] |
6454432593140577452393525511509194184320
| 0
|
A000251
|
Number of trees of diameter 6.
|
[
"1",
"3",
"11",
"29",
"74",
"167",
"367",
"755",
"1515",
"2931",
"5551",
"10263",
"18677",
"33409",
"59024",
"102984",
"177915",
"304458",
"516939"
] |
871180
| 0
|
A000252
|
Number of invertible 2 X 2 matrices mod n.
|
[
"1",
"6",
"48",
"96",
"480",
"288",
"2016",
"1536",
"3888",
"2880",
"13200",
"4608",
"26208",
"12096",
"23040",
"24576",
"78336",
"23328",
"123120"
] |
46080
| 1
|
A000253
|
a(n) = 2*a(n-1) - a(n-2) + a(n-3) + 2^(n-1).
|
[
"0",
"1",
"4",
"11",
"27",
"63",
"142",
"312",
"673",
"1432",
"3015",
"6295",
"13055",
"26926",
"55284",
"113081",
"230572",
"468883",
"951347"
] |
1926527
| 0
|
A000254
|
Unsigned Stirling numbers of first kind, s(n+1,2): a(n+1) = (n+1)*a(n) + n!.
|
[
"0",
"1",
"3",
"11",
"50",
"274",
"1764",
"13068",
"109584",
"1026576",
"10628640",
"120543840",
"1486442880",
"19802759040",
"283465647360",
"4339163001600",
"70734282393600",
"1223405590579200",
"22376988058521600"
] |
431565146817638400
| 1
|
A000255
|
a(n) = n*a(n-1) + (n-1)*a(n-2), a(0) = 1, a(1) = 1.
|
[
"1",
"1",
"3",
"11",
"53",
"309",
"2119",
"16687",
"148329",
"1468457",
"16019531",
"190899411",
"2467007773",
"34361893981",
"513137616783",
"8178130767479",
"138547156531409",
"2486151753313617",
"47106033220679059"
] |
939765362752547227
| 1
|
A000256
|
Number of simple triangulations of the plane with n nodes.
|
[
"1",
"1",
"0",
"1",
"3",
"12",
"52",
"241",
"1173",
"5929",
"30880",
"164796",
"897380",
"4970296",
"27930828",
"158935761",
"914325657",
"5310702819",
"31110146416"
] |
183634501753
| 0
|
A000257
|
Number of rooted bicubic maps: a(n) = (8*n-4)*a(n-1)/(n+2) for n >= 2, a(0) = a(1) = 1.
|
[
"1",
"1",
"3",
"12",
"56",
"288",
"1584",
"9152",
"54912",
"339456",
"2149888",
"13891584",
"91287552",
"608583680",
"4107939840",
"28030648320",
"193100021760",
"1341536993280",
"9390758952960"
] |
66182491668480
| 1
|
A000258
|
Expansion of e.g.f. exp(exp(exp(x)-1)-1).
|
[
"1",
"1",
"3",
"12",
"60",
"358",
"2471",
"19302",
"167894",
"1606137",
"16733779",
"188378402",
"2276423485",
"29367807524",
"402577243425",
"5840190914957",
"89345001017415",
"1436904211547895",
"24227076487779802"
] |
427187837301557598
| 1
|
A000259
|
Number of certain rooted planar maps.
|
[
"1",
"3",
"13",
"63",
"326",
"1761",
"9808",
"55895",
"324301",
"1908878",
"11369744",
"68395917",
"414927215",
"2535523154",
"15592255913",
"96419104103",
"599176447614",
"3739845108057",
"23435007764606"
] |
147374772979438
| 0
|
A000260
|
Number of rooted simplicial 3-polytopes with n+3 nodes; or rooted 3-connected triangulations with 2n+2 faces; or rooted 3-connected trivalent maps with 2n+2 vertices.
