hexsha
stringlengths
40
40
size
int64
6
1.04M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
247
max_stars_repo_name
stringlengths
4
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
368k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
247
max_issues_repo_name
stringlengths
4
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
247
max_forks_repo_name
stringlengths
4
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.04M
avg_line_length
float64
1.53
618k
max_line_length
int64
1
1.02M
alphanum_fraction
float64
0
1
original_content
stringlengths
6
1.04M
filtered:remove_non_ascii
int64
0
538k
filtered:remove_decorators
int64
0
917k
filtered:remove_async
int64
0
722k
filtered:remove_classes
int64
-45
1M
filtered:remove_generators
int64
0
814k
filtered:remove_function_no_docstring
int64
-102
850k
filtered:remove_class_no_docstring
int64
-3
5.46k
filtered:remove_unused_imports
int64
-1,350
52.4k
filtered:remove_delete_markers
int64
0
59.6k
4d9157319b66bba873f45428ff904995f748f650
2,149
py
Python
bib/views.py
acdh-oeaw/thunau-old
a3023885470e80f7312e43561028398bffd713e0
[ "MIT" ]
1
2021-09-20T12:51:47.000Z
2021-09-20T12:51:47.000Z
bib/views.py
acdh-oeaw/cbab
7cd25f057913dccf85f851e448b1dbc2c5f8d624
[ "MIT" ]
9
2020-02-12T00:19:18.000Z
2021-12-13T19:46:51.000Z
bib/views.py
acdh-oeaw/thunau-old
a3023885470e80f7312e43561028398bffd713e0
[ "MIT" ]
null
null
null
from django.shortcuts import render # following line has to match the settings-file you are using def sync_zotero(request): """ renders a simple template with a button to trigger sync_zotero_action function """ return render(request, 'bib/synczotero.html')
33.061538
91
0.590507
import requests from django.shortcuts import render from django.contrib.auth.decorators import login_required from .models import Book # following line has to match the settings-file you are using from django.conf import settings def sync_zotero(request): """ renders a simple template with a button to trigger sync_zotero_action function """ return render(request, 'bib/synczotero.html') @login_required def sync_zotero_action(request): """ fetches the last n items form zoter and syncs it with the bib entries in defc-db""" root = "https://api.zotero.org/users/" params = "{}/collections/{}/items/top?v=3&key={}".format( settings.Z_USER_ID, settings.Z_COLLECTION, settings.Z_API_KEY) url = root + params + "&sort=dateModified&limit=25" books_before = len(Book.objects.all()) try: r = requests.get(url) error = "No errors from ZoteroAPI" except: error = "aa! errors! The API didn´t response with a proper json-file" response = r.json() failed = [] saved = [] for x in response: try: x["data"]["creators"][0] try: x["data"]["creators"][0]["name"] name = x["data"]["creators"][0]["name"] except: firstname = x["data"]["creators"][0]["firstName"] lastname = x["data"]["creators"][0]["lastName"] name = "{}, {}".format(lastname, firstname) except: name = "no name provided" NewBook = Book( zoterokey=x["data"]["key"], item_type=x["data"]["itemType"], author=name, title=x["data"]["title"], short_title=x["data"]["shortTitle"] ) try: NewBook.save() saved.append(x["data"]) except: failed(x['data']) books_after = len(Book.objects.all()) context = {} context["error"] = error context["saved"] = saved context["failed"] = failed context["books_before"] = [books_before] context["books_after"] = [books_after] return render(request, 'bib/synczotero_action.html', context)
2
1,724
0
0
0
0
0
44
112
0f06c5989c3c2521bfde65ac17818d8908b5e3a6
229
py
Python
contextManager/file_handler.py
terasakisatoshi/pythonCodes
baee095ecee96f6b5ec6431267cdc6c40512a542
[ "MIT" ]
null
null
null
contextManager/file_handler.py
terasakisatoshi/pythonCodes
baee095ecee96f6b5ec6431267cdc6c40512a542
[ "MIT" ]
null
null
null
contextManager/file_handler.py
terasakisatoshi/pythonCodes
baee095ecee96f6b5ec6431267cdc6c40512a542
[ "MIT" ]
null
null
null
import os import subprocess file = "some_file.txt" with open(file, 'w') as opened_file: opened_file.write('Hola!') subprocess.run(["cat", file]) if os.path.exists(file): os.remove(file) assert not os.path.exists(file)
17.615385
36
0.703057
import os import subprocess file = "some_file.txt" with open(file, 'w') as opened_file: opened_file.write('Hola!') subprocess.run(["cat", file]) if os.path.exists(file): os.remove(file) assert not os.path.exists(file)
0
0
0
0
0
0
0
0
0
1d088d3c2844363762dc3f4b36fd7e8b3eb3c010
133
py
Python
task/constants.py
suvajitsarkar/taskManagement
0054c20fba8dd8eb3c4c83abdded8fc778a8b62b
[ "Apache-2.0" ]
null
null
null
task/constants.py
suvajitsarkar/taskManagement
0054c20fba8dd8eb3c4c83abdded8fc778a8b62b
[ "Apache-2.0" ]
1
2021-06-10T23:00:14.000Z
2021-06-10T23:00:14.000Z
task/constants.py
suvajitsarkar/taskManagement
0054c20fba8dd8eb3c4c83abdded8fc778a8b62b
[ "Apache-2.0" ]
null
null
null
TASK_STAGES = ( ('n', 'Not Started'), ('i', 'In Progress'), ('r', 'In Review'), ('d', 'Done'), )
19
29
0.353383
TASK_STAGES = ( ('n', 'Not Started'), ('i', 'In Progress'), ('r', 'In Review'), ('d', 'Done'), )
0
0
0
0
0
0
0
0
0
c467b1c943e7b0098db2795f9c7ce4d0d502e039
2,687
py
Python
core/helpers.py
quis/exceptional-review-procedure
adf34fb72b2d3357f4f1da320019f729cc1ae653
[ "MIT" ]
null
null
null
core/helpers.py
quis/exceptional-review-procedure
adf34fb72b2d3357f4f1da320019f729cc1ae653
[ "MIT" ]
null
null
null
core/helpers.py
quis/exceptional-review-procedure
adf34fb72b2d3357f4f1da320019f729cc1ae653
[ "MIT" ]
null
null
null
CACHE_KEY_USER = 'wizard-user-cache-key' # unusual character that is unlikely to be included in each product label PRODUCT_DELIMITER = ''
29.206522
115
0.717529
from urllib.parse import urlencode import uuid from formtools.wizard.storage.base import BaseStorage from formtools.wizard.storage.session import SessionStorage import requests from django.conf import settings from django.contrib.sessions.exceptions import SuspiciousSession from django.core.cache import cache from django.shortcuts import Http404 CACHE_KEY_USER = 'wizard-user-cache-key' # unusual character that is unlikely to be included in each product label PRODUCT_DELIMITER = 'µ' class NoResetStorage(SessionStorage): def reset(self): pass class CacheStorage(BaseStorage): is_shared_key = 'is_shared' def __init__(self, prefix, request=None, file_storage=None): key = get_user_cache_key(request) if not key: key = str(uuid.uuid4()) set_user_cache_key(request=request, key=key) super().__init__(prefix=f'{prefix}_{key}', request=request, file_storage=file_storage) self.data = self.load_data() if not self.data: self.init_data() def init_data(self): super().init_data() self.extra_data[self.is_shared_key] = False def load_data(self): return cache.get(self.prefix) def update_response(self, response): super().update_response(response) cache.set(self.prefix, self.data, timeout=60*60*72) # 72 hours def mark_shared(self): self.extra_data[self.is_shared_key] = True def get_user_cache_key(request): return request.session.get(CACHE_KEY_USER) def set_user_cache_key(request, key): request.session[CACHE_KEY_USER] = key request.session.modified = True def load_saved_submission(request, prefix, key): submission = cache.get(f'wizard_{prefix}_{key}') if not submission: raise Http404 elif not submission[CacheStorage.extra_data_key][CacheStorage.is_shared_key]: raise SuspiciousSession else: set_user_cache_key(request, key) def lookup_commodity_code_by_name(query, page): return requests.get(settings.COMMODITY_NAME_SEARCH_API_ENDPOINT, {'q': query, 'page': page}) def search_hierarchy(node_id): # the API needs country code but it will not affect the hierarchy for our use case, so hard-code it return requests.get(settings.HIERARCHY_BROWSER_LOOKUP_API_ENDPOINT, {'node_id': node_id, 'country_code': 'dj'}) def get_paginator_url(filters, url): querystring = urlencode({ key: value for key, value in filters.lists() if value and key != 'page' }, doseq=True) return f'{url}?{querystring}' def parse_commodities(commodities): return commodities.split(PRODUCT_DELIMITER) if commodities else []
2
0
0
907
0
1,073
0
150
407
ba6f4ebec266f13af50b4b48401bae096b80e262
49,610
py
Python
hsm_software/sw/rpc_handling.py
DiamondKeySecurity/HSM
6b6a0d691a22863411e048c7c211ac63bf9ffaa7
[ "BSD-3-Clause" ]
null
null
null
hsm_software/sw/rpc_handling.py
DiamondKeySecurity/HSM
6b6a0d691a22863411e048c7c211ac63bf9ffaa7
[ "BSD-3-Clause" ]
null
null
null
hsm_software/sw/rpc_handling.py
DiamondKeySecurity/HSM
6b6a0d691a22863411e048c7c211ac63bf9ffaa7
