Dataset Viewer
Auto-converted to Parquet Duplicate
formula
stringlengths
4
12
target
float64
-0.64
4.24
Bi1F1Hf1O2
0.62
F1Li1N1O1Y1
1.48
As1N1O2Sc1
1.2
O3Pb1Ru1
0.78
Au1Ga1O2S1
1.24
Cs1F1Hg1N1O1
1.76
N1O2Os1W1
1.5
Hg1O3Te1
1.06
F1N1O1Sr1V1
0.46
Au1F1K1N1O1
1.76
Be1F1N1Na1O1
1.68
Co1K1O3
0.82
N1O2Pt1Sn1
1.16
Fe1O3Ta1
0.32
N3Sc1W1
0.6
Mo1O3V1
0.66
N1O2V1Zr1
0.62
Au1F1N1O1Si1
1.3
F1Ga1Mo1N1O1
0.58
Bi2N2O1
1.18
F1N1O1Sn1Tl1
0.76
O2S1W1Zn1
0.72
N3Re1Sr1
0.68
Cs1F1N1O1Ti1
0.7
Hf1La1O2S1
0.56
As1O2Pd1S1
0.92
Ge1N3Nb1
0.98
Cr1N1O2Pd1
0.84
F1O2Rb1Sn1
0.36
Mo1N1O2W1
0.64
Co1N2O1Pd1
1.44
N1O2Rb1W1
0
Cs1F1Ir1O2
1.24
Cs1N3W1
1.36
B1Be1F1N1O1
1.54
As1F1N1O1Zr1
0.86
Be1N3Sc1
1.48
Cu1Fe1N1O2
1.1
In1Mo1N3
0.82
Mn1N1O2W1
0.42
F1N1Nb1O1V1
1.06
N1Na1O2Tl1
1.6
Cu1Ge1N1O2
0.96
B1Li1N2O1
2.22
Be1N3Sb1
1.9
O3Te1V1
0.62
Be1Fe1N3
1.32
F1O2Te1Zr1
0.76
Mg1N3Os1
1.44
Ir1O2S1Ta1
0.56
F1N1Na1O1Ru1
1.08
N3Ni2
1.48
N3Nb1Re1
1.02
O3Re1Tl1
0.42
Cr1O2S1Sc1
0.62
Au1Mg1N1O2
1.7
Ca1N2Na1O1
2.8
Be1F1N1O1Si1
1.54
Mn1N1O2Te1
1
Ge1O3Pd1
1.04
Cu1Ni1O2S1
1.06
As1La1N2O1
0.7
Al1N1O2Sb1
0.94
Hf1N2O1Pd1
1
Ge1N2O1Sn1
1.1
F1N1O1Pb1W1
0.54
F1N1O1Rb1Tl1
1.38
O2S1Sn1Ti1
0.48
As1N3Ru1
1.78
Na1O2S1Y1
1.02
F1Ga1N1O1V1
0.56
N1O2Sn1V1
0.44
Li1N3Rh1
2.02
Fe1N2O1Sn1
1.1
N2O1Pt1Y1
1.36
Bi1Hg1N3
2.22
Au1F1O2V1
0.66
Be1F1O2Pt1
1.64
Ca2N3
2.48
N3Rb1Y1
2.16
N1O2Pd1Rh1
1.78
N2O1Ta1Zn1
0.64
Cu1O2Rh1S1
1.1
Ir1N1O2Zn1
1.44
Ag1F1O2Ti1
-0.04
Bi1Ni1O3
0.72
Ga1N3Re1
0.9
F1Mn1O2Ti1
0.44
N2O1Rb1Rh1
2.02
N1O2Rb1Ru1
0.88
F1O2Si2
1.36
F1N1Nb1O1Pd1
0.66
Au1N1Ni1O2
1.7
Mg1N1O2Y1
1.06
F1N1O1Re1Zn1
0.9
Cd1N3Tl1
2.32
Ag1Cu1N1O2
1.88
Ca1F1O2Si1
0.7
N2O1Os1Tl1
1.18
Ag1O3Os1
1.1
End of preview. Expand in Data Studio

Computational screening of perovskite metal oxides for optimal solar light capture

Dataset containing 9646 perovskite formation energy data points

Dataset Information

  • Source: Foundry-ML
  • DOI: 10.18126/xmh8-d711
  • Year: 2011
  • Authors: Castelli, Ivano E., Olsen, Thomas, Datta, Soumendu, Landis, David D., Dahl, Søren, Thygesena, Kristian S., Jacobsen, Karsten W.
  • Data Type: tabular

Fields

Field Role Description Units
formula input Material composition
target target Formation energy eV/atom

Splits

  • train: train

Usage

With Foundry-ML (recommended for materials science workflows)

from foundry import Foundry

f = Foundry()
dataset = f.get_dataset("10.18126/xmh8-d711")
X, y = dataset.get_as_dict()['train']

With HuggingFace Datasets

from datasets import load_dataset

dataset = load_dataset("Dataset_perovskite_formationE")

Citation

@misc{https://doi.org/10.18126/xmh8-d711
doi = {10.18126/xmh8-d711}
url = {https://doi.org/10.18126/xmh8-d711}
author = {Castelli, Ivano E. and Olsen, Thomas and Datta, Soumendu and Landis, David D. and Dahl, Søren and Thygesena, Kristian S. and Jacobsen, Karsten W.}
title = {Computational screening of perovskite metal oxides for optimal solar light capture}
keywords = {machine learning, foundry}
publisher = {Materials Data Facility}
year = {root=2011}}

License

other


This dataset was exported from Foundry-ML, a platform for materials science datasets.

Downloads last month
8