|
[
"1",
"1",
"3",
"13",
"68",
"399",
"2530",
"16965",
"118668",
"857956",
"6369883",
"48336171",
"373537388",
"2931682810",
"23317105140",
"187606350645",
"1524813969276",
"12504654858828",
"103367824774012"
] |
860593023907540
| 1
|
A000261
|
a(n) = n*a(n-1) + (n-3)*a(n-2), with a(1) = 0, a(2) = 1.
|
[
"0",
"1",
"3",
"13",
"71",
"465",
"3539",
"30637",
"296967",
"3184129",
"37401155",
"477471021",
"6581134823",
"97388068753",
"1539794649171",
"25902759280525",
"461904032857319",
"8702813980639617",
"172743930157869827"
] |
3602826440828270029
| 0
|
A000262
|
Number of "sets of lists": number of partitions of {1,...,n} into any number of lists, where a list means an ordered subset.
|
[
"1",
"1",
"3",
"13",
"73",
"501",
"4051",
"37633",
"394353",
"4596553",
"58941091",
"824073141",
"12470162233",
"202976401213",
"3535017524403",
"65573803186921",
"1290434218669921",
"26846616451246353",
"588633468315403843"
] |
13564373693588558173
| 1
|
A000263
|
Number of partitions into non-integral powers.
|
[
"3",
"14",
"39",
"91",
"173",
"307",
"502",
"779",
"1150",
"1651",
"2280",
"3090",
"4090",
"5313",
"6787",
"8564",
"10643",
"13103",
"15948"
] |
19235
| 0
|
A000264
|
Number of 3-edge-connected rooted cubic maps with 2n nodes and a distinguished Hamiltonian cycle.
|
[
"1",
"1",
"3",
"14",
"80",
"518",
"3647",
"27274",
"213480",
"1731652",
"14455408",
"123552488",
"1077096124",
"9548805240",
"85884971043",
"782242251522",
"7203683481720",
"66989439309452",
"628399635777936"
] |
5940930064989720
| 0
|
A000265
|
Remove all factors of 2 from n; or largest odd divisor of n; or odd part of n.
|
[
"1",
"1",
"3",
"1",
"5",
"3",
"7",
"1",
"9",
"5",
"11",
"3",
"13",
"7",
"15",
"1",
"17",
"9",
"19"
] |
5
| 1
|
A000266
|
Expansion of e.g.f. exp(-x^2/2) / (1-x).
|
[
"1",
"1",
"1",
"3",
"15",
"75",
"435",
"3045",
"24465",
"220185",
"2200905",
"24209955",
"290529855",
"3776888115",
"52876298475",
"793144477125",
"12690313661025",
"215735332237425",
"3883235945814225"
] |
73781482970470275
| 0
|
A000267
|
Integer part of square root of 4n+1.
|
[
"1",
"2",
"3",
"3",
"4",
"4",
"5",
"5",
"5",
"6",
"6",
"6",
"7",
"7",
"7",
"7",
"8",
"8",
"8"
] |
8
| 1
|
A000268
|
E.g.f.: -log(1+log(1+log(1-x))).
|
[
"1",
"3",
"15",
"105",
"947",
"10472",
"137337",
"2085605",
"36017472",
"697407850",
"14969626900",
"352877606716",
"9064191508018",
"252024567201300",
"7542036496650006",
"241721880399970938",
"8261159383595659128",
"299916384730043070880",
"11526945327529620432872"
] |
467583770376898192016104
| 0
|
A000269
|
Number of trees with n nodes, 3 of which are labeled.
|
[
"3",
"16",
"67",
"251",
"888",
"3023",
"10038",
"32722",
"105228",
"334836",
"1056611",
"3311784",
"10322791",
"32026810",
"98974177",
"304835956",
"936147219",
"2867586542",
"8764280567"
] |
26733395986
| 1
|
A000270
|
For n >= 2, a(n) = b(n+1)+b(n)+b(n-1), where the b(i) are the ménage numbers A000179; a(0)=a(1)=1.
|
[
"1",
"1",
"0",
"3",
"16",
"95",
"672",
"5397",
"48704",
"487917",
"5373920",
"64547175",
"839703696",
"11762247419",
"176509466560",
"2825125339305",
"48040633506048",
"864932233294681",
"16436901752820288"
] |
328791893988472843
| 0
|
A000271
|
Sums of ménage numbers.