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # Copyright (c) 2018, 2019 Diamond Key Security, NFP # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # - Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # - Neither the name of the NORDUnet nor the names of its contributors may # be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED # TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import struct # import classes from the original cryptech.muxd # cryptech_muxd has been renamed to cryptech/muxd.py def rpc_get_int(msg, location): "Get an int from a location in an RPC message" return struct.unpack(">L", msg[location:location+4])[0] def rpc_set_int(msg, data, location): "Set an int from a location in an RPC message" return msg[:location] + struct.pack(">L", data) + msg[location+4:]
41.724138
141
0.668373
#!/usr/bin/env python # Copyright (c) 2018, 2019 Diamond Key Security, NFP # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # - Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # - Neither the name of the NORDUnet nor the names of its contributors may # be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED # TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import struct import threading from uuid import UUID # import classes from the original cryptech.muxd # cryptech_muxd has been renamed to cryptech/muxd.py from hsm_tools.cryptech.muxd import logger from hsm_tools.hsm import CrypTechDeviceState from settings import HSMSettings from hsm_tools.cryptech.cryptech.libhal import ContextManagedUnpacker, xdrlib from hsm_tools.rpc_action import RPCAction from hsm_tools.cryptech_port import DKS_RPCFunc, DKS_HALKeyType,\ DKS_HALKeyFlag, DKS_HALError from hsm_tools.threadsafevar import ThreadSafeVariable from rpc_builder import KeyMatchDetails, RPCpkey_open, RPCKeygen_result from load_distribution import LoadDistribution def rpc_get_int(msg, location): "Get an int from a location in an RPC message" return struct.unpack(">L", msg[location:location+4])[0] def rpc_set_int(msg, data, location): "Set an int from a location in an RPC message" return msg[:location] + struct.pack(">L", data) + msg[location+4:] class KeyHandleDetails: """Information on the key that a handle points to""" def __init__(self, rpc_index, uuid): self.rpc_index = rpc_index self.uuid = uuid class KeyOperationData: def __init__(self, rpc_index, handle, uuid): self.rpc_index = rpc_index self.handle = handle self.device_uuid = uuid class MuxSession: """Simple class for defining the state of a connection to the load balancer""" def __init__(self, rpc_index, cache, settings, from_ethernet): self.cache = cache # if true, this session was started by a connection from # outside the HSM and is not trusted self.from_ethernet = from_ethernet # should new keys be added to the cache? The synchronizer # manually adds keys self.cache_generated_keys = True # if true, all incoming uuids should be treated as device uuids self.incoming_uuids_are_device_uuids = False # complete unencoded request that we're working on self.current_request = None # the current rpc_index to use for this session self.rpc_index = rpc_index # the index of the rpc that is being used for the # initializing hash op self.cur_hashing_index = 0 # dictionary mapping of hash rpc indexes by the hash handle self.hash_rpcs = {} # dictionary mapping of key rpc indexes by the key handle self.key_rpcs = {} # parameters for the current key operation self.key_op_data = KeyOperationData(None, None, None) # should exportable private keys be used for this session? # Use 's' for PEP8 s = settings.get_setting(HSMSettings.ENABLE_EXPORTABLE_PRIVATE_KEYS) self.enable_exportable_private_keys = s class RPCPreprocessor: """Able to load balance between multiple rpcs""" def __init__(self, rpc_list, cache, settings, netiface): self.cache = cache self.settings = settings self.rpc_list = rpc_list # this is the index of the RPC to use. When set to < 0, # it will auto set self.current_rpc = -1 self.sessions = {} self.sessions_lock = threading.Lock() self.function_table = {} self.create_function_table() self.netiface = netiface self.hsm_locked = True self.debug = False self.tamper_detected = ThreadSafeVariable(False) # used by load balancing heuristic self.load_dist = LoadDistribution(len(rpc_list)) self.large_weight = 2**31 self.pkey_op_weight = 1 self.pkey_gen_weight = 100 # used when selecting any rpc, attempts to evenly # distribute keys across all devices, even when # only one thread is being used self.next_any_device = 0 self.next_any_device_uses = 0 self.choose_any_thread_lock = threading.Lock() def device_count(self): return len(self.rpc_list) def get_current_rpc(self): if(self.current_rpc < 0): return "auto" elif (len(self.rpc_list) > self.current_rpc): return self.rpc_list[self.current_rpc].name else: return "INVALID RPC" def set_current_rpc(self, index): if(isinstance(index, (int, )) is False): return "Invalid index. The index must be a valid RPC index." elif (index > len(self.rpc_list)): return "Index out of range. The index must be a valid RPC index." else: self.current_rpc = index return "RPC is now: " + self.get_current_rpc() def create_session(self, client, from_ethernet): # make sure we have a session for this handle with (self.sessions_lock): if(client not in self.sessions): new_session = MuxSession(self.current_rpc, self.cache, self.settings, from_ethernet) self.sessions[client] = new_session def delete_session(self, client): with (self.sessions_lock): if(client in self.sessions): del self.sessions[client] def make_all_rpc_list(self): rpc_list = [] for rpc in self.rpc_list: rpc_list.append(rpc) return rpc_list def get_session(self, client): with (self.sessions_lock): return self.sessions[client] def update_device_weight(self, cryptech_device, amount): try: self.load_dist.inc(cryptech_device, amount) except: pass def get_cryptech_device_weight(self, cryptech_device): try: return self.load_dist.get(cryptech_device) except: return self.large_weight def choose_rpc_from_master_uuid(self, master_uuid): uuid_dict = self.cache.get_alphas(master_uuid) result = None # initialize to a high weight device_weight = self.large_weight for key, val in uuid_dict.iteritems(): # for now choose the device with the lowest weight new_device_weight = self.get_cryptech_device_weight(key) if (new_device_weight < device_weight): device_weight = new_device_weight result = (key, val) return result def choose_rpc(self): """Simple Heuristic for selecting an alpha RPC channel to use""" DEVICE_USES_BEFORE_NEXT = 2 device_count = len(self.rpc_list) with(self.choose_any_thread_lock): # first try to evenly distribute self.next_any_device_uses += 1 if(self.next_any_device_uses > DEVICE_USES_BEFORE_NEXT): self.next_any_device_uses = 0 self.next_any_device += 1 if(self.next_any_device >= device_count): self.next_any_device = 0 # make sure this has the smallest weight # If only one process is using the HSM, next_rpc # will probably be ok, but if multiple processes # are using the HSM, it's possible that the call # may try to use a device that's busy # initialize to weight of device device_weight = self.get_cryptech_device_weight(self.next_any_device) for device_index in xrange(device_count): # if we find a device with a lower weight, use it if (self.next_any_device != device_index): new_device_weight = self.get_cryptech_device_weight(device_index) if (new_device_weight < device_weight): device_weight = new_device_weight self.next_any_device = device_index # reset uses self.next_any_device_uses = 0 return self.next_any_device def append_futures(self, futures): for rpc in self.rpc_list: futures.append(rpc.serial.rpc_output_loop()) futures.append(rpc.serial.logout_all()) @property def is_mkm_set(self): return self.settings.get_setting(HSMSettings.MASTERKEY_SET) == True def is_rpc_locked(self): return self.hsm_locked or (not self.cache.is_initialized()) or (not self.is_mkm_set) def unlock_hsm(self): self.hsm_locked = False for rpc in self.rpc_list: rpc.unlock_port() def lock_hsm(self): self.hsm_locked = True for rpc in self.rpc_list: rpc.change_state(CrypTechDeviceState.HSMLocked) def on_tamper_event(self, tamper_object): new_tamper_state = tamper_object.get_tamper_state() old_tamper_state = self.tamper_detected.value if(new_tamper_state != old_tamper_state): self.tamper_detected.value = new_tamper_state if(new_tamper_state is True): self.hsm_locked = True for rpc in self.rpc_list: rpc.change_state(CrypTechDeviceState.TAMPER) else: self.hsm_locked = True for rpc in self.rpc_list: rpc.clear_tamper(CrypTechDeviceState.TAMPER_RESET) def process_incoming_rpc(self, decoded_request): # handle the message normally unpacker = ContextManagedUnpacker(decoded_request) # get the code of the RPC request code = unpacker.unpack_uint() # get the handle which identifies the TCP connection that the # request came from client = unpacker.unpack_uint() # get the session so