File size: 7,628 Bytes
55576b4
83d6c2b
6145ed9
 
 
 
 
 
 
 
 
 
 
 
55576b4
 
 
 
83d6c2b
55576b4
 
 
 
 
 
 
8d30f66
83d6c2b
 
 
55576b4
 
 
6145ed9
55576b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6145ed9
55576b4
 
934cc81
55576b4
14ae97a
55576b4
14ae97a
 
 
 
 
55576b4
14ae97a
 
 
 
 
 
 
 
6145ed9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14ae97a
 
 
55576b4
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
license: mit
task_categories:
- audio-classification
language:
- en
- zh
tags:
- keyword-spotting
- tts-synthetic
- multilingual
- speech-commands
- tinyml
- edge-ai
---

# SynTTS-Commands: A Multilingual Synthetic Speech Command Dataset

<!-- Badges Row -->

![Python](https://img.shields.io/badge/python-3.8%2B-blue)
![Domain](https://img.shields.io/badge/domain-Speech--TinyML-orange)
![Size](https://img.shields.io/badge/size-35.76%20GB-purple)
![Utterances](https://img.shields.io/badge/utterances-384K-yellow)
![Speakers](https://img.shields.io/badge/speakers-8,100-lightblue)
[![arXiv](https://img.shields.io/badge/arXiv-2511.07821-b31b1b.svg)](https://arxiv.org/abs/2511.07821)
[![Benchmarks](https://img.shields.io/badge/πŸ€—%20Hugging%20Face-Benchmarks-ffd21e)](https://huggingface.co/lugan/SynTTS-Commands-Media-Benchmarks)
[![Code](https://img.shields.io/badge/GitHub-Repository-181717)](https://github.com/lugan113/SynTTS-Commands-Official)
[![License](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)


## πŸ“– Introduction

**SynTTS-Commands** is a large-scale, multilingual synthetic speech command dataset specifically designed for low-power Keyword Spotting (KWS) and speech command recognition tasks. As presented in the paper [SynTTS-Commands: A Public Dataset for On-Device KWS via TTS-Synthesized Multilingual Speech](https://huggingface.co/papers/2511.07821), this dataset is generated using advanced Text-to-Speech (TTS) technologies, aiming to address the scarcity of high-quality training data in the fields of TinyML and Edge AI.

### 🎯 Core Features

- **Multilingual Coverage**: Includes bilingual speech commands in both **Chinese** and **English**.
- **High-Quality Synthesis**: Generated via advanced TTS technology, ensuring high naturalness in speech.
- **Speaker Diversity**: Incorporates multiple acoustic feature sources to ensure a rich variety of speaker styles.
- **Real-World Scenarios**: Commands are designed for practical applications, including smart homes, in-car systems, and multimedia control.
- **Rigorous Quality Assurance**: All speech data has been screened via ASR models combined with manual human verification.

## πŸ“Š Dataset Overview

### Statistics

The **SynTTS-Commands-Media-Dataset** contains a total of **384,621 speech samples**, covering **48 distinct multimedia control commands**. It is divided into four subsets with the following distribution:

| Subset | Speakers | Commands | Samples | Duration (hrs) | Size (GB) |
|------|----------|--------|----------|------------|----------|
| Free-ST-Chinese | 855 | 25 | 21,214 | 6.82 | 2.19 |
| Free-ST-English | 855 | 23 | 19,228 | 4.88 | 1.57 |
| VoxCeleb1&2-Chinese | 7,245 | 25 | 180,331 | 58.03 | 18.6 |
| VoxCeleb1&2-English | 7,245 | 23 | 163,848 | 41.6 | 13.4 |
| **Total** | **8,100** | **48** | **384,621** | **111.33** | **35.76** |

### Dataset Highlights

- **Massive Scale**: Totaling **111.33 hours** and **35.76 GB** of synthetic speech data, making it one of the largest synthetic speech command datasets for academic research.
- **Extensive Speaker Diversity**: Covers **8,100 unique speakers**, spanning various accent groups, age ranges, and recording conditions.
- **Multi-Dimensional Research Support**: The four-subset structure enables research into cross-lingual speaker adaptation, speaker diversity effects, and acoustic robustness in different recording environments.
- **Application-Oriented**: Specifically focused on multimedia playback control scenarios, providing high-quality training data for real-world deployment.