|
[
"1",
"0",
"0",
"1",
"3",
"16",
"96",
"675",
"5413",
"48800",
"488592",
"5379333",
"64595975",
"840192288",
"11767626752",
"176574062535",
"2825965531593",
"48052401132800",
"865108807357216"
] |
16439727718351881
| 1
|
A000272
|
Number of trees on n labeled nodes: n^(n-2) with a(0)=1.
|
[
"1",
"1",
"1",
"3",
"16",
"125",
"1296",
"16807",
"262144",
"4782969",
"100000000",
"2357947691",
"61917364224",
"1792160394037",
"56693912375296",
"1946195068359375",
"72057594037927936",
"2862423051509815793",
"121439531096594251776"
] |
5480386857784802185939
| 1
|
A000273
|
Number of unlabeled simple digraphs with n nodes.
|
[
"1",
"1",
"3",
"16",
"218",
"9608",
"1540944",
"882033440",
"1793359192848",
"13027956824399552",
"341260431952972580352",
"32522909385055886111197440",
"11366745430825400574433894004224",
"14669085692712929869037096075316220928"
] |
70315656615234999521385506555979904091217920
| 0
|
A000274
|
Number of permutations of length n with 2 consecutive ascending pairs.
|
[
"0",
"0",
"1",
"3",
"18",
"110",
"795",
"6489",
"59332",
"600732",
"6674805",
"80765135",
"1057289046",
"14890154058",
"224497707343",
"3607998868005",
"61576514013960",
"1112225784377144",
"21197714949305577"
] |
425131949816628507
| 1
|
A000275
|
Coefficients of a Bessel function (reciprocal of J_0(z)); also pairs of permutations with rise/rise forbidden.
|
[
"1",
"1",
"3",
"19",
"211",
"3651",
"90921",
"3081513",
"136407699",
"7642177651",
"528579161353",
"44237263696473",
"4405990782649369",
"515018848029036937",
"69818743428262376523",
"10865441556038181291819",
"1923889742567310611949459",
"384565973956329859109177427"
] |
86180438505835750284241676121
| 0
|
A000276
|
Associated Stirling numbers.
|
[
"3",
"20",
"130",
"924",
"7308",
"64224",
"623376",
"6636960",
"76998240",
"967524480",
"13096736640",
"190060335360",
"2944310342400",
"48503818137600",
"846795372595200",
"15618926924697600",
"303517672703078400",
"6198400928176128000",
"132720966600284160000"
] |
2973385109386137600000
| 0
|
A000277
|
3*n - 2*floor(sqrt(4*n+5)) + 5.
|
[
"1",
"2",
"5",
"6",
"9",
"10",
"13",
"16",
"17",
"20",
"23",
"24",
"27",
"30",
"33",
"34",
"37",
"40",
"43"
] |
44
| 1
|
A000278
|
a(n) = a(n-1) + a(n-2)^2 for n >= 2 with a(0) = 0 and a(1) = 1.
|
[
"0",
"1",
"1",
"2",
"3",
"7",
"16",
"65",
"321",
"4546",
"107587",
"20773703",
"11595736272",
"431558332068481",
"134461531248108526465",
"186242594112190847520182173826",
"18079903385772308300945867582153787570051"
] |
34686303861638264961101080464895364211215702792496667048327
| 0
|
A000279
|
Card matching: coefficients B[n,1] of t in the reduced hit polynomial A[n,n,n](t).
|
[
"3",
"24",
"216",
"1824",
"15150",
"124416",
"1014888",
"8241792",
"66724398",
"538990800",
"4346692680",
"35009591040",
"281699380560",
"2264868936960",
"18198009147600",
"146142982814208",
"1173123636533454",
"9413509300965936",
"75513633110271264"
] |
605598295606296000
| 0
|
A000280
|
a(n) = a(n-1) + a(n-2)^3.
