Dataset Viewer
Auto-converted to Parquet Duplicate
Material compositions 1
stringclasses
15 values
Material compositions 2
stringclasses
58 values
E_regression_shift
float64
-0.94
1.94
Ag
Ag
0
Ag
Co
-0.090142
Ag
Cr
0.259139
Ag
Cu
-0.0222
Ag
Fe
0.317672
Ag
Mn
0.202186
Ag
Ni
0.250571
Ag
Sc
-0.001431
Ag
Ti
0.164968
Ag
V
0.248163
Ag
Zn
-0.146976
Al
Al
0
Al
Ag
-0.12503
Al
As
-0.14243
Al
Au
-0.22471
Al
Bi
-0.35403
Al
Ca
-0.19265
Al
Cd
-0.10511
Al
Ce
-0.33259
Al
Co
0.7443
Al
Cr
0.9101
Al
Cu
-0.07002
Al
Er
-0.10337
Al
Fe
0.8777
Al
Ga
-0.07761
Al
Ge
-0.11104
Al
Hf
0.79709
Al
Hg
-0.18024
Al
In
-0.16474
Al
Ir
0.9591
Al
La
-0.48849
Al
Mg
-0.01939
Al
Mn
0.6552
Al
Mo
1.7601
Al
Na
-0.06923
Al
Nb
1.4009
Al
Nd
-0.3353
Al
Ni
0.33349
Al
Os
1.54
Al
P
-0.22713
Al
Pb
-0.32056
Al
Pd
0.25651
Al
Pt
0.33779
Al
Re
1.9229
Al
Rh
0.8024
Al
Ru
1.3302
Al
S
-0.15472
Al
Sb
-0.24038
Al
Sc
0.30159
Al
Se
-0.44259
Al
Si
-0.15373
Al
Sn
-0.1955
Al
Ta
1.5159
Al
Tc
1.7083
Al
Te
-0.36132
Al
Ti
0.94129
Al
Tl
-0.27676
Al
V
1.3412
Al
W
1.9362
Al
Y
-0.14998
Al
Zn
-0.08491
Al
Zr
0.65613
Au
Au
0
Au
Ag
0.0348
Au
Cd
-0.0552
Au
Mo
1.0278
Au
Nb
0.978
Au
Pd
0.4194
Au
Rh
0.7576
Au
Ru
0.9326
Au
Tc
1.0052
Au
Y
0.0704
Au
Zr
0.6971
Ca
Ca
0
Ca
Ag
-0.11076
Ca
Cd
-0.03195
Ca
Nb
0.848
Ca
Y
0.29815
Ca
Zr
0.63619
Cu
Cu
0
Cu
Ag
-0.1328
Cu
Al
-0.05359
Cu
Au
-0.10813
Cu
Bi
-0.44205
Cu
Cd
-0.18004
Cu
Co
0.39165
Cu
Cr
0.07129
Cu
Fe
0.39712
Cu
Ga
-0.1059
Cu
Ge
-0.17374
Cu
Hf
-0.15578
Cu
Hg
-0.22938
Cu
In
-0.20489
Cu
Ir
0.59565
Cu
Mg
-0.09191
Cu
Mn
-0.04548
Cu
Mo
0.15031
Cu
Nb
-0.08554
Cu
Ni
0.27892
Cu
Os
0.64888
End of preview. Expand in Data Studio

Error assessment and optimal cross-validation approaches in machine learning applied to impurity diffusion

Dataset containing DFT-calculated dilute alloy impurity diffusion barriers for 408 host-impurity pairs

Dataset Information

  • Source: Foundry-ML
  • DOI: 10.18126/uppe-p8p1
  • Year: 2022
  • Authors: Lu, Haijin, Zou, Nan, Jacobs, Ryan, Afflerbach, Ben, Lu, Xiao-Gang, Morgan, Dane
  • Data Type: tabular

Fields

Field Role Description Units
Material compositions 1 input Host element
Material compositions 2 input Solute element
E_regression_shift target DFT-calculated solute migration barrier, given rel eV

Splits

  • train: train

Usage

With Foundry-ML (recommended for materials science workflows)

from foundry import Foundry

f = Foundry()
dataset = f.get_dataset("10.18126/uppe-p8p1")
X, y = dataset.get_as_dict()['train']

With HuggingFace Datasets

from datasets import load_dataset

dataset = load_dataset("diffusion_v1.4")

Citation

@misc{https://doi.org/10.18126/uppe-p8p1
doi = {10.18126/uppe-p8p1}
url = {https://doi.org/10.18126/uppe-p8p1}
author = {Lu, Haijin and Zou, Nan and Jacobs, Ryan and Afflerbach, Ben and Lu, Xiao-Gang and Morgan, Dane}
title = {Error assessment and optimal cross-validation approaches in machine learning applied to impurity diffusion}
keywords = {machine learning, foundry}
publisher = {Materials Data Facility}
year = {root=2022}}

License

CC-BY 4.0


This dataset was exported from Foundry-ML, a platform for materials science datasets.

Downloads last month
8