Datasets:

Modalities:
Audio
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 3,641 Bytes
f4d6358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120f1a8
 
9dacf73
120f1a8
 
 
 
 
9dacf73
f4d6358
120f1a8
 
 
 
9dacf73
 
 
 
 
 
 
 
 
120f1a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4d6358
120f1a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
dataset_info:
  features:
  - name: speaker
    dtype: string
  - name: prompt_text
    dtype: string
  - name: chosen_text
    dtype: string
  - name: rejected_text
    dtype: string
  - name: prompt
    dtype: audio
  - name: chosen
    dtype: audio
  - name: rejected
    dtype: audio
  - name: auto_bleu2
    dtype: float64
  splits:
  - name: validation
    num_bytes: 12199479621.038
    num_examples: 20006
  - name: train
    num_bytes: 28797300145.392
    num_examples: 47928
  download_size: 36106016770
  dataset_size: 40996779766.43
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
license: mit
task_categories:
- audio-to-audio
language:
- en
size_categories:
- 10K<n<100K
---

# SpokenSwag
We present here SpokenSwag as described in the paper ["_Slamming_: Training a Speech Language Model on One GPU in a Day"](https://arxiv.org/abs/2502.15814).
This dataset is based on [allenai/swag](https://huggingface.co/datasets/allenai/swag) and synthetised with 4 speakers from [hexgrad/Kokoro-82M](https://huggingface.co/hexgrad/Kokoro-82M).
We show that perfoming DPO over the dataset can really improve performance of Speech Language Models.
We encourage you to also see the following resources, for further information:

**Project Page:** https://pages.cs.huji.ac.il/adiyoss-lab/slamming/ \
**Paper:** https://arxiv.org/abs/2502.15814 \
**Code:** https://github.com/slp-rl/slamkit


If you use our dataset, please cite the paper as follows:
```
@misc{maimon2025slamming,
      title={Slamming: Training a Speech Language Model on One GPU in a Day}, 
      author={Gallil Maimon and Avishai Elmakies and Yossi Adi},
      year={2025},
      eprint={2502.15814},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2502.15814}, 
}
  
```


## Dataset Summary

A dataset used for post-training spoken language models with DPO, which was showed to notably improve semantic abilities. 
Specifically, the dataset is based on text only dataset [allenai/swag](https://huggingface.co/datasets/allenai/swag), and taking the correct 
answer as the chosen contiuation and a random wrong answer as negative one. These were then synthesised using TTS by 
[hexgrad/Kokoro-82M](https://huggingface.co/hexgrad/Kokoro-82M). We use 4 speakers - 2 male and 2 female. We generate both train and 
validation splits from the original dataset.

## Download

#### Using 🤗 Datasets

```python
from datasets import load_dataset
# entire dataset
spoken_swag = load_dataset('slprl/SpokenSwag')
```

We refer you to the _SlamKit_ [codebase](https://github.com/slp-rl/slamkit) to see how you can train a SpeechLM with DPO over the dataset.

## Data Fields

The data has several fields:
- `speaker`: One of the Kokoro voices - https://huggingface.co/hexgrad/Kokoro-82M/blob/main/VOICES.md
- `prompt_text`: The text of the prompt recording.
- `chosen_text`: The text of the chosen recording.
- `rejected_text`: The text of the rejected recording.
- `prompt`:   The prompt audio sample
	- `array`:  array of audio samples
	- `sample_rate`:  audio sampling rate
	- `path`: path to the audio file saved location
- `chosen`:   The chosen audio sample
	- `array`:  array of audio samples
	- `sample_rate`:  audio sampling rate
	- `path`: path to the audio file saved location
- `rejected`:   The rejected audio sample
	- `array`:  array of audio samples
	- `sample_rate`:  audio sampling rate
	- `path`: path to the audio file saved location
- `auto_bleu2`: The Auto-Bleu score with bi-grams, used to detect and filter repetetive samples