|
[
"0",
"1",
"1",
"2",
"3",
"11",
"38",
"1369",
"56241",
"2565782650",
"177895665388171",
"16891164530321501264425013171"
] |
5629840598310484749297545401724540333537382
| 0
|
A000281
|
Expansion of cos(x)/cos(2x).
|
[
"1",
"3",
"57",
"2763",
"250737",
"36581523",
"7828053417",
"2309644635483",
"898621108880097",
"445777636063460643",
"274613643571568682777",
"205676334188681975553003",
"184053312545818735778213457"
] |
193944394596325636374396208563
| 1
|
A000282
|
Finite automata.
|
[
"3",
"70",
"3783",
"338475",
"40565585",
"6061961733",
"1083852977811",
"225615988054171",
"53595807366038234",
"14308700593468127485",
"4241390625289880226714",
"1382214286200071777573643",
"491197439886557439295166226",
"189044982636675290371386547592",
"78334771617452038208125184627931"
] |
34771576300926271400714044414858372
| 0
|
A000283
|
a(n) = a(n-1)^2 + a(n-2)^2 for n >= 2 with a(0) = 0 and a(1) = 1.
|
[
"0",
"1",
"1",
"2",
"5",
"29",
"866",
"750797",
"563696885165",
"317754178345286893212434"
] |
100967717855888389973004846476977145423449281581
| 1
|
A000284
|
a(n) = a(n-1)^3 + a(n-2) with a(0)=0, a(1)=1.
|
[
"0",
"1",
"1",
"2",
"9",
"731",
"390617900",
"59601394712394173339000731"
] |
211723599072542785377729319366442939995427829921816290889198752331804918235791
| 1
|
A000285
|
a(0) = 1, a(1) = 4, and a(n) = a(n-1) + a(n-2) for n >= 2.
|
[
"1",
"4",
"5",
"9",
"14",
"23",
"37",
"60",
"97",
"157",
"254",
"411",
"665",
"1076",
"1741",
"2817",
"4558",
"7375",
"11933"
] |
19308
| 1
|
A000286
|
Number of positive integers <= 2^n of form 2 x^2 + 5 y^2.
|
[
"0",
"1",
"1",
"4",
"5",
"11",
"20",
"36",
"65",
"119",
"218",
"412",
"770",
"1466",
"2784",
"5322",
"10226",
"19691",
"38048"
] |
73665
| 0
|
A000287
|
Number of rooted polyhedral graphs with n edges.
|
[
"1",
"0",
"4",
"6",
"24",
"66",
"214",
"676",
"2209",
"7296",
"24460",
"82926",
"284068",
"981882",
"3421318",
"12007554",
"42416488",
"150718770",
"538421590"
] |
1932856590
| 0
|
A000288
|
Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) with a(0) = a(1) = a(2) = a(3) = 1.
|
[
"1",
"1",
"1",
"1",
"4",
"7",
"13",
"25",
"49",
"94",
"181",
"349",
"673",
"1297",
"2500",
"4819",
"9289",
"17905",
"34513"
] |
66526
| 1
|
A000289
|
A nonlinear recurrence: a(n) = a(n-1)^2 - 3*a(n-1) + 3 (for n>1).
|
[
"1",
"4",
"7",
"31",
"871",
"756031",
"571580604871",
"326704387862983487112031",
"106735757048926752040856495274871386126283608871"
] |
11392521832807516835658052968328096177131218666695418950023483907701862019030266123104859068031
| 1
|
A000290
|
The squares: a(n) = n^2.
|
[
"0",
"1",
"4",
"9",
"16",
"25",
"36",
"49",
"64",
"81",
"100",
"121",
"144",
"169",
"196",
"225",
"256",
"289",
"324"
] |
361
| 1
|
A000291
|
Number of bipartite partitions of n white objects and 2 black ones.
|
[
"2",
"4",
"9",
"16",
"29",
"47",
"77",
"118",
"181",
"267",
"392",
"560",
"797",
"1111",
"1541",
"2106",
"2863",
"3846",
"5142"
] |
6808
| 0
|
A000292
|
Tetrahedral (or triangular pyramidal) numbers: a(n) = C(n+2,3) = n*(n+1)*(n+2)/6.
