Dataset Viewer
Auto-converted to Parquet Duplicate
Impurity
string
Host
string
Effective_charge_regression
float64
Ag
Ag
-8.3
Cd
Ag
-29.1
Cu
Ag
-16.1
Fe
Ag
-58
In
Ag
-40
Sb
Ag
-90
Sn
Ag
-60
Zn
Ag
-27.6
Al
Al
-30
Cu
Al
-6.8
Mg
Al
-52.4
Zn
Al
-33.9
Au
Au
-9
In
Au
-22.2
Sn
Au
-32.6
Cd
Cd
-5.1
Co
Co
1.6
Cr
Cr
3
Ag
Cu
-20.7
Cu
Cu
-5.5
Fe
Cu
-61.3
Zn
Cu
-23.3
Fe
Fe
2
Ga
Ga
-1.3
In
In
-11.5
Li
Li
-2.5
Mg
Mg
2
Na
Na
-3.3
Cr
Nb
-2
Fe
Nb
-2.9
Nb
Nb
2.7
Ni
Ni
-3.5
Ag
Pb
0.7
Au
Pb
-2.05
Cd
Pb
2.5
Cu
Pb
1.07
Ni
Pb
-6.75
Pb
Pb
-16.6
Zn
Pb
0.2
Pd
Pd
1.3
Pt
Pt
0.28
Ag
Sn
-2.15
Au
Sn
-9.5
Ni
Sn
-40
Sn
Sn
-18
Tl
Tl
-4
U
U
-1.6
Zn
Zn
-4.3
Zr
Zr
0.3

Exploring effective charge in electromigration using machine learning

Dataset containing effective charge values for 49 metal host-impurity pairs

Dataset Information

  • Source: Foundry-ML
  • DOI: 10.18126/abxi-r7eb
  • Year: 2022
  • Authors: Liu, Yu-chen, Afflerbach, Ben, Jacobs, Ryan, Lin, Shih-kang, Morgan, Dane
  • Data Type: tabular

Fields

Field Role Description Units
Impurity input Impurity element
Host input Host element
Effective_charge_regression target Alloy effective charge values (target)

Splits

  • train: train

Usage

With Foundry-ML (recommended for materials science workflows)

from foundry import Foundry

f = Foundry()
dataset = f.get_dataset("10.18126/abxi-r7eb")
X, y = dataset.get_as_dict()['train']

With HuggingFace Datasets

from datasets import load_dataset

dataset = load_dataset("electromigration_v1.1")

Citation

@misc{https://doi.org/10.18126/abxi-r7eb
doi = {10.18126/abxi-r7eb}
url = {https://doi.org/10.18126/abxi-r7eb}
author = {Liu, Yu-chen and Afflerbach, Ben and Jacobs, Ryan and Lin, Shih-kang and Morgan, Dane}
title = {Exploring effective charge in electromigration using machine learning}
keywords = {machine learning, foundry}
publisher = {Materials Data Facility}
year = {root=2022}}

License

CC-BY 4.0


This dataset was exported from Foundry-ML, a platform for materials science datasets.

Downloads last month
9