foundry_moses_v1-1 / README.md
blaiszik's picture
Upload README.md with huggingface_hub
a1936d2 verified
metadata
license: cc-by-4.0
task_categories:
  - tabular-regression
  - tabular-classification
tags:
  - materials-science
  - chemistry
  - foundry-ml
  - scientific-data
size_categories:
  - 1K<n<10K

Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Dataset Information

  • Source: Foundry-ML
  • DOI: 10.18126/rp13-3k3h
  • Year: 2022
  • Authors: Polykovskiy, Daniil, Zhebrak, Alexander, Sanchez-Lengeling, Benjamin, Golovanov, Sergey, Tatanov, Oktai, Belyaev, Stanislav, Kurbanov, Rauf, Artamonov, Aleksey, Aladinskiy, Vladimir, Veselov, Mark, Kadurin, Artur, Johansson, Simon, Chen, Hongming, Nikolenko, Sergey, Aspuru-Guzik, Alan, Zhavoronkov, Alex
  • Data Type: tabular

Fields

Field Role Description Units
inchi input International Chemical Identifier (InChI) for the
smiles input Simplified molecular-input line-entry system (SMIL

Splits

  • data: train

Usage

With Foundry-ML (recommended for materials science workflows)

from foundry import Foundry

f = Foundry()
dataset = f.get_dataset("10.18126/rp13-3k3h")
X, y = dataset.get_as_dict()['train']

With HuggingFace Datasets

from datasets import load_dataset

dataset = load_dataset("foundry_moses_v1.1")

Citation

@misc{https://doi.org/10.18126/rp13-3k3h
doi = {10.18126/rp13-3k3h}
url = {https://doi.org/10.18126/rp13-3k3h}
author = {Polykovskiy, Daniil and Zhebrak, Alexander and Sanchez-Lengeling, Benjamin and Golovanov, Sergey and Tatanov, Oktai and Belyaev, Stanislav and Kurbanov, Rauf and Artamonov, Aleksey and Aladinskiy, Vladimir and Veselov, Mark and Kadurin, Artur and Johansson, Simon and Chen, Hongming and Nikolenko, Sergey and Aspuru-Guzik, Alan and Zhavoronkov, Alex}
title = {Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models}
keywords = {machine learning, foundry, molecules, materials, moses}
publisher = {Materials Data Facility}
year = {root=2022}}

License

CC-BY 4.0


This dataset was exported from Foundry-ML, a platform for materials science datasets.