Datasets:
Dataset Viewer
The dataset viewer is not available for this split.
Cannot load the dataset split (in streaming mode) to extract the first rows.
Error code: StreamingRowsError
Exception: CastError
Message: Couldn't cast
sample: string
sample_file: string
pace: string
duration_seconds: double
sample_rate: int64
channels: int64
recorded_at: string
word_count: int64
id: string
audio: string
annotations: struct<pace: string, mic_distance: string, background_noise: string, notes: string>
child 0, pace: string
child 1, mic_distance: string
child 2, background_noise: string
child 3, notes: string
equipment: struct<microphone: string, sample_rate: int64, channels: int64>
child 0, microphone: string
child 1, sample_rate: int64
child 2, channels: int64
to
{'id': Value('string'), 'audio': Audio(sampling_rate=None, decode=True, stream_index=None), 'sample': Value('string'), 'sample_file': Value('string'), 'word_count': Value('int32'), 'duration_seconds': Value('float32'), 'recorded_at': Value('string'), 'annotations': {'pace': Value('string'), 'mic_distance': Value('string'), 'background_noise': Value('string'), 'notes': Value('string')}, 'equipment': {'microphone': Value('string'), 'sample_rate': Value('int32'), 'channels': Value('int32')}}
because column names don't match
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise
return get_rows(
^^^^^^^^^
File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/src/worker/utils.py", line 77, in get_rows
rows_plus_one = list(itertools.islice(ds, rows_max_number + 1))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2431, in __iter__
for key, example in ex_iterable:
^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
for key, pa_table in self._iter_arrow():
^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1984, in _iter_arrow
pa_table = cast_table_to_features(pa_table, self.features)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2192, in cast_table_to_features
raise CastError(
datasets.table.CastError: Couldn't cast
sample: string
sample_file: string
pace: string
duration_seconds: double
sample_rate: int64
channels: int64
recorded_at: string
word_count: int64
id: string
audio: string
annotations: struct<pace: string, mic_distance: string, background_noise: string, notes: string>
child 0, pace: string
child 1, mic_distance: string
child 2, background_noise: string
child 3, notes: string
equipment: struct<microphone: string, sample_rate: int64, channels: int64>
child 0, microphone: string
child 1, sample_rate: int64
child 2, channels: int64
to
{'id': Value('string'), 'audio': Audio(sampling_rate=None, decode=True, stream_index=None), 'sample': Value('string'), 'sample_file': Value('string'), 'word_count': Value('int32'), 'duration_seconds': Value('float32'), 'recorded_at': Value('string'), 'annotations': {'pace': Value('string'), 'mic_distance': Value('string'), 'background_noise': Value('string'), 'notes': Value('string')}, 'equipment': {'microphone': Value('string'), 'sample_rate': Value('int32'), 'channels': Value('int32')}}
because column names don't matchNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
ASR WPM and Background Noise Evaluation Dataset
A dataset of annotated audio recordings for evaluating how different factors affect Whisper (and other ASR/STT systems) transcription accuracy.
Purpose
This dataset provides controlled audio samples with annotations to evaluate ASR performance across:
- Speaking pace (fast, normal, slow, mumbled, whispered, weird voices)
- Background noise (cafe, music, conversations in various languages, traffic, sirens, etc.)
- Microphone distance (close, normal, far)
Dataset Structure
Each sample includes:
- A WAV audio file (16kHz mono)
- Metadata with annotations describing recording conditions
Features
| Feature | Type | Description |
|---|---|---|
id |
string | 4-character hex identifier |
audio |
audio | Path to WAV file |
sample |
string | Text sample identifier |
sample_file |
string | Source text filename |
word_count |
int | Number of words in the sample |
duration_seconds |
float | Recording duration |
recorded_at |
string | Timestamp (YYYYMMDD_HHMMSS) |
annotations.pace |
string | Speaking pace category |
annotations.mic_distance |
string | Microphone distance |
annotations.background_noise |
string | Background noise type |
annotations.notes |
string | Additional notes |
equipment.microphone |
string | Recording device |
equipment.sample_rate |
int | Audio sample rate (16000) |
equipment.channels |
int | Audio channels (1 = mono) |
Annotation Categories
Speaking Pace:
fast- As fast as possiblequick- Quicker than normalnormal- Normal/conversationalslow- Deliberately slowwhispered- Whispered speechloud- Louder than normalweird_voices- Altered/unusual voice patterns
Microphone Distance:
close- Less than 6 inchesnormal- 6-12 inchesfar- Greater than 12 inches
Background Noise:
none- Silencecafe- Coffee shop ambiencemusic- Background music (various genres)convo_same- Same-language conversationconvo_other- Other-language conversation (Spanish, Arabic, Korean, Japanese, Mandarin, Cantonese, Irish English)convo_mixed- Mixed language babbletransit- Airport/transportation soundshonking- Traffic/hornssiren- Emergency vehicle sirensdogs- Dog barkingbaby- Baby sounds
Audio Specifications
- Format: WAV
- Sample Rate: 16kHz
- Channels: Mono
- Equipment: Samson Q2U USB Microphone
Usage
from datasets import load_dataset
dataset = load_dataset("danielrosehill/ASR-WPM-And-Background-Noise-Eval")
# Access audio and metadata
for sample in dataset["train"]:
audio = sample["audio"]
pace = sample["annotations"]["pace"]
noise = sample["annotations"]["background_noise"]
Use Cases
- Benchmarking ASR/STT models under varying conditions
- Evaluating robustness to background noise
- Testing speech recognition at different speaking rates
- Comparing transcription accuracy across challenging audio scenarios
Source
Recording tools and methodology: Whisper-WPM-Eval
License
MIT
- Downloads last month
- 63