Dataset Viewer
Auto-converted to Parquet Duplicate
Composition
stringlengths
22
24
Initial Temperature (degC)
int64
25
700
Final Temperature (degC)
int64
400
1k
TEC (x10^-6 K^-1)
float64
9.11
29.1
La0.6Sr0.4Fe0.8Cu0.2O3
25
800
14.6
La0.8Sr0.2Mn0.75Co0.25O3
30
1,000
13
La0.8Sr0.2Mn0.5Co0.5O3
30
1,000
15.6
La0.8Sr0.2Mn0.25Co0.75O3
30
1,000
17.5
La0.8Sr0.2Fe0.75Co0.25O3
30
1,000
15.6
La0.8Sr0.2Fe0.5Co0.5O3
30
1,000
18.3
La0.8Sr0.2Fe0.25Co0.75O3
30
1,000
19.1
La0.8Sr0.2Mn0.5Fe0.5O3
30
1,000
10.9
La0.7Sr0.3Fe0.8Ni0.2O3
30
1,000
13.7
Pr0.8Sr0.2Co0.2Fe0.8O3
30
1,000
12.8
Pr0.7Sr0.3Co0.2Mn0.8O3
30
1,000
11.1
Pr0.6Sr0.4Co0.8Fe0.2O3
30
850
19.69
Pr0.4Sr0.6Co0.8Fe0.2O3
30
850
21.33
Ba0.3Sr0.7Co0.8Fe0.2O3
50
1,000
20.44
Ba0.4Sr0.6Co0.8Fe0.2O3
50
1,000
20.12
Ba0.5Sr0.5Co0.8Fe0.2O3
50
1,000
19.95
Ba0.6Sr0.4Co0.8Fe0.2O3
50
1,000
20.18
Ba0.7Sr0.3Co0.8Fe0.2O3
50
1,000
20.27
Sr0.9Ce0.1Fe0.8Ni0.2O3
30
1,000
18.9
Sr0.7Ce0.3Mn0.9Al0.1O3
100
820
10.8
Sr0.7Ce0.3Mn0.8Al0.2O3
100
820
10.8
Sr0.85Ce0.15Fe0.8Co0.2O3
30
1,000
18.5
La0.7Sr0.3Fe0.8Co0.2O3
30
1,000
14.9
La0.6Sr0.4Fe0.8Co0.2O3
30
1,000
17.5
La0.6Sr0.4Fe0.5Co0.5O3
30
1,000
20.3
La0.6Sr0.4Fe0.2Co0.8O3
30
1,000
21.4
La0.8Sr0.2Co0.1Fe0.9O3
30
1,000
13.9
La0.8Sr0.2Co0.5Fe0.5O3
30
1,000
17.6
Pr0.8Sr0.2Fe0.8Co0.2O3
30
1,000
12.8
Pr0.8Sr0.2Mn0.8Co0.2O3
30
1,000
10.9
La0.9Sr0.1Ga0.8Mg0.2O3
30
1,000
11.6
La0.8Sr0.2Ga0.8Mg0.2O3
30
1,000
11.4
La0.8Sr0.2Co0.9Fe0.1O3
100
900
20.1
La0.8Sr0.2Co0.8Fe0.2O3
100
900
20.7
La0.8Sr0.2Co0.7Fe0.3O3
100
900
20.3
La0.8Sr0.2Co0.6Fe0.4O3
100
900
20
La0.8Sr0.2Co0.5Fe0.5O3
100
900
18.7
La0.8Sr0.2Co0.4Fe0.6O3
100
900
17.6
La0.8Sr0.2Co0.3Fe0.7O3
100
900
16.5
La0.8Sr0.2Co0.2Fe0.8O3
100
800
15.4
La0.8Sr0.2Co0.1Fe0.9O3
200
900
14.5
La0.9Sr0.1Co0.2Fe0.8O3
30
900
16
La0.7Sr0.3Co0.2Fe0.8O3
30
700
14.6
La0.6Sr0.4Co0.2Fe0.8O3
30
600
15.3
La0.4Sr0.6Co0.2Fe0.8O3
30
400
16.8
La0.3Sr0.7Co0.9Fe0.1O3
30
1,000
19.2
La0.3Sr0.7Co0.8Fe0.2O3
30
1,000
21
La0.3Sr0.7Co0.7Fe0.3O3
30
1,000
24.7
La0.3Sr0.7Co0.6Fe0.4O3
30
1,000
24.1
La0.3Sr0.7Co0.5Fe0.5O3
30
1,000
23.5
La0.3Sr0.7Co0.4Fe0.6O3
30
1,000
23.9
La0.3Sr0.7Co0.3Fe0.7O3
30
1,000
27.1
La0.3Sr0.7Co0.2Fe0.8O3
30
1,000
27.1
La0.3Sr0.7Co0.1Fe0.9O3
30
1,000
24.8
La0.8Sr0.2Co0.2Fe0.8O3
30
1,000
14.8
La0.7Sr0.3Co0.2Fe0.8O3
30
1,000
16
La0.6Sr0.4Co0.2Fe0.8O3
30
1,000
17.5
La0.4Sr0.6Ti0.4Mn0.6O3
30
800
11.6
La0.8Sr0.2Al0.5Mn0.5O3
30
800
10.9
La0.7Sr0.3Cr0.5Co0.5O3
30
600
19
La0.75Sr0.25Cr0.5Mn0.5O3
30
1,000
12
Bi0.5Sr0.5Fe0.85Ti0.15O3
30
800
13.4
Bi0.5Sr0.5Fe0.95Ti0.05O3
30
800
13.7
Bi0.5Sr0.5Fe0.9Ti0.1O3
30
800
13.5
Bi0.5Sr0.5Fe0.8Ti0.2O3
30
800
13.3
Bi0.5Sr0.5Fe0.9Sn0.1O3
30
800
12.9
Bi0.5Sr0.5Fe0.8Cu0.2O3
30
800
13.1
Bi0.5Sr0.5Fe0.95Nb0.05O3
30
800
13.3
Bi0.5Sr0.5Fe0.9Nb0.1O3
30
800
12.9
Bi0.5Sr0.5Fe0.85Nb0.15O3
30
800
12.6
Bi0.5Sr0.5Fe0.95Ta0.05O3
30
800
11.8
Bi0.5Sr0.5Fe0.9Ta0.1O3
30
800
11.4
La0.9Ca0.1Fe0.9Nb0.1O3
30
900
11.8
Sm0.7Sr0.3Fe0.8Co0.2O3
25
600
13.7
Nd0.7Sr0.3Fe0.8Co0.2O3
25
600
13.4
Ba0.7Sr0.3Fe0.8Co0.2O3
25
600
20.2
La0.7Sr0.3Fe0.8Co0.2O3
25
600
12.5
Pr0.7Sr0.3Fe0.8Co0.2O3
25
600
12.4
Gd0.7Sr0.3Fe0.8Co0.2O3
25
600
15.8
Dy0.7Sr0.3Fe0.8Co0.2O3
25
600
13.3
Er0.7Sr0.3Fe0.8Co0.2O3
25
600
13.3
La0.7Sr0.3Cr0.5Co0.5O3
30
600
19
La0.7Sr0.3Cr0.2Co0.8O3
30
600
19
La0.6Sr0.4Mn0.8Fe0.2O3
30
827
11.3
La0.6Sr0.4Mn0.6Fe0.4O3
30
827
12
La0.6Sr0.4Mn0.5Fe0.5O3
30
827
12.7
La0.6Sr0.4Mn0.8Ni0.2O3
30
827
12.7
La0.6Sr0.4Mn0.6Ni0.4O3
30
827
12.5
La0.5Sr0.5Co0.75Ni0.25O3
27
697
14.2
Sm0.5Sr0.5Cu0.2Fe0.8O3
30
900
15.9
La0.9Sr0.1Cr0.9Ni0.1O3
30
800
9.11
La0.9Sr0.1Cr0.8Ni0.2O3
30
800
10.48
La0.9Sr0.1Cr0.7Ni0.3O3
30
800
10.52
La0.9Sr0.1Cr0.6Ni0.4O3
30
800
11.98
La0.9Sr0.1Cr0.5Ni0.5O3
30
800
12.51
La0.9Sr0.1Cr0.4Ni0.6O3
30
800
12.86
Ba0.5Sr0.5Fe0.9Sb0.1O3
700
1,000
17.2
Ba0.5Sr0.5Fe0.95Sb0.05O3
700
1,000
29.1
Ba0.5Sr0.5Fe0.8Cu0.2O3
30
800
25.8
Ba0.5Sr0.5Fe0.9Nb0.1O3
30
1,000
19.2
End of preview. Expand in Data Studio

