Dataset Viewer
Auto-converted to Parquet Duplicate
Composition
stringclasses
415 values
Temperature (degC)
float64
21
1.42k
PO2 (%)
float64
0
2.23k
PH2O (%)
float64
0
10
Grainsize
float64
0.01
357
Ref
stringclasses
118 values
Carrier Type
stringclasses
6 values
Conductivity (S/cm)
float64
0
7.1k
(BaO)0.1(SrO)0.9(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
700.716623
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.004141
(BaO)0.1(SrO)0.9(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
649.022285
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.002763
(BaO)0.1(SrO)0.9(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
599.601722
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.001843
(BaO)0.1(SrO)0.9(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
549.990489
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.001082
(BaO)0.1(SrO)0.9(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
501.097838
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.000572
(BaO)0.1(SrO)0.9(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
449.572371
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.000289
(BaO)0.1(SrO)0.9(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
399.231358
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.000137
(BaO)0.1(SrO)0.9(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
349.434671
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.000062
(BaO)0.1(SrO)0.9(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
300.166029
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.000017
(BaO)0.3(SrO)0.7(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
700.594346
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.006581
(BaO)0.3(SrO)0.7(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
648.897697
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.004677
(BaO)0.3(SrO)0.7(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
599.481205
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.003254
(BaO)0.3(SrO)0.7(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
549.788016
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.003169
(BaO)0.3(SrO)0.7(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
498.576561
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.002201
(BaO)0.3(SrO)0.7(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
450.369131
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.001212
(BaO)0.3(SrO)0.7(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
399.950119
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.000456
(BaO)0.3(SrO)0.7(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
350.848438
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.000131
(BaO)0.3(SrO)0.7(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
300.077443
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.000045
(BaO)0.5(SrO)0.5(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
700.555446
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.007627
(BaO)0.5(SrO)0.5(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
648.862818
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.00542
(BaO)0.5(SrO)0.5(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
599.472279
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.003394
(BaO)0.5(SrO)0.5(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
548.579227
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.001952
(BaO)0.5(SrO)0.5(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
499.835143
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.001122
(BaO)0.5(SrO)0.5(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
449.456068
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.000644
(BaO)0.5(SrO)0.5(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
400.872698
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.000306
(BaO)0.5(SrO)0.5(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
350.855283
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.000123
(BaO)0.5(SrO)0.5(CeO2)0.5(ZrO2)0.35(Y2O3)0.05(Sm2O3)0.025
300.705839
0
1.9
5.8
https://doi.org/10.1016/j.ijhydene.2016.02.073
H
0.000047
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
300
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
H+E
26.842814
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
324.94577
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
H+E
29.338194
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
350.976139
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
H+E
30.722262
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
375.921909
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
H+E
32.291717
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
400.867679
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
H+E
33.120431
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
424.72885
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
H+E
32.004901
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
449.67462
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
H+E
31.444726
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
474.620391
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
30.51418
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
500.650759
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
29.213063
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
524.511931
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
27.912348
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
550.542299
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
27.166787
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
574.403471
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
26.329035
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
600.43384
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
24.842733
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
625.37961
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
24.097373
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
650.32538
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
23.166827
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
676.355748
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
22.791637
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
700.21692
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
22.231662
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
726.247289
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
21.393508
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
750.10846
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
21.296497
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
775.05423
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
20.736322
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
800
20
0
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
19.342814
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
300
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
H+E
23.879851
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
328.199566
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
H+E
25.633888
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
349.89154
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
H+E
26.463204
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
374.83731
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
H+E
27.38451
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
399.78308
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
H+E
28.491002
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
424.72885
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
H+E
28.671567
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
449.67462
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
29.037318
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
474.620391
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
28.291958
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
500.650759
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
27.176026
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
527.765727
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
26.059894
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
547.288503
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
25.593316
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
574.403471
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
24.569776
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
600.43384
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
23.546437
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
625.37961
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
22.893669
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
650.32538
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
21.963124
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
677.440347
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
21.032176
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
700.21692
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
20.935366
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
725.16269
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
20.652969
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
750.10846
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
20.185386
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
776.138829
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
19.162047
(BaO)0.5(SrO)0.5(Sc2O3)0.0875(NbO2)0.025(CoO2)0.8
800
20
3
null
https://doi.org/10.1016/j.apenergy.2019.01.094
E
18.416888
(La2O3)0.26125(SrO)0.4275(Mn2O3)0.25(Cr2O3)0.25(Ti2O3)0.25
950
0
0
null
https://doi.org/10.1016/j.ssi.2013.01.005
E
4
(CeO2)0.1(La2O3)0.325(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
789.536846
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.830062
(CeO2)0.1(La2O3)0.325(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
685.243017
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.398421
(CeO2)0.1(La2O3)0.325(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
599.528209
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.205952
(CeO2)0.1(La2O3)0.325(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
504.604461
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.092
(CeO2)0.1(La2O3)0.325(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
406.032024
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.035475
(CeO2)0.1(La2O3)0.325(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
306.850026
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.008464
(CeO2)0.1(La2O3)0.325(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
810.960396
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.730361
(CeO2)0.1(La2O3)0.325(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
709.23578
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.386807
(CeO2)0.1(La2O3)0.325(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
609.974433
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.206501
(CeO2)0.1(La2O3)0.325(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
509
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.091594
(CeO2)0.1(La2O3)0.325(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
410.438417
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.031523
(CeO2)0.1(La2O3)0.325(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
311.392015
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.00743
(CeO2)0.25(La2O3)0.25(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
917.517616
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
1.060995
(CeO2)0.25(La2O3)0.25(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
810.531275
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.559458
(CeO2)0.25(La2O3)0.25(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
702.931539
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.318665
(CeO2)0.25(La2O3)0.25(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
614.483787
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.137656
(CeO2)0.25(La2O3)0.25(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
512.534907
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.061093
(CeO2)0.25(La2O3)0.25(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
410.097273
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.018491
(CeO2)0.25(La2O3)0.25(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
308.999894
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.004374
(CeO2)0.375(La2O3)0.1875(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
925.861148
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.754663
(CeO2)0.375(La2O3)0.1875(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
810.638523
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.598012
(CeO2)0.375(La2O3)0.1875(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
600.185516
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.195334
(CeO2)0.375(La2O3)0.1875(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
501.312186
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.086531
(CeO2)0.375(La2O3)0.1875(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
410.481084
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.033697
(CeO2)0.375(La2O3)0.1875(SrO)0.25(Cr2O3)0.25(Mn2O3)0.25
302.968014
0
3
0.5
https://doi.org/10.1016/j.ssi.2011.02.004
H+E
0.008615
(La2O3)0.36(YbO)0.08(SrO)0.2(Ga2O3)0.4(MgO)0.2
951.148491
0.001
0
null
https://doi.org/10.1016/0167-2738(95)00054-A
O
0.117205
(La2O3)0.36(YbO)0.08(SrO)0.2(Ga2O3)0.4(MgO)0.2
902.879062
0.001
0
null
https://doi.org/10.1016/0167-2738(95)00054-A
O
0.093405
(La2O3)0.36(YbO)0.08(SrO)0.2(Ga2O3)0.4(MgO)0.2
845.8131
0.001
0
null
https://doi.org/10.1016/0167-2738(95)00054-A
O
0.067337
(La2O3)0.36(YbO)0.08(SrO)0.2(Ga2O3)0.4(MgO)0.2
800.868724
0.001
0
null
https://doi.org/10.1016/0167-2738(95)00054-A
O
0.046233
(La2O3)0.36(YbO)0.08(SrO)0.2(Ga2O3)0.4(MgO)0.2
751.037501
0.001
0
null
https://doi.org/10.1016/0167-2738(95)00054-A
O
0.030937
End of preview. Expand in Data Studio

