File size: 5,984 Bytes
3a303bb
 
 
 
 
 
 
 
5b3fe5c
3a303bb
 
 
 
 
 
 
 
 
 
 
 
 
 
d2479e9
 
 
 
8f6b9e6
 
d2479e9
322df93
4d94265
8f6b9e6
d2479e9
3a303bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d94265
 
 
 
3a303bb
 
 
4d94265
 
 
 
3a303bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
---
viewer: false
tags: [uv-script, computer-vision, object-detection, sam3, image-processing]
license: apache-2.0
---

# SAM3 Object Detection

Detect objects in images using Meta's [sam3](https://huggingface.co/facebook/sam3) (Segment Anything Model 3) with text prompts. Process HuggingFace datasets with zero-shot object detection using natural language descriptions.

## Quick Start

**Requires GPU.** Use HuggingFace Jobs for cloud execution:

```bash
hf jobs uv run --flavor a100-large \
    -s HF_TOKEN=HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
    input-dataset \
    output-dataset \
    --class-name photograph
```

## Example Output

Here's an example of detected objects (photographs in historical newspapers) with bounding boxes and confidence scores:

<div style="max-width: 400px;">
<img src="./example-detection.png" alt="Example Detection" style="width: 100%; height: auto;"/>

_Photograph detected in a historical newspaper with bounding box and confidence score. Generated from [davanstrien/newspapers-image-predictions](https://huggingface.co/datasets/davanstrien/newspapers-image-predictions)._

</div>

## Local Execution

If you have a CUDA GPU locally:

```bash
uv run detect-objects.py INPUT OUTPUT --class-name CLASSNAME
```

## Arguments

**Required:**

- `input_dataset` - Input HF dataset ID
- `output_dataset` - Output HF dataset ID
- `--class-name` - Object class to detect (e.g., `"photograph"`, `"animal"`, `"table"`)

**Common options:**

- `--confidence-threshold FLOAT` - Min confidence (default: 0.5)
- `--batch-size INT` - Batch size (default: 4)
- `--max-samples INT` - Limit samples for testing
- `--image-column STR` - Image column name (default: "image")
- `--private` - Make output private

<details>
<summary>All options</summary>

```
--mask-threshold FLOAT       Mask generation threshold (default: 0.5)
--split STR                  Dataset split (default: "train")
--shuffle                    Shuffle before processing
--model STR                  Model ID (default: "facebook/sam3")
--dtype STR                  Precision: float32|float16|bfloat16
--hf-token STR               HF token (or use HF_TOKEN env var)
```

</details>

## HuggingFace Jobs Examples

### Historical Newspapers

Detect photographs in historical newspaper scans:

```bash
hf jobs uv run --flavor a100-large \
    -s HF_TOKEN=HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
    davanstrien/newspapers-with-images-after-photography \
    my-username/newspapers-detected \
    --class-name photograph \
    --confidence-threshold 0.6 \
    --batch-size 8
```

### Document Tables

Extract tables from document scans:

```bash
hf jobs uv run --flavor a100-large \
    -s HF_TOKEN=HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
    my-documents \
    documents-with-tables \
    --class-name table
```

### Wildlife Camera Traps

Detect animals in camera trap images:

```bash
hf jobs uv run --flavor a100-large \
    -s HF_TOKEN=HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
    wildlife-images \
    wildlife-detections \
    --class-name animal \
    --confidence-threshold 0.5
```

### Quick Testing

Test on a small subset before full run:

```bash
hf jobs uv run --flavor a100-large \
    -s HF_TOKEN=HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
    large-dataset \
    test-output \
    --class-name object \
    --max-samples 20
```

### Using Different GPU Flavors

```bash
# L4 (cost-effective)
--flavor l4x1

# A100 (fastest)
--flavor a100
```

See [HF Jobs pricing](https://huggingface.co/pricing#spaces-compute).

## Output Format

Adds `objects` column with ClassLabel-based detections:

```python
{
    "objects": [
        {
            "bbox": [x, y, width, height],
            "category": 0,  # Always 0 for single class
            "score": 0.87
        }
    ]
}
```

Load and use:

```python
from datasets import load_dataset

ds = load_dataset("username/output", split="train")

# ClassLabel feature preserves your class name
class_name = ds.features["objects"].feature["category"].names[0]
print(f"Detected class: {class_name}")

for sample in ds:
    for obj in sample["objects"]:
        print(f"{class_name}: {obj['score']:.2f} at {obj['bbox']}")
```

## Detecting Multiple Object Types

To detect multiple object types, run the script multiple times with different `--class-name` values:

```bash
# Detect photographs
hf jobs uv run ... --class-name photograph

# Detect illustrations
hf jobs uv run ... --class-name illustration

# Merge results as needed
```

## Performance

| GPU | Batch Size | ~Images/sec |
| --- | ---------- | ----------- |
| L4  | 4-8        | 2-4         |
| A10 | 8-16       | 4-6         |

_Varies by image size and detection complexity_

## Common Use Cases

- **Documents:** `--class-name table` or `--class-name figure`
- **Newspapers:** `--class-name photograph` or `--class-name illustration`
- **Wildlife:** `--class-name animal` or `--class-name bird`
- **Products:** `--class-name product` or `--class-name label`

## Troubleshooting

- **No CUDA:** Use HF Jobs (see examples above)
- **OOM errors:** Reduce `--batch-size`
- **Few detections:** Lower `--confidence-threshold` or try different class descriptions
- **Wrong column:** Use `--image-column your_column_name`

## About SAM3

[SAM3](https://huggingface.co/facebook/sam3) is Meta's zero-shot vision model. Describe any object in natural language and it will detect it—no training required.

**Note:** This script uses transformers from git (SAM3 not yet in stable release).

## See Also

More UV scripts at [huggingface.co/uv-scripts](https://huggingface.co/uv-scripts):

- **dataset-creation** - Create HF datasets from files
- **vllm** - Fast LLM inference
- **ocr** - Document OCR

## License

Apache 2.0