we know where to put the response and # which rpc to use session = self.get_session(client) # save the current request in the session session.current_request = decoded_request # check to see if there's an ongoing tamper event if (self.tamper_detected.value and session.from_ethernet): return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_TAMPER) # process the RPC request action = self.function_table[code](code, client, unpacker, session) # it's possible that the request has been altered so return it action.request = session.current_request return action def create_error_response(self, code, client, hal_error): # generate complete response response = xdrlib.Packer() response.pack_uint(code) response.pack_uint(client) response.pack_uint(hal_error) # TODO log error return RPCAction(response.get_buffer(), None, None) def handle_set_rpc(self, code, client, unpacker, session): """Special DKS RPC to set the RPC to use for all calls""" logger.info("RPC code received %s, handle 0x%x", DKS_RPCFunc.RPC_FUNC_SET_RPC_DEVICE, client) # get the serial to switch to rpc_index = unpacker.unpack_uint() response = xdrlib.Packer() response.pack_uint(code) response.pack_uint(client) if (session.from_ethernet): # the RPC can not be explicitly set from an outside # ethernet connection response.pack_uint(DKS_HALError.HAL_ERROR_FORBIDDEN) elif (rpc_index < len(self.rpc_list)): # set the rpc to use for this session session.rpc_index = rpc_index response.pack_uint(DKS_HALError.HAL_OK) else: response.pack_uint(DKS_HALError.HAL_ERROR_BAD_ARGUMENTS) unencoded_response = response.get_buffer() return RPCAction(unencoded_response, None, None) def handle_enable_cache_keygen(self, code, client, unpacker, session): """Special DKS RPC to enable caching of generated keys""" logger.info("RPC code received %s, handle 0x%x", DKS_RPCFunc.RPC_FUNC_ENABLE_CACHE_KEYGEN.name, client) response = xdrlib.Packer() response.pack_uint(code) response.pack_uint(client) if (session.from_ethernet): # keygen caching can not be explicitly set from # an ethernet connection response.pack_uint(DKS_HALError.HAL_ERROR_FORBIDDEN) else: response.pack_uint(DKS_HALError.HAL_OK) unencoded_response = response.get_buffer() session.cache_generated_keys = True print('caching enabled') return RPCAction(unencoded_response, None, None) def handle_disable_cache_keygen(self, code, client, unpacker, session): """Special DKS RPC to disable caching of generated keys""" logger.info("RPC code received %s, handle 0x%x", DKS_RPCFunc.RPC_FUNC_DISABLE_CACHE_KEYGEN.name, client) response = xdrlib.Packer() response.pack_uint(code) response.pack_uint(client) if (session.from_ethernet): # keygen caching can not be explicitly set from # an ethernet connection response.pack_uint(DKS_HALError.HAL_ERROR_FORBIDDEN) else: response.pack_uint(DKS_HALError.HAL_OK) unencoded_response = response.get_buffer() session.cache_generated_keys = False print('caching disabled') return RPCAction(unencoded_response, None, None) def handle_use_incoming_device_uuids(self, code, client, unpacker, session): """Special DKS RPC to enable using incoming device uuids""" logger.info("RPC code received %s, handle 0x%x", DKS_RPCFunc.RPC_FUNC_USE_INCOMING_DEVICE_UUIDS.name, client) response = xdrlib.Packer() response.pack_uint(code) response.pack_uint(client) if (session.from_ethernet): # using device uuids can not be set fom # an ethernet connection response.pack_uint(DKS_HALError.HAL_ERROR_FORBIDDEN) else: response.pack_uint(DKS_HALError.HAL_OK) unencoded_response = response.get_buffer() session.incoming_uuids_are_device_uuids = True print('accepting incoming device uuids') return RPCAction(unencoded_response, None, None) def handle_use_incoming_master_uuids(self, code, client, unpacker, session): """Special DKS RPC to enable using incoming master uuids""" logger.info("RPC code received %s, handle 0x%x", DKS_RPCFunc.RPC_FUNC_USE_INCOMING_MASTER_UUIDS.name, client) response = xdrlib.Packer() response.pack_uint(code) response.pack_uint(client) if (session.from_ethernet): # using device uuids can not be set fom # an ethernet connection response.pack_uint(DKS_HALError.HAL_ERROR_FORBIDDEN) else: response.pack_uint(DKS_HALError.HAL_OK) unencoded_response = response.get_buffer() session.incoming_uuids_are_device_uuids = False print('accepting incoming master uuids') return RPCAction(unencoded_response, None, None) def get_response_unpacker(self, unencoded_response): msg = "".join(unencoded_response) if not msg: return None msg = ContextManagedUnpacker(msg) # return the unpacker. the first uint is the code followed # by the client return msg def handle_rpc_any(self, code, client, unpacker, session): """Can run on any available alpha because this is not alpha specific""" rpc_index = session.rpc_index if(session.rpc_index >= 0) else self.choose_rpc() logger.info("any rpc sent to %i", rpc_index) return RPCAction(None, [self.rpc_list[rpc_index]], None) def handle_rpc_all(self, code, client, unpacker, session): """Must run on all alphas to either to keep PINs synchronized or because we don't know which alpha we'll need later""" # if the rpc_index has been set for the session, always use it if(session.rpc_index >= 0): return RPCAction(None, [self.rpc_list[session.rpc_index]], None) rpc_list = self.make_all_rpc_list() return RPCAction(None, rpc_list, self.callback_rpc_all) def callback_rpc_all(self, reply_list): code = None for reply in reply_list: unpacker = self.get_response_unpacker(reply) new_code = unpacker.unpack_int() # get the client client = unpacker.unpack_uint() if(code is not None and new_code != code): # error, the codes don't match return self.create_error_response(new_code, client, DKS_HALError.HAL_ERROR_RPC_TRANSPORT) code = new_code status = unpacker.unpack_uint() if(status != 0): # one of the alpha's returned an error so return that error # TODO log error return self.create_error_response(code, client, status) #all of the replies are the same so just return the first one return RPCAction(reply_list[0], None, None) def handle_rpc_starthash(self, code, client, unpacker, session): """This is the begining of a hash operation. Any RPC can be used.""" # select an RPC to use for this hashing operation session.cur_hashing_index = session.rpc_index if(session.rpc_index >= 0) else self.choose_rpc() logger.info("hashing on RPC: %i", session.cur_hashing_index) return RPCAction(None, [self.rpc_list[session.cur_hashing_index]], self.callback_rpc_starthash) def callback_rpc_starthash(self, reply_list): unpacker = self.get_response_unpacker(reply_list[0]) code = unpacker.unpack_uint() client = unpacker.unpack_uint() # hashing only happens on one alpha if(len(reply_list) != 1): logger.info("callback_rpc_starthash: len(reply_list) != 1") return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_RPC_TRANSPORT) result = unpacker.unpack_uint() if(code != DKS_RPCFunc.RPC_FUNC_HASH_INITIALIZE): logger.info("callback_rpc_starthash: code != RPCFunc.RPC_FUNC_HASH_INITIALIZE") return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_RPC_TRANSPORT) # get the session session = self.get_session(client) if(result != DKS_HALError.HAL_OK): logger.info("callback_rpc_starthash: result != 0") return self.create_error_response(code, client, result) handle = unpacker.unpack_uint() # save the RPC to use for this handle session.hash_rpcs[handle] = session.cur_hashing_index return RPCAction(reply_list[0], None, None) def handle_rpc_hash(self, code, client, unpacker, session): """Once a hash has started, we have to continue with it the same RPC""" # get the handle of the hash operation handle = unpacker.unpack_uint() # this handle must be a key if(handle not in session.hash_rpcs): logger.info("handle_rpc_hash: handle not in session.hash_rpcs") return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_BAD_ARGUMENTS) return RPCAction(None, [self.rpc_list[session.hash_rpcs[handle]]], None) def handle_rpc_endhash(self, code, client, unpacker, session): """we've finished a hash operation""" # get the handle of the hash operation handle = unpacker.unpack_uint() # this handle must be a key if(handle not in session.hash_rpcs): logger.info("handle_rpc_hash: handle not in session.hash_rpcs") return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_BAD_ARGUMENTS) rpc_index = session.hash_rpcs[handle] # the handle no longer needs to be in the dictionary del session.hash_rpcs.pop[handle] return RPCAction(None, [self.rpc_list[rpc_index]], None) def handle_rpc_usecurrent(self, code, client, unpacker, session): """The manually selected RPC must be used""" rpc_index = session.rpc_index if(rpc_index < 0): rpc_index = session.key_op_data.rpc_index return