Accelerated design and discovery of perovskites with high conductivity for energy applications through machine learning

Dataset containing 7230 perovskite conductivity data points

Dataset Information

Fields

Field Role Description Units
Composition input Material composition
Temperature (degC) input Temperature of measurement degC
PO2 (%) input Oxygen partial pressure
PH2O (%) input Water partial pressure
Grainsize input Grain size microns
Ref input Original reference
Carrier Type input Designation of dominant carrier type
Conductivity (S/cm) target Total conductivity S/cm

Splits

  • train: train

Usage

With Foundry-ML (recommended for materials science workflows)

from foundry import Foundry

f = Foundry()
dataset = f.get_dataset("10.18126/f1vb-et73")
X, y = dataset.get_as_dict()['train']

With HuggingFace Datasets

from datasets import load_dataset

dataset = load_dataset("Dataset_perovskite_conductivity")

Citation

@misc{https://doi.org/10.18126/f1vb-et73
doi = {10.18126/f1vb-et73}
url = {https://doi.org/10.18126/f1vb-et73}
author = {Priya, Pikee and Aluru, N. R.}
title = {Accelerated design and discovery of perovskites with high conductivity for energy applications through machine learning}
keywords = {machine learning, foundry}
publisher = {Materials Data Facility}
year = {root=2021}}

License

other


This dataset was exported from Foundry-ML, a platform for materials science datasets.

Downloads last month
7