Dataset Viewer
Auto-converted to Parquet Duplicate
formula
stringlengths
2
15
target
float64
0.01
205
Ho2In1Ni2
4.07935
La1Se1
4.97254
Mn1Si1Tb1
5.22674
Cs1H1
0.976334
Ag1Al1Se2
1.29014
Pd1Sb1Tb1
2.59722
Ge1Li1Y1
5.55952
Ag1As1S1
0.708433
Hf1Rh1Si1
7.28241
Er1In1Pt1
1.40254
Ir2P1
12.7858
Al2Ni1Y1
6.69616
Pt5Se4
1.33708
Ag1Er1
3.68224
P2Zn3
2.99174
Th3Tl5
0.639532
P1Ru1Zr1
8.34587
As1Li1Zn1
7.48874
Au1Ge1Ho1
2.8085
C1Re1
61.9783
Ca2Pb1
1.09935
Ba1N2Zr1
5.23702
Mo2Zr1
7.40156
Co2Fe1In1
9.17116
As1Hf1
5.63464
Er1Pt2Si2
2.34323
Dy1Hg1
2.39767
B6Ni21U2
1.62178
Li4O4Pb1
2.23797
Au1Er1Ni4
3.83805
Pd1Yb1
3.26732
Sn1Zr3
3.21006
Bi2Ho6Rh1
2.03229
Pt1Sn1Y1
2.83601
Re2Sc1
4.59076
C1Ru3Ta1
18.9528
Al1Pd1
8.60186
Ho1In1Zn1
3.84946
Li1Pb1Pd2
0.571128
Al2Y3
3.19249
F3Y1
4.35946
Ni1Sb2
2.97558
Al4In3Sr11
0.575778
Pb1S1
2.38034
As1Hg1K1
1.04089
Be2Ti1
28.8944
Al1Ge1Sr1
5.647
C1Ni2W4
5.40589
Ni1Si1Th1
3.16182
Hf1Pd5
3.86585
As3Yb4
1.09881
Al16Hf6Pd7
3.28721
Ba1P2Ru2
9.50025
B6Sr1
31.7532
Te1Zn1
2.91044
Er1Rh5
6.21426
Au1C2Cs1
3.33356
Pd2Si1Tb1
1.84059
Cd3N2
0.66735
Au1Ca1In2
1.15196
Cr2Cu1S4
1.89874
O6Os2Rb1
9.5796
Li1Pd2Sn6
0.535446
Ru3Si2Y1
9.33562
Hf1Pt1Si1
6.18341
Ni1Zr1
3.18895
K1Zn13
1.24708
Ga1Pd2Sc1
2.44487
Ge1Y1Zn1
4.34264
Pb13Rh4Sr3
0.325357
Ir3Th7
1.34903
Au1Rb1
0.662629
O6Pt3Zn1
3.12374
Ge2Sc1
6.85761
As1Ga1
7.99971
Au1Dy1Pb1
2.63476
Tc1Ti1
16.6499
Nb4O5
8.71805
H2Sr1
2.19214
As2Cu1Y1
5.05027
Al1F4Na1
5.16721
C2Dy1Ni1
21.1463
N1Os1
15.2873
In1Ni2Zr1
4.31515
Se4Y2Zn1
1.73587
Ce1Rh3
8.04648
N1Re2
19.8108
In1Pt1Y1
1.67478
Sr1Tl2
0.697961
Cu4O3
0.710014
Ba1O7U2
4.72901
Re1Si1Ti1
14.4911
Ti1Zn3
3.75237
Pt1Sn2
1.41834
Cd1Pd1
3.31255
Cd2Sr1
0.715945
As1Pu1
1.42466
Au1Si1Y1
3.51289
Mn1Pd1Te1
1.57073
Ba1Li1Sb1
2.73232
End of preview. Expand in Data Studio

Benchmark AFLOW Data Sets for Machine Learning (Thermal conductivity)

Dataset containing 4887 thermal conductivity values

Dataset Information

Fields

Field Role Description Units
formula input Material composition
target target Thermal conductivity W/m-K

Splits

  • train: train

Usage

With Foundry-ML (recommended for materials science workflows)

from foundry import Foundry

f = Foundry()
dataset = f.get_dataset("10.18126/s4qn-b840")
X, y = dataset.get_as_dict()['train']

With HuggingFace Datasets

from datasets import load_dataset

dataset = load_dataset("Dataset_thermalcond_aflow")

Citation

@misc{https://doi.org/10.18126/s4qn-b840
doi = {10.18126/s4qn-b840}
url = {https://doi.org/10.18126/s4qn-b840}
author = {Clement, Conrad L. and Kauwe, Steven K. and Sparks, Taylor D.}
title = {Benchmark AFLOW Data Sets for Machine Learning (Thermal conductivity)}
keywords = {machine learning, foundry}
publisher = {Materials Data Facility}
year = {root=2020}}

License

other


This dataset was exported from Foundry-ML, a platform for materials science datasets.

Downloads last month
6