Machine-learning prediction of thermal expansion coefficient for perovskite oxides with experimental validation

Dataset containing 137 perovskite thermal expansion coefficients from experiment

Dataset Information

  • Source: Foundry-ML
  • DOI: 10.18126/avvr-p174
  • Year: 2023
  • Authors: McGuinness, Kevin P., Oliynyk, Anton O., Lee, Sangjoon, Molero-Sanchez, Beatriz, Addo, Paul Kwesi
  • Data Type: tabular

Fields

Field Role Description Units
Composition input Material composition with sites
Initial Temperature (degC) input Initial temperature degC
Final Temperature (degC) input Final temperature degC
TEC (x10^-6 K^-1) target Thermal expansion coefficient K^-1

Splits

  • train: train

Usage

With Foundry-ML (recommended for materials science workflows)

from foundry import Foundry

f = Foundry()
dataset = f.get_dataset("10.18126/avvr-p174")
X, y = dataset.get_as_dict()['train']

With HuggingFace Datasets

from datasets import load_dataset

dataset = load_dataset("Dataset_perovskite_tec")

Citation

@misc{https://doi.org/10.18126/avvr-p174
doi = {10.18126/avvr-p174}
url = {https://doi.org/10.18126/avvr-p174}
author = {McGuinness, Kevin P. and Oliynyk, Anton O. and Lee, Sangjoon and Molero-Sanchez, Beatriz and Addo, Paul Kwesi}
title = {Machine-learning prediction of thermal expansion coefficient for perovskite oxides with experimental validation}
keywords = {machine learning, foundry}
publisher = {Materials Data Facility}
year = {root=2023}}

License

other


This dataset was exported from Foundry-ML, a platform for materials science datasets.

Downloads last month
9