|
[
"0",
"1",
"4",
"10",
"20",
"35",
"56",
"84",
"120",
"165",
"220",
"286",
"364",
"455",
"560",
"680",
"816",
"969",
"1140"
] |
1330
| 1
|
A000293
|
a(n) = number of solid (i.e., three-dimensional) partitions of n.
|
[
"1",
"1",
"4",
"10",
"26",
"59",
"140",
"307",
"684",
"1464",
"3122",
"6500",
"13426",
"27248",
"54804",
"108802",
"214071",
"416849",
"805124"
] |
1541637
| 0
|
A000294
|
Expansion of g.f. Product_{k >= 1} (1 - x^k)^(-k*(k+1)/2).
|
[
"1",
"1",
"4",
"10",
"26",
"59",
"141",
"310",
"692",
"1483",
"3162",
"6583",
"13602",
"27613",
"55579",
"110445",
"217554",
"424148",
"820294"
] |
1572647
| 1
|
A000295
|
Eulerian numbers (Euler's triangle: column k=2 of A008292, column k=1 of A173018).
|
[
"0",
"0",
"1",
"4",
"11",
"26",
"57",
"120",
"247",
"502",
"1013",
"2036",
"4083",
"8178",
"16369",
"32752",
"65519",
"131054",
"262125"
] |
524268
| 1
|
A000296
|
Set partitions without singletons: number of partitions of an n-set into blocks of size > 1. Also number of cyclically spaced (or feasible) partitions.
|
[
"1",
"0",
"1",
"1",
"4",
"11",
"41",
"162",
"715",
"3425",
"17722",
"98253",
"580317",
"3633280",
"24011157",
"166888165",
"1216070380",
"9264071767",
"73600798037"
] |
608476008122
| 1
|
A000297
|
a(n) = (n+1)*(n+3)*(n+8)/6.
|
[
"0",
"4",
"12",
"25",
"44",
"70",
"104",
"147",
"200",
"264",
"340",
"429",
"532",
"650",
"784",
"935",
"1104",
"1292",
"1500"
] |
1729
| 1
|
A000298
|
Number of partitions into non-integral powers.
|
[
"1",
"4",
"12",
"30",
"70",
"159",
"339",
"706",
"1436",
"2853",
"5551",
"10622",
"19975",
"37043",
"67811",
"122561",
"219090",
"387578",
"678977"
] |
1178769
| 0
|
A000299
|
Number of n-node rooted trees of height 4.
|
[
"0",
"0",
"0",
"0",
"1",
"4",
"13",
"36",
"93",
"225",
"528",
"1198",
"2666",
"5815",
"12517",
"26587",
"55933",
"116564",
"241151"
] |
495417
| 0
|
A000300
|
4th power of rooted tree enumerator: linear forests of 4 rooted trees.
|
[
"1",
"4",
"14",
"44",
"133",
"388",
"1116",
"3168",
"8938",
"25100",
"70334",
"196824",
"550656",
"1540832",
"4314190",
"12089368",
"33911543",
"95228760",
"267727154"
] |
753579420
| 0
|
A000301
|
a(n) = a(n-1)*a(n-2) with a(0) = 1, a(1) = 2; also a(n) = 2^Fibonacci(n).
|
[
"1",
"2",
"2",
"4",
"8",
"32",
"256",
"8192",
"2097152",
"17179869184",
"36028797018963968",
"618970019642690137449562112",
"22300745198530623141535718272648361505980416"
] |
13803492693581127574869511724554050904902217944340773110325048447598592
| 1
|
A000302
|
Powers of 4: a(n) = 4^n.
|
[
"1",
"4",
"16",
"64",
"256",
"1024",
"4096",
"16384",
"65536",
"262144",
"1048576",
"4194304",
"16777216",
"67108864",
"268435456",
"1073741824",
"4294967296",
"17179869184",
"68719476736"
] |
274877906944
| 1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.