### Directory Structure
```text
SynTTS-Commands-Media-Dataset/
β”œβ”€β”€ Free_ST_Chinese/        # 21,214 Chinese media control samples (855 speakers)
β”œβ”€β”€ Free_ST_English/        # 19,228 English media control samples (855 speakers)
β”œβ”€β”€ VoxCeleb1&2_Chinese/    # 180,331 Chinese media control samples (7,245 speakers)
β”œβ”€β”€ VoxCeleb1&2_English/    # 163,848 English media control samples (7,245 speakers)
β”œβ”€β”€ reviewed_bad/           # Rejected speech samples (failed quality audit)
β”œβ”€β”€ splits_by_language/     # Dataset splits organized by language
β”‚   β”œβ”€β”€ train/              # Training set
β”‚   β”œβ”€β”€ val/                # Validation set
β”‚   └── test/               # Test set
└── comprehensive_metadata.csv # Complete metadata file
```


🎯 Media Command Categories

English Media Control Commands (23 Classes)

Playback Control: "Play", "Pause", "Resume", "Play from start", "Repeat song"
Navigation: "Previous track", "Next track", "Last song", "Skip song", "Jump to first track"
Volume Control: "Volume up", "Volume down", "Mute", "Set volume to 50%", "Max volume"
Communication: "Answer call", "Hang up", "Decline call"
Wake Words: "Hey Siri", "OK Google", "Hey Google", "Alexa", "Hi Bixby"

Chinese Media Control Commands (25 Classes)

Playback Control: "ζ’­ζ”Ύ", "ζš‚εœ", "η»§η»­ζ’­ζ”Ύ", "δ»Žε€΄ζ’­ζ”Ύ", "单曲εΎͺ环"
Navigation: "δΈŠδΈ€ι¦–", "δΈ‹δΈ€ι¦–", "δΈŠδΈ€ζ›²", "δΈ‹δΈ€ζ›²", "θ·³εˆ°η¬¬δΈ€ι¦–", "ζ’­ζ”ΎδΈŠδΈ€εΌ δΈ“θΎ‘"
Volume Control: "ε’žε€§ιŸ³ι‡", "ε‡ε°ιŸ³ι‡", "ι™ιŸ³", "ιŸ³ι‡θ°ƒεˆ°50%", "ιŸ³ι‡ζœ€ε€§"
Communication: "ζŽ₯听甡话", "ζŒ‚ζ–­η”΅θ―", "ζ‹’ζŽ₯ζ₯η”΅"
Wake Words: "小爱同学", "Hello 小智", "小艺小艺", "ε—¨ δΈ‰ζ˜Ÿε°θ΄", "小度小度", "倩猫精灡"

## πŸ“ˆ Benchmark Results and Analysis

We present a comprehensive benchmark of **six representative acoustic models** on the SynTTS-Commands-Media Dataset across both English (EN) and Chinese (ZH) subsets. All models are evaluated in terms of **classification accuracy**, **cross-entropy loss**, and **parameter count**, providing insights into the trade-offs between performance and model complexity in multilingual voice command recognition.

### Performance Summary

| Model | EN Loss | EN Accuracy | EN Params | ZH Loss | ZH Accuracy | ZH Params |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| **MicroCNN** | 0.2304 | 93.22% | 4,189 | 0.5579 | 80.14% | 4,255 |
| **DS-CNN** | 0.0166 | 99.46% | 30,103 | 0.0677 | 97.18% | 30,361 |
| **TC-ResNet** | 0.0347 | 98.87% | 68,431 | 0.0884 | 96.56% | 68,561 |
| **CRNN** | **0.0163** | **99.50%** | 1.08M | 0.0636 | **97.42%** | 1.08M |
| **MobileNet-V1** | 0.0167 | **99.50%** | 2.65M | **0.0552** | 97.92% | 2.65M |
| **EfficientNet** | 0.0182 | 99.41% | 4.72M | 0.0701 | 97.93% | 4.72M |

## πŸ—ΊοΈ Roadmap & Future Expansion

We are expanding SynTTS-Commands beyond multimedia to support broader Edge AI applications. 

πŸ‘‰ **[Click here to view our detailed Future Work Plan & Command List](https://github.com/lugan113/SynTTS-Commands-Official/blob/main/Future_Work_Plan.md)**

Our upcoming domains include:
*   🏠 **Smart Home:** Far-field commands for lighting and appliances.
*   πŸš— **In-Vehicle:** Robust commands optimized for high-noise driving environments.
*   πŸš‘ **Urgent Assistance:** Safety-critical keywords (e.g., "Call 911", "Help me") focusing on high recall.

We invite the community to review our [Command Roadmap](https://github.com/lugan113/SynTTS-Commands-Official/blob/main/Future_Work_Plan.md) and suggest additional keywords!

πŸ“œ Citation

If you use this dataset in your research, please cite our paper:

@misc{gan2025synttscommands,
      title={SynTTS-Commands: A Public Dataset for On-Device KWS via TTS-Synthesized Multilingual Speech}, 
      author={Lu Gan and Xi Li},
      year={2025},
      eprint={2511.07821},
      archivePrefix={arXiv},
      primaryClass={cs.SD},
      url={https://arxiv.org/abs/2511.07821}, 
      doi={10.48550/arXiv.2511.07821}
}