RPCAction(None, [self.rpc_list[rpc_index]], None) def handle_rpc_pkeyexport(self, code, client, unpacker, session): # make sure pkey export has been enabled. Always allow from internal non-ethernet sources if (session.from_ethernet is False and self.settings.get_setting(HSMSettings.ENABLE_KEY_EXPORT) is False): return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_FORBIDDEN) """The manually selected RPC must be used""" rpc_index = session.rpc_index if(rpc_index < 0): rpc_index = session.key_op_data.rpc_index return RPCAction(None, [self.rpc_list[rpc_index]], None) def handle_rpc_pkeyopen(self, code, client, unpacker, session): # pkcs11 session session_param = unpacker.unpack_uint() # uuid incoming_uuid = UUID(bytes = unpacker.unpack_bytes()) # get the session to use session = self.get_session(client) # what type of uuid are we getting? if(session.incoming_uuids_are_device_uuids): if(session.rpc_index < 0): logger.info("handle_rpc_pkeyopen: using device uuid, but device not set") return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_IMPOSSIBLE) device_uuid = incoming_uuid session.key_op_data.rpc_index = session.rpc_index else: # find the device uuid from the master uuid master_uuid = incoming_uuid if(session.rpc_index >= 0): # just use the set rpc_index session.key_op_data.rpc_index = session.rpc_index # see if this uuid is on the alpha we are requesting device_list = self.cache.get_alphas(master_uuid) if(session.rpc_index not in device_list): logger.info("handle_rpc_pkeyopen: session.rpc_index not in device_list") return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_KEY_NOT_FOUND) device_uuid = device_list[session.rpc_index] else: rpc_uuid_pair = self.choose_rpc_from_master_uuid(master_uuid) if(rpc_uuid_pair is None): logger.info("handle_rpc_pkeyopen: rpc_uuid_pair is None") return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_KEY_NOT_FOUND) session.key_op_data.rpc_index = rpc_uuid_pair[0] device_uuid = rpc_uuid_pair[1] # recreate with the actual uuid session.current_request = RPCpkey_open.create(code, client, session_param, device_uuid) # save data about the key we are opening session.key_op_data.device_uuid = device_uuid """uuid is used to select the RPC with the key and the handle is returned""" return RPCAction(None, [self.rpc_list[session.key_op_data.rpc_index]], self.callback_rpc_pkeyopen) def callback_rpc_pkeyopen(self, reply_list): unpacker = self.get_response_unpacker(reply_list[0]) code = unpacker.unpack_uint() client = unpacker.unpack_uint() # hashing only happens on one alpha if(len(reply_list) != 1): logger.info("callback_rpc_pkeyopen: len(reply_list) != 1") return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_RPC_TRANSPORT) result = unpacker.unpack_uint() if(code != DKS_RPCFunc.RPC_FUNC_PKEY_OPEN): logger.info("callback_rpc_pkeyopen: code != RPCFunc.RPC_FUNC_PKEY_OPEN") return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_RPC_TRANSPORT) # get the session session = self.get_session(client) if(result != 0): logger.info("callback_rpc_pkeyopen: result != 0") return self.create_error_response(code, client, result) session.key_op_data.handle = unpacker.unpack_uint() # save the RPC to use for this handle session.key_rpcs[session.key_op_data.handle] = KeyHandleDetails(session.key_op_data.rpc_index, session.key_op_data.device_uuid) # inform the load balancer that we have an open pkey self.update_device_weight(session.key_op_data.rpc_index, self.pkey_op_weight) return RPCAction(reply_list[0], None, None) def handle_rpc_pkey(self, code, client, unpacker, session): """use handle to select RPC""" # get the handle of the hash operation handle = unpacker.unpack_uint() # this handle must be a key if(handle not in session.key_rpcs): logger.info("handle_rpc_pkey: handle not in session.key_rpcs") return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_BAD_ARGUMENTS) rpc_index = session.key_rpcs[handle].rpc_index device_uuid = session.key_rpcs[handle].uuid # logger.info("Using pkey handle:%i RPC:%i", handle, rpc_index) session.key_op_data = KeyOperationData(rpc_index, handle, device_uuid) if (code == DKS_RPCFunc.RPC_FUNC_PKEY_DELETE or code == DKS_RPCFunc.RPC_FUNC_PKEY_CLOSE): return RPCAction(None, [self.rpc_list[rpc_index]], self.callback_rpc_close_deletekey) else: return RPCAction(None, [self.rpc_list[rpc_index]], None) def handle_rpc_pkeyload(self, code, client, unpacker, session): """use manually selected RPC and get returned uuid and handle""" # if the session rpc_index has not be set, this must getting the public key # rpc_index = session.rpc_index # if(rpc_index < 0): # rpc_index = self.choose_rpc() #session.key_op_data.rpc_index # select an RPC to use for this hashing operation session.key_op_data.rpc_index = session.rpc_index if(session.rpc_index >= 0) else self.choose_rpc() logger.info("session.rpc_index == %i session.key_op_data.rpc_index == %i", session.rpc_index, session.key_op_data.rpc_index) # consume pkcs11 session id unpacker.unpack_uint() # consume der unpacker.unpack_bytes() # get flags session.flags = unpacker.unpack_uint() if hasattr(session, 'pkey_type'): # treat as the public version of the last privte key generated as this is the standard usage if(session.pkey_type == DKS_HALKeyType.HAL_KEY_TYPE_RSA_PRIVATE and session.flags & DKS_HALKeyFlag.HAL_KEY_FLAG_PUBLIC): session.pkey_type = DKS_HALKeyType.HAL_KEY_TYPE_RSA_PUBLIC elif(session.pkey_type == DKS_HALKeyType.HAL_KEY_TYPE_EC_PRIVATE and session.flags & DKS_HALKeyFlag.HAL_KEY_FLAG_PUBLIC): session.pkey_type = DKS_HALKeyType.HAL_KEY_TYPE_EC_PUBLIC elif(session.pkey_type == DKS_HALKeyType.HAL_KEY_TYPE_HASHSIG_PRIVATE and session.flags & DKS_HALKeyFlag.HAL_KEY_FLAG_PUBLIC): session.pkey_type = DKS_HALKeyType.HAL_KEY_TYPE_HASHSIG_PUBLIC else: session.pkey_type = DKS_HALKeyType.HAL_KEY_TYPE_NONE session.curve = 0 # inform the load balancer that we are doing an expensive key operation self.update_device_weight(session.key_op_data.rpc_index, self.pkey_gen_weight) return RPCAction(None, [self.rpc_list[session.key_op_data.rpc_index]], self.callback_rpc_keygen) def handle_rpc_pkeyimport(self, code, client, unpacker, session): """use manually selected RPC and get returned uuid and handle""" # if the session rpc_index has not be set, this must getting the public key # rpc_index = session.rpc_index # if(rpc_index < 0): # rpc_index = self.choose_rpc() #session.key_op_data.rpc_index # select an RPC to use for this hashing operation session.key_op_data.rpc_index = session.rpc_index if(session.rpc_index >= 0) else self.choose_rpc() logger.info("session.rpc_index == %i session.key_op_data.rpc_index == %i", session.rpc_index, session.key_op_data.rpc_index) # consume pkcs11 session id unpacker.unpack_uint() # consume kekek unpacker.unpack_uint() # consume pkcs8 unpacker.unpack_bytes() # consume kek unpacker.unpack_bytes() # get flags session.flags = unpacker.unpack_uint() if hasattr(session, 'pkey_type'): # treat as the public version of the last privte key generated as this is the standard usage if(session.pkey_type == DKS_HALKeyType.HAL_KEY_TYPE_RSA_PRIVATE and session.flags & DKS_HALKeyFlag.HAL_KEY_FLAG_PUBLIC): session.pkey_type = DKS_HALKeyType.HAL_KEY_TYPE_RSA_PUBLIC elif(session.pkey_type == DKS_HALKeyType.HAL_KEY_TYPE_EC_PRIVATE and session.flags & DKS_HALKeyFlag.HAL_KEY_FLAG_PUBLIC): session.pkey_type = DKS_HALKeyType.HAL_KEY_TYPE_EC_PUBLIC elif(session.pkey_type == DKS_HALKeyType.HAL_KEY_TYPE_HASHSIG_PRIVATE and session.flags & DKS_HALKeyFlag.HAL_KEY_FLAG_PUBLIC): session.pkey_type = DKS_HALKeyType.HAL_KEY_TYPE_HASHSIG_PUBLIC else: session.pkey_type = DKS_HALKeyType.HAL_KEY_TYPE_NONE session.curve = 0 # inform the load balancer that we are doing an expensive key operation self.update_device_weight(session.key_op_data.rpc_index, self.pkey_gen_weight) return RPCAction(None, [self.rpc_list[session.key_op_data.rpc_index]], self.callback_rpc_keygen) def handle_rpc_keygen(self, code, client, unpacker, session): """A key has been generated. Returns uuid and handle""" # consume pkcs11 session id unpacker.unpack_uint() # save the key settings if (code == DKS_RPCFunc.RPC_FUNC_PKEY_GENERATE_RSA): session.pkey_type = DKS_HALKeyType.HAL_KEY_TYPE_RSA_PRIVATE # consume keylen unpacker.unpack_uint() # get the exponent because we need the size exponent = unpacker.unpack_bytes() # get the location of the flags so we can change if needed exp_len = len(exponent) exp_padding = (4 - exp_len % 4) % 4 flag_location = 20 + exp_len + exp_padding elif (code == DKS_RPCFunc.RPC_FUNC_PKEY_GENERATE_EC): session.pkey_type = DKS_HALKeyType.HAL_KEY_TYPE_EC_PRIVATE # get the location of the flags so we can change if needed flag_location = 16 elif (code == DKS_RPCFunc.RPC_FUNC_PKEY_GENERATE_HASHSIG): session.pkey_type = DKS_HALKeyType.HAL_KEY_TYPE_HASHSIG_PRIVATE # get the location of the flags so we can change if needed flag_location = 24 # get the flags session.flags = rpc_get_int(session.current_request, flag_location) # check to see if the rpc has been setup to allow exportable private keys if ((session.enable_exportable_private_keys == True) and (session.flags & DKS_HALKeyFlag.HAL_KEY_FLAG_USAGE_KEYENCIPHERMENT) == 0 and (session.flags & DKS_HALKeyFlag.HAL_KEY_FLAG_USAGE_DATAENCIPHERMENT) == 0): new_flag = session.flags | DKS_HALKeyFlag.HAL_KEY_FLAG_EXPORTABLE session.current_request = rpc_set_int(session.current_request, new_flag, flag_location) # sanity check. Make sure we get back what we just set session.flags = rpc_get_int(session.current_request, flag_location) logger.info("Key Gen Flags: 0x%X"%session.flags) # select an RPC to use for this hashing operation session.key_op_data.rpc_index = session.rpc_index if(session.rpc_index >= 0) else self.choose_rpc() logger.info("session.rpc_index == %i session.key_op_data.rpc_index == %i", session.rpc_index, session.key_op_data.rpc_index) # inform the load balancer that we are doing an expensive key operation self.update_device_weight(session.key_op_data.rpc_index, self.pkey_gen_weight) return RPCAction(None, [self.rpc_list[session.key_op_data.rpc_index]], self.callback_rpc_keygen) def callback_rpc_close_deletekey(self, reply_list): unpacker = self.get_response_unpacker(reply_list[0]) code = unpacker.unpack_uint() client = unpacker.unpack_uint() result = unpacker.unpack_uint() if(result != DKS_HALError.HAL_OK): logger.info("callback_rpc_closekey: result != 0") return self.create_error_response(code, client, result) # get the session session = self.get_session(client) # inform the load balancer that we have closed a key self.update_device_weight(session.key_op_data.rpc_index, -self.pkey_op_weight) handle = session.key_op_data.handle # this handle must be a key if(handle not in session.key_rpcs): logger.info("callback_rpc_close_deletekey: handle not in session.key_rpcs") return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_BAD_ARGUMENTS) if (code == DKS_RPCFunc.RPC_FUNC_PKEY_DELETE): # get the details about the key so we can delete from the cache keydetails = session.key_rpcs[handle] uuid = keydetails.uuid rpc_index = keydetails.rpc_index session.cache.remove_key_from_alpha(rpc_index, uuid) # clear data session.key_rpcs.pop(handle, None) # the key was closed so we are not working on anything now session.key_op_data = KeyOperationData(None, None, None) return RPCAction(reply_list[0], None, None) def callback_rpc_keygen(self, reply_list): unpacker = self.get_response_unpacker(reply_list[0]) code = unpacker.unpack_uint() client = unpacker.unpack_uint() result = unpacker.unpack_uint() # get the session session = self.get_session(client) # inform the load balancer that we are no longer doing an expensive operation self.update_device_weight(session.key_op_data.rpc_index, -self.pkey_gen_weight) # keygen only happens on one alpha if(len(reply_list) != 1): logger.info("callback_rpc_keygen: len(reply_list) != 1") return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_RPC_TRANSPORT) if (code != DKS_RPCFunc.RPC_FUNC_PKEY_GENERATE_EC and code != DKS_RPCFunc.RPC_FUNC_PKEY_GENERATE_RSA and code != DKS_RPCFunc.RPC_FUNC_PKEY_LOAD and code != DKS_RPCFunc.RPC_FUNC_PKEY_IMPORT and code != DKS_RPCFunc.RPC_FUNC_PKEY_GENERATE_HASHSIG): logger.info("callback_rpc_keygen: incorrect code received") return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_RPC_TRANSPORT) if(result != DKS_HALError.HAL_OK): logger.info("callback_rpc_keygen: result != 0") return self.create_error_response(code, client, result) # inform the load balancer that we have an open pkey # keygen automatically opens the key self.update_device_weight(session.key_op_data.rpc_index, self.pkey_op_weight) # get the handle session.key_op_data.handle = unpacker.unpack_uint() #get the new uuid device_uuid = UUID(bytes = unpacker.unpack_bytes()) # save the RPC to use for this handle session.key_rpcs[session.key_op_data.handle] = KeyHandleDetails(session.key_op_data.rpc_index, session.key_op_data.device_uuid) # add new key to cache logger.info("Key generated and added to cache RPC:%i UUID:%s Type:%i Flags:%i", session.key_op_data.rpc_index, session.key_op_data.device_uuid, session.pkey_type, session.flags) # save the device uuid internally session.key_op_data.device_uuid = device_uuid # unless we're caching and using master_uuids, return the device uuid outgoing_uuid = device_uuid if (session.cache_generated_keys): master_uuid = session.cache.add_key_to_alpha(session.key_op_data.rpc_index, device_uuid, session.pkey_type, session.flags) if (not session.incoming_uuids_are_device_uuids): # the master_uuid will always be returned to ethernet connections outgoing_uuid = master_uuid # generate reply with the outgoing uuid reply = RPCKeygen_result.create(code, client, result, session.key_op_data.handle, outgoing_uuid) return RPCAction(reply, None, None) def handle_rpc_pkeymatch(self, code, client, unpacker, session): """match on all rpcs and then combine results incoming UUIDs are master table UUIDs""" # if the rpc_index has been set for the session, always use it if(session.incoming_uuids_are_device_uuids): if(session.rpc_index >= 0): return RPCAction(None, [self.rpc_list[session.rpc_index]], None) else: logger.info("handle_rpc_pkeymatch: using device uuid, but device not set") return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_IMPOSSIBLE) session.keymatch_details = KeyMatchDetails() # unpack and store key match attributes session.keymatch_details.unpack(unpacker) logger.info("pkey_match: result_max = %i, uuid = %s", session.keymatch_details.result_max, session.keymatch_details.uuid) # if uuid is none, search RPC 0 # else search starting with the RPC that the uuid is on if(session.keymatch_details.uuid == KeyMatchDetails.none_uuid): if(session.rpc_index >= 0): session.keymatch_details.rpc_index = session.rpc_index else: session.keymatch_details.rpc_index = 0 else: # need to convert master_uuid to device_uuid if(session.rpc_index >= 0): device_list = session.cache.get_alphas(session.keymatch_details.uuid) if (session.rpc_index not in device_list): logger.info("handle_rpc_pkeyopen: session.rpc_index not in device_list") return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_KEY_NOT_FOUND) session.keymatch_details.rpc_index = session.rpc_index # need to update the command with the new UUID session.keymatch_details.uuid = device_list[session.rpc_index] else: # find the rpc that this is on device_to_search = session.cache.get_alpha_lowest_index(session.keymatch_details.uuid) if(device_to_search is None): return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_RPC_TRANSPORT) session.keymatch_details.rpc_index = device_to_search[0] # need to update the command with the new UUID session.keymatch_details.uuid = device_to_search[1] session.current_request = session.keymatch_details.repack(code, client) # make sure the rpc_index was set if(hasattr(session.keymatch_details, 'rpc_index') == False): return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_RPC_TRANSPORT) return RPCAction(None, [self.rpc_list[session.keymatch_details.rpc_index]], self.callback_rpc_pkeymatch) def callback_rpc_pkeymatch(self, reply_list): reply = reply_list[0] logger.info("callback_rpc_pkeymatch") unpacker = self.get_response_unpacker(reply) code = unpacker.unpack_uint() client = unpacker.unpack_uint() result = unpacker.unpack_uint() # this should have been called on exactly one alpha if(len(reply_list) != 1): logger.info("callback_rpc_pkeymatch: len(reply_list) != 1") return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_RPC_TRANSPORT) # get the session session = self.get_session(client) if (code != DKS_RPCFunc.RPC_FUNC_PKEY_MATCH): logger.info("callback_rpc_pkeymatch: code != RPCFunc.RPC_FUNC_PKEY_MATCH") return self.create_error_response(code, client, DKS_HALError.HAL_ERROR_RPC_TRANSPORT) if(result != 0): logger.info("callback_rpc_pkeymatch: result != 0") return self.create_error_response(code, client, result) session.keymatch_details.result.code = code session.keymatch_details.result.client = client session.keymatch_details.result.result = result # get the pkcs#11 session session.keymatch_details.result.session = unpacker.unpack_uint() # get the count n = unpacker.unpack_uint() rpc_index = session.keymatch_details.rpc_index logger.info("Matching found %i keys", n) for i in xrange(n): u = UUID(bytes = unpacker.unpack_bytes()) # convert device UUID to master UUID and if uuid is # also on a device with a lowee index, don't add master_uuid = session.cache.get_master_uuid(rpc_index, u) if (master_uuid is not None): lowest_index = session.cache.get_master_uuid_lowest_index(master_uuid) if(lowest_index == rpc_index): session.keymatch_details.result.uuid_list.append(master_uuid) next_rpc = rpc_index + 1 if (len(session.keymatch_details.result.uuid_list) >= session.keymatch_details.result_max or next_rpc >= len(self.rpc_list)): # we've either reach the max or we've searched all devices result_action = RPCAction(session.keymatch_details.result.build_result_packet(session.keymatch_details.result_max), None, None) session.keymatch_details = None return result_action # we're searching a new alpha so start from 0 session.keymatch_details.rpc_index = next_rpc session.keymatch_details.uuid = KeyMatchDetails.none_uuid session.current_request = session.keymatch_details.repack(code, client) # there may be more matching keys so generate another command return RPCAction(None, [self.rpc_list[session.keymatch_details.rpc_index]], self.callback_rpc_pkeymatch) def handle_rpc_getdevice_ip(self, code, client, unpacker, session): # generate complete response response = xdrlib.Packer() response.pack_uint(code) response.pack_uint(client) response.pack_uint(DKS_HALError.HAL_OK) response.pack_bytes(self.netiface.get_ip()) return RPCAction(response.get_buffer(), None, None) def handle_rpc_getdevice_state(self, code, client, unpacker, session): # generate complete response response = xdrlib.Packer() response.pack_uint(code) response.pack_uint(client) response.pack_uint(DKS_HALError.HAL_OK) response.pack_uint(len(self.rpc_list)) for rpc in self.rpc_list: response.pack_bytes(str(rpc.state.value)) return RPCAction(response.get_buffer(), None, None) def create_function_table(self): """Use a table to quickly select the method to handle each RPC request""" self.function_table[DKS_RPCFunc.RPC_FUNC_GET_VERSION] = self.handle_rpc_any self.function_table[DKS_RPCFunc.RPC_FUNC_GET_RANDOM] = self.handle_rpc_any self.function_table[DKS_RPCFunc.RPC_FUNC_SET_PIN] = self.handle_rpc_all self.function_table[DKS_RPCFunc.RPC_FUNC_LOGIN] = self.handle_rpc_all self.function_table[DKS_RPCFunc.RPC_FUNC_LOGOUT] = self.handle_rpc_all self.function_table[DKS_RPCFunc.RPC_FUNC_LOGOUT_ALL] = self.handle_rpc_all self.function_table[DKS_RPCFunc.RPC_FUNC_IS_LOGGED_IN] = self.handle_rpc_all self.function_table[DKS_RPCFunc.RPC_FUNC_HASH_GET_DIGEST_LEN] = self.handle_rpc_any self.function_table[DKS_RPCFunc.RPC_FUNC_HASH_GET_DIGEST_ALGORITHM_ID] = self.handle_rpc_any self.function_table[DKS_RPCFunc.RPC_FUNC_HASH_GET_ALGORITHM] = self.handle_rpc_hash self.function_table[DKS_RPCFunc.RPC_FUNC_HASH_INITIALIZE] = self.handle_rpc_starthash self.function_table[DKS_RPCFunc.RPC_FUNC_HASH_UPDATE] = self.handle_rpc_hash self.function_table[DKS_RPCFunc.RPC_FUNC_HASH_FINALIZE] = self.handle_rpc_endhash self.function_table[DKS_RPCFunc.RPC_FUNC_PKEY_LOAD] = self.handle_rpc_pkeyload self.function_table[DKS_RPCFunc.RPC_FUNC_PKEY_OPEN] = self.handle_rpc_pkeyopen self.function_table[DKS_RPCFunc.RPC_FUNC_PKEY_GENERATE_RSA] = self.handle_rpc_keygen self.function_table[DKS_RPCFunc.RPC_FUNC_PKEY_GENERATE_EC] = self.handle_rpc_keygen self.function_table[DKS_RPCFunc.RPC_FUNC_PKEY_CLOSE] = self.handle_rpc_pkey self.function_table[DKS_RPCFunc.RPC_FUNC_PKEY_DELETE] = self.handle_rpc_pkey self.function_table[DKS_RPCFunc.RPC_FUNC_PKEY_GET_KEY_TYPE] = self.handle_rpc_pkey self.function_table[DKS_RPCFunc.RPC_FUNC_PKEY_GET_KEY_CURVE] = self.handle_rpc_pkey self.function_table[DKS_RPCFunc.RPC_FUNC_PKEY_GET_KEY_FLAGS] = self.handle_rpc_pkey self.function_table[DKS_RPCFunc.RPC_FUNC_PKEY_GET_PUBLIC_KEY_LEN] = self.handle_rpc_pkey self.function_table[DKS_RPCFunc.RPC_FUNC_PKEY_GET_PUBLIC_KEY] = self.handle_rpc_pkey self.function_table[DKS_RPCFunc.RPC_FUNC_PKEY_SIGN] = self.handle_rpc_pkey self.function_table[DKS_RPCFunc.RPC_FUNC_PKEY_VERIFY] = self.handle_rpc_pkey self.function_table[DKS_RPCFunc.RPC_FUNC_PKEY_MATCH] = self.handle_rpc_pkeymatch self.function_table[DKS_RPCFunc.RPC_FUNC_PKEY_SET_ATTRIBUTES] = self.handle_rpc_pkey self.function_table[DKS_RPCFunc.RPC_FUNC_PKEY_GET_ATTRIBUTES] = self.handle_rpc_pkey self.function_table[DKS_RPCFunc.RPC_FUNC_PKEY_EXPORT] = self.handle_rpc_pkeyexport self.function_table[DKS_RPCFunc.RPC_FUNC_PKEY_IMPORT] = self.handle_rpc_pkeyimport self.function_table[DKS_RPCFunc.RPC_FUNC_PKEY_GENERATE_HASHSIG] = self.handle_rpc_keygen self.function_table[DKS_RPCFunc.RPC_FUNC_GET_HSM_STATE] = self.handle_rpc_getdevice_state self.function_table[DKS_RPCFunc.RPC_FUNC_GET_IP] = self.handle_rpc_getdevice_ip self.function_table[DKS_RPCFunc.RPC_FUNC_SET_RPC_DEVICE] = self.handle_set_rpc self.function_table[DKS_RPCFunc.RPC_FUNC_ENABLE_CACHE_KEYGEN] = self.handle_enable_cache_keygen self.function_table[DKS_RPCFunc.RPC_FUNC_DISABLE_CACHE_KEYGEN] = self.handle_disable_cache_keygen self.function_table[DKS_RPCFunc.RPC_FUNC_CHECK_TAMPER] = self.handle_rpc_usecurrent self.function_table[DKS_RPCFunc.RPC_FUNC_USE_INCOMING_DEVICE_UUIDS] = self.handle_use_incoming_device_uuids self.function_table[DKS_RPCFunc.RPC_FUNC_USE_INCOMING_MASTER_UUIDS] = self.handle_use_incoming_master_uuids
0
90
0
46,831
0
0
0
345
341
9a2f9bbcdef5df4bf28982e51a41ce770ed56584
745
py
Python
texttospeak.py
PoomGamerE/Text-To-Speak-With-Python-Pitch-Supported-
452a7a9bfaa22306da436832ea8e91185481d9d5
[ "WTFPL" ]
1
2021-12-31T15:50:08.000Z
2021-12-31T15:50:08.000Z
texttospeak.py
PoomGamerE/Text-To-Speak-With-Python-Pitch-Supported
452a7a9bfaa22306da436832ea8e91185481d9d5
[ "WTFPL" ]
null
null
null
texttospeak.py
PoomGamerE/Text-To-Speak-With-Python-Pitch-Supported
452a7a9bfaa22306da436832ea8e91185481d9d5
[ "WTFPL" ]
1
2020-05-07T16:07:55.000Z
2020-05-07T16:07:55.000Z
from gtts import gTTS from pydub import AudioSegment AudioSegment.converter = "C:\\ffmpeg\\bin\\ffmpeg.exe" AudioSegment.ffmpeg = "C:\\ffmpeg\\bin\\ffmpeg.exe" AudioSegment.ffprobe ="C:\\ffmpeg\\bin\\ffprobe.exe" from pydub.playback import play import playsound tts = gTTS(text='Test Hatsune Miku', lang='en', slow=True) tts.save("input.mp3") sound = AudioSegment.from_file('input.mp3', format="mp3") # Customize octaves = 0.2 new_sample_rate = int(sound.frame_rate * (2.0 ** octaves)) hipitch_sound = sound._spawn(sound.raw_data, overrides={'frame_rate': new_sample_rate}) hipitch_sound = hipitch_sound.set_frame_rate(44100) play(hipitch_sound) hipitch_sound.export("output.mp3", format="mp3") playsound.playsound("output.mp3", True)
25.689655
87
0.754362
from gtts import gTTS from pydub import AudioSegment AudioSegment.converter = "C:\\ffmpeg\\bin\\ffmpeg.exe" AudioSegment.ffmpeg = "C:\\ffmpeg\\bin\\ffmpeg.exe" AudioSegment.ffprobe ="C:\\ffmpeg\\bin\\ffprobe.exe" from pydub.playback import play import playsound tts = gTTS(text='Test Hatsune Miku', lang='en', slow=True) tts.save("input.mp3") sound = AudioSegment.from_file('input.mp3', format="mp3") # Customize octaves = 0.2 new_sample_rate = int(sound.frame_rate * (2.0 ** octaves)) hipitch_sound = sound._spawn(sound.raw_data, overrides={'frame_rate': new_sample_rate}) hipitch_sound = hipitch_sound.set_frame_rate(44100) play(hipitch_sound) hipitch_sound.export("output.mp3", format="mp3") playsound.playsound("output.mp3", True)
0
0
0
0
0
0
0
0
0
d9ad6c19f7ef674e649f00e8e4202cdc498e8bfb
3,721
py
Python
__init__.py
krisgesling/device-initiated-interaction-skill
e961aeadc3af1c5c3d10c0bb90e392cbe4ecb54a
[ "Apache-2.0" ]
null
null
null
__init__.py
krisgesling/device-initiated-interaction-skill
e961aeadc3af1c5c3d10c0bb90e392cbe4ecb54a
[ "Apache-2.0" ]
null
null
null
__init__.py
krisgesling/device-initiated-interaction-skill
e961aeadc3af1c5c3d10c0bb90e392cbe4ecb54a
[ "Apache-2.0" ]
null
null
null
API_ENDPOINT = "https://example.com/api" API_KEY = "XXXXXXXXXXXXXXXXX" MINUTES = 60 # seconds HOURS = 60 * MINUTES
41.344444
145
0.689331
from datetime import datetime from time import sleep import requests from mycroft import MycroftSkill, intent_handler from mycroft.audio import wait_while_speaking from mycroft.util.format import nice_duration, TimeResolution API_ENDPOINT = "https://example.com/api" API_KEY = "XXXXXXXXXXXXXXXXX" MINUTES = 60 # seconds HOURS = 60 * MINUTES class DeviceInitiatedInteraction(MycroftSkill): def __init__(self): MycroftSkill.__init__(self) self.proning_event = "Proning protocol" def initialize(self): self.settings_change_callback = self.on_settings_changed def on_settings_changed(self): """ Callback triggered when Skill settings are modified at home.mycroft.ai/skills """ self.log.info("Trigger actions when settings are updated") @intent_handler('interaction.initiated.device.intent') def handle_interaction_initiated_device(self, message): # Ensure any previously scheduled events are cancelled self.cancel_scheduled_event(self.proning_event) # Schedule the proning protocol every two hours, starting immediately # https://mycroft-core.readthedocs.io/en/latest/source/mycroft.html?highlight=schedule#mycroft.MycroftSkill.schedule_repeating_event self.schedule_repeating_event(self.proning_protocol, datetime.now(), 2 * HOURS, name=self.proning_event) self.speak_dialog('interaction.initiated.device') def proning_protocol(self): self.speak_dialog('step.one') # Pause for duration of Text to Speech wait_while_speaking() # Pause an additional period for patient to complete step sleep(10) # This method checks for a range of standard yes/no responses eg "yeah" response = self.ask_yesno('confirm') if response == 'yes': self.speak_dialog('step.two') # Schedule non-recurring patient check in 15 minutes # Note: event time can be in seconds or a datetime # https://mycroft-core.readthedocs.io/en/latest/source/mycroft.html?highlight=schedule#mycroft.MycroftSkill.schedule_event self.schedule_event(self.check_on_patient, 30) def check_on_patient(self): # Ask user a question and record the response. # Can also validate response and provide guidance if it fails validation # https://mycroft-core.readthedocs.io/en/latest/source/mycroft.html#mycroft.MycroftSkill.get_response response = self.get_response('get.feedback') self.send_patient_response(response) def send_patient_response(self, response): # Standard POST request data = { 'api_key': API_KEY, 'patient_response':response } r = requests.post( url=API_ENDPOINT, data=data ) self.log.info("Sent feedback: {}".format(response)) @intent_handler('when.is.next.protocol.intent') def handle_when_next(self, message): # Get the time remaining before our scheduled event # https://mycroft-core.readthedocs.io/en/latest/source/mycroft.html?highlight=get%20event#mycroft.MycroftSkill.get_scheduled_event_status secs_remaining = self.get_scheduled_event_status(self.proning_event) if secs_remaining: # nice_duration formats our time remaining into a speakable format # the resolution rounds this to the nearest minute self.speak_dialog('time.remaining', { 'duration': nice_duration(secs_remaining, resolution=TimeResolution.MINUTES) }) def create_skill(): return DeviceInitiatedInteraction()
0
1,394
0
1,898
0
38
0
94
180
88d3e7a0d8ea1590d06630c3b732f4ca8621ff36
319
py
Python
code/array_absurdity/array_absurdity.py
rafalmierzwiak/yearn
4f173f9c326bc742d90de26ad23af500713cd6a1
[ "Unlicense" ]
1
2021-04-06T17:39:28.000Z
2021-04-06T17:39:28.000Z
code/array_absurdity/array_absurdity.py
rafalmierzwiak/yearn
4f173f9c326bc742d90de26ad23af500713cd6a1
[ "Unlicense" ]
null
null
null
code/array_absurdity/array_absurdity.py
rafalmierzwiak/yearn
4f173f9c326bc742d90de26ad23af500713cd6a1
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python3 from sys import argv with open(argv[1]) as f: for line in f: length, numbers = line.rstrip("\n").split(";") duplicates = {} for n in numbers.split(","): if n in duplicates: print(n) break duplicates[n] = True
21.266667
54
0.492163
#!/usr/bin/env python3 from sys import argv with open(argv[1]) as f: for line in f: length, numbers = line.rstrip("\n").split(";") duplicates = {} for n in numbers.split(","): if n in duplicates: print(n) break duplicates[n] = True
0
0
0
0
0
0
0
0
0
a2ef113d54b817448e697c5115dc69a977e0e9aa
107
py
Python
1. Python/2. Flow of Control/14.multiple_of_10.py
theparitoshkumar/Data-Structures-Algorithms-using-python
445b9dee56bca637f21267114cc1686d333ea4c4
[ "Apache-2.0" ]
1
2021-12-05T18:02:15.000Z
2021-12-05T18:02:15.000Z
1. Python/2. Flow of Control/14.multiple_of_10.py
theparitoshkumar/Data-Structures-Algorithms-using-python
445b9dee56bca637f21267114cc1686d333ea4c4
[ "Apache-2.0" ]
null
null
null
1. Python/2. Flow of Control/14.multiple_of_10.py
theparitoshkumar/Data-Structures-Algorithms-using-python
445b9dee56bca637f21267114cc1686d333ea4c4
[ "Apache-2.0" ]
null
null
null
#Print multiples of 10 for numbers in a given range for num in range(5): if num > 0: print(num * 10)
21.4
51
0.663551
#Print multiples of 10 for numbers in a given range for num in range(5): if num > 0: print(num * 10)
0
0
0
0
0
0
0
0
0
dc7d4c67f2d423199d46c7b7ac45785d73c591e2
412
py
Python
SpaceHabitRPG/Tests/ForTestHelpers/Test_SpaceUnitTest.py
joelliusp/SpaceHabit
5656ef4d9c57f3e58d0ed756a3aa754c8a7dd6a5
[ "MIT" ]
null
null
null
SpaceHabitRPG/Tests/ForTestHelpers/Test_SpaceUnitTest.py
joelliusp/SpaceHabit
5656ef4d9c57f3e58d0ed756a3aa754c8a7dd6a5
[ "MIT" ]
13
2016-07-19T04:13:20.000Z
2016-08-17T06:06:47.000Z
SpaceHabitRPG/Tests/ForTestHelpers/Test_SpaceUnitTest.py
joelliusp/SpaceHabit
5656ef4d9c57f3e58d0ed756a3aa754c8a7dd6a5
[ "MIT" ]
null
null
null
if __name__ == '__main__': unittest.main()
29.428571
71
0.696602
from SpaceUnitTest import SpaceUnitTest class Test_SpaceUnitTest(SpaceUnitTest): def test_assertBool(self): t1 = None t2 = 6 self.assertRaises(AssertionError, lambda :self.assertFalse(t1)) self.assertRaises(AssertionError, lambda :self.assertTrue(t2)) self.assertNotEqual(t1,False) self.assertNotEqual(t2,True) if __name__ == '__main__': unittest.main()
0
0
0
301
0
0
0
18
45
78ecea3a7cd48bf6116ebbd160f009bb753182bc
1,288
py
Python
mpltex/mpltex.py
bluesquall/mpltex
b4794c601ac085fe3b89b4fdb46eb92ae06a3e15
[ "MIT" ]
1
2021-12-01T15:21:39.000Z
2021-12-01T15:21:39.000Z
mpltex/mpltex.py
bluesquall/mpltex
b4794c601ac085fe3b89b4fdb46eb92ae06a3e15
[ "MIT" ]
null
null
null
mpltex/mpltex.py
bluesquall/mpltex
b4794c601ac085fe3b89b4fdb46eb92ae06a3e15
[ "MIT" ]
null
null
null
""" mpltex ====== """ golden_ratio = (5**.5-1.0)/2.0 packages = ['amsmath', 'amssymb', 'amsfonts', 'amsbsy', 'bm'] usepackages = [r'\usepackage{{{0}}}'.format(pkg) for pkg in packages] def get_rcParams(fig_width_pt = 232.0, scale = 1.0, dpi = 600): """TODO: write a description Parameters ---------- fig_width_pt: float (232.0) Width of the figure in points. Use LaTeX \showthe\linewidth to figure out what number to use. 232.0 for two-column IEEEtran articles YYYY for MIT/WHOI thesis figures """ fig_width = pt_to_in(fig_width_pt) # width in inches fig_height = fig_width * golden_ratio # height in inches fig_size = [fig_width * scale, fig_height * scale] params = { 'axes.labelsize': 10, 'text.fontsize': 8, 'legend.fontsize': 8, 'xtick.labelsize': 8, 'ytick.labelsize': 8, 'font.family': 'serif', 'font.serif': 'Times', 'text.usetex': True, 'text.latex.preamble': usepackages, 'figure.figsize': fig_size, 'figure.dpi': dpi} return params
27.404255
70
0.559006
""" mpltex ====== """ golden_ratio = (5**.5-1.0)/2.0 packages = ['amsmath', 'amssymb', 'amsfonts', 'amsbsy', 'bm'] usepackages = [r'\usepackage{{{0}}}'.format(pkg) for pkg in packages] def pt_to_in(pt): return pt / 72.27 def pt_to_mm(pt): raise NotImplementedError def get_rcParams(fig_width_pt = 232.0, scale = 1.0, dpi = 600): """TODO: write a description Parameters ---------- fig_width_pt: float (232.0) Width of the figure in points. Use LaTeX \showthe\linewidth to figure out what number to use. 232.0 for two-column IEEEtran articles YYYY for MIT/WHOI thesis figures """ fig_width = pt_to_in(fig_width_pt) # width in inches fig_height = fig_width * golden_ratio # height in inches fig_size = [fig_width * scale, fig_height * scale] params = { 'axes.labelsize': 10, 'text.fontsize': 8, 'legend.fontsize': 8, 'xtick.labelsize': 8, 'ytick.labelsize': 8, 'font.family': 'serif', 'font.serif': 'Times', 'text.usetex': True, 'text.latex.preamble': usepackages, 'figure.figsize': fig_size, 'figure.dpi': dpi} return params
0
0
0
0
0
44
0
0
46
a2361bc10b2d2184556a466dee04a4a83a83384d
4,167
py
Python
garam.py
albus137/csp_python_tests
952b68ea4dc22b1f87a40bfa9a54bf17d305e235
[ "MIT" ]
null
null
null
garam.py
albus137/csp_python_tests
952b68ea4dc22b1f87a40bfa9a54bf17d305e235
[ "MIT" ]
null
null
null
garam.py
albus137/csp_python_tests
952b68ea4dc22b1f87a40bfa9a54bf17d305e235
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import pyexcel as pe from time import time # create the problem object problem = Problem(RecursiveBacktrackingSolver()) # import the Garam grid grid = pe.get_array(file_name='csp_grid.ods') n_lines, n_cols = len(grid), len(grid[0]) # display the Garam grid nicely print('Initial grid:') print() for i in range(n_lines): for j in range(n_cols): if grid[i][j] == '': print(' ', end='') else: print(grid[i][j], end='') print() # add the variables to the problem for i in range(n_lines): for j in range(n_cols): if grid[i][j] == '?': domain = range(0, 10) elif type(grid[i][j]) == int: domain = [grid[i][j]] problem.addVariable((i, j), domain) # create the "coor grid" (grid whose cases are tuples containing the cases coordinates) grid_coor = [[(i, j) for j in range(n_cols)] for i in range(n_lines)] # set the first case of each constraint h_constraints_origins = [[0, 0], [0, 8], [2, 4], [5, 0], [5, 8], [9, 0], [9, 8], [11, 4], [14, 0], [14, 8]] v_constraints_origins = [[0, 0], [9, 0], [5, 2], [0, 4], [9, 4], [0, 8], [9, 8], [5, 10], [0, 12], [9, 12]] # get the horizontal constraints h_constraints = [] for origin in h_constraints_origins: i_origin, j_origin = origin constraint = grid_coor[i_origin][j_origin:j_origin+5] h_constraints.append(constraint) # get the vertical constraints v_constraints = [] for k in range(len(v_constraints_origins)): i_origin, j_origin = v_constraints_origins[k] if k == 2 or k == 7: nb_cases = 5 else: nb_cases = 6 constraint = [line[j_origin] for line in grid_coor[i_origin:i_origin+nb_cases]] v_constraints.append(constraint) # add the constraints to the problem constraints = h_constraints + v_constraints for constraint in constraints: # get the operation type (+, - or *) i, j = constraint[1] op = grid[i][j] if len(constraint) == 5: if op == '+': constraint_function = lambda a, b, c: a+b == c elif op == '-': constraint_function = lambda a, b, c: a-b == c elif op == '*': constraint_function = lambda a, b, c: a*b == c problem.addConstraint(constraint_function, (constraint[0], constraint[2], constraint[4])) print('{}{}{}={}'.format(grid[constraint[0][0]][constraint[0][1]], op, grid[constraint[2][0]][constraint[2][1]], grid[constraint[4][0]][constraint[4][1]])) elif len(constraint) == 6: if op == '+': constraint_function = lambda a, b, c, d: a+b == c*10+d elif op == '-': constraint_function = lambda a, b, c, d: a-b == c*10+d elif op == '*': constraint_function = lambda a, b, c, d: a*b == c*10+d problem.addConstraint(constraint_function, (constraint[0], constraint[2], constraint[4], constraint[5])) print('{}{}{}={}{}'.format(grid[constraint[0][0]][constraint[0][1]], op, grid[constraint[2][0]][constraint[2][1]], grid[constraint[4][0]][constraint[4][1]], grid[constraint[5][0]][constraint[5][1]])) print() print('Solving the problem...') # solve the problem start = time() solution = problem.getSolution() end = time() print('Elapsed time: {:.0f} s'.format(end-start)) # display the solution print() print('Solved grid:') print() for i in range(n_lines): for j in range(n_cols): if grid[i][j] == '?' or type(grid[i][j]) == int: print(solution[(i, j)], end='') elif grid[i][j] == '': print(' ', end='') elif type(grid[i][j]) == str: print(grid[i][j], end='') print()
31.330827
112
0.521718
#!/usr/bin/env python3 from constraint import * import pyexcel as pe from time import time # create the problem object problem = Problem(RecursiveBacktrackingSolver()) # import the Garam grid grid = pe.get_array(file_name='csp_grid.ods') n_lines, n_cols = len(grid), len(grid[0]) # display the Garam grid nicely print('Initial grid:') print() for i in range(n_lines): for j in range(n_cols): if grid[i][j] == '': print(' ', end='') else: print(grid[i][j], end='') print() # add the variables to the problem for i in range(n_lines): for j in range(n_cols): if grid[i][j] == '?': domain = range(0, 10) elif type(grid[i][j]) == int: domain = [grid[i][j]] problem.addVariable((i, j), domain) # create the "coor grid" (grid whose cases are tuples containing the cases coordinates) grid_coor = [[(i, j) for j in range(n_cols)] for i in range(n_lines)] # set the first case of each constraint h_constraints_origins = [[0, 0], [0, 8], [2, 4], [5, 0], [5, 8], [9, 0], [9, 8], [11, 4], [14, 0], [14, 8]] v_constraints_origins = [[0, 0], [9, 0], [5, 2], [0, 4], [9, 4], [0, 8], [9, 8], [5, 10], [0, 12], [9, 12]] # get the horizontal constraints h_constraints = [] for origin in h_constraints_origins: i_origin, j_origin = origin constraint = grid_coor[i_origin][j_origin:j_origin+5] h_constraints.append(constraint) # get the vertical constraints v_constraints = [] for k in range(len(v_constraints_origins)): i_origin, j_origin = v_constraints_origins[k] if k == 2 or k == 7: nb_cases = 5 else: nb_cases = 6 constraint = [line[j_origin] for line in grid_coor[i_origin:i_origin+nb_cases]] v_constraints.append(constraint) # add the constraints to the problem constraints = h_constraints + v_constraints for constraint in constraints: # get the operation type (+, - or *) i, j = constraint[1] op = grid[i][j] if len(constraint) == 5: if op == '+': constraint_function = lambda a, b, c: a+b == c elif op == '-': constraint_function = lambda a, b, c: a-b == c elif op == '*': constraint_function = lambda a, b, c: a*b == c problem.addConstraint(constraint_function, (constraint[0], constraint[2], constraint[4])) print('{}{}{}={}'.format(grid[constraint[0][0]][constraint[0][1]], op, grid[constraint[2][0]][constraint[2][1]], grid[constraint[4][0]][constraint[4][1]])) elif len(constraint) == 6: if op == '+': constraint_function = lambda a, b, c, d: a+b == c*10+d elif op == '-': constraint_function = lambda a, b, c, d: a-b == c*10+d elif op == '*': constraint_function = lambda a, b, c, d: a*b == c*10+d problem.addConstraint(constraint_function, (constraint[0], constraint[2], constraint[4], constraint[5])) print('{}{}{}={}{}'.format(grid[constraint[0][0]][constraint[0][1]], op, grid[constraint[2][0]][constraint[2][1]], grid[constraint[4][0]][constraint[4][1]], grid[constraint[5][0]][constraint[5][1]])) print() print('Solving the problem...') # solve the problem start = time() solution = problem.getSolution() end = time() print('Elapsed time: {:.0f} s'.format(end-start)) # display the solution print() print('Solved grid:') print() for i in range(n_lines): for j in range(n_cols): if grid[i][j] == '?' or type(grid[i][j]) == int: print(solution[(i, j)], end='') elif grid[i][j] == '': print(' ', end='') elif type(grid[i][j]) == str: print(grid[i][j], end='') print()
0
0
0
0
0
0
0
3
23
60a0943dd24d4687989fb3460f5ca8fc22c02667
1,045
py
Python
venv/0713.py
JungHwan-Park21/python_workspace
7463724d6b9955bd594d8538c9636de7748f7ece
[ "MIT" ]
null
null
null
venv/0713.py
JungHwan-Park21/python_workspace
7463724d6b9955bd594d8538c9636de7748f7ece
[ "MIT" ]
null
null
null
venv/0713.py
JungHwan-Park21/python_workspace
7463724d6b9955bd594d8538c9636de7748f7ece
[ "MIT" ]
null
null
null
# data = list(range(1, 46)) # # import random # # # def random_pop(data): # number = random.randint(0, len(data) - 1) # return data.pop(number) # # # for i in range(1, 7): # print(random_pop(data)) ## # import webbrowser # # url = "https://coastwatch.pfeg.noaa.gov/erddap/griddap/erdMH1chlamday.geotif?chlorophyll%5B(2021-11-16T00:00:00Z)%5D%5B(-57.97917):(-66.68751)%5D%5B(-63.64583):(-54.9375)%5D&.draw=surface&.vars=longitude%7Clatitude%7Cchlorophyll&.colorBar=%7C%7C%7C%7C%7C&.bgColor=0xffccccff" # # # urllib.request.urlretrieve(imgURL, "E:/test/image1.tif") # # webbrowser.open(url) # # import webbrowser # # url = "https://www.naver.com" # # webbrowser.open(url) ## from datetime import date ## start_date = date(2021, 1,1) end_date = date(2021,12,31) ## for single_date in daterange(start_date, end_date): a = (single_date.strftime("%Y-%m-%d")) print(a)
23.75
277
0.68134
# data = list(range(1, 46)) # # import random # # # def random_pop(data): # number = random.randint(0, len(data) - 1) # return data.pop(number) # # # for i in range(1, 7): # print(random_pop(data)) ## # import webbrowser # # url = "https://coastwatch.pfeg.noaa.gov/erddap/griddap/erdMH1chlamday.geotif?chlorophyll%5B(2021-11-16T00:00:00Z)%5D%5B(-57.97917):(-66.68751)%5D%5B(-63.64583):(-54.9375)%5D&.draw=surface&.vars=longitude%7Clatitude%7Cchlorophyll&.colorBar=%7C%7C%7C%7C%7C&.bgColor=0xffccccff" # # # urllib.request.urlretrieve(imgURL, "E:/test/image1.tif") # # webbrowser.open(url) # # import webbrowser # # url = "https://www.naver.com" # # webbrowser.open(url) ## 날짜반복 from datetime import date, timedelta ## 시작날짜와 종료날짜 설정 start_date = date(2021, 1,1) end_date = date(2021,12,31) ## def daterange(start_date, end_date): for n in range(int((end_date - start_date).days)): yield start_date + timedelta(n) for single_date in daterange(start_date, end_date): a = (single_date.strftime("%Y-%m-%d")) print(a)
45
0
0
0
110
0
0
11
22
86b2b9be4c907cd7e31be2fd93d8800322a78cf9
739
py
Python
wagtaildemo/settings/production.py
caputomarcos/wagtaildemo
08cca1dbc44bb836c0923ff2720a8a3195f4042b
[ "BSD-3-Clause" ]
3
2015-12-03T21:34:59.000Z
2017-08-12T16:53:33.000Z
wagtaildemo/settings/production.py
caputomarcos/wagtaildemo
08cca1dbc44bb836c0923ff2720a8a3195f4042b
[ "BSD-3-Clause" ]
null
null
null
wagtaildemo/settings/production.py
caputomarcos/wagtaildemo
08cca1dbc44bb836c0923ff2720a8a3195f4042b
[ "BSD-3-Clause" ]
4
2015-12-03T21:35:01.000Z
2020-11-14T09:29:29.000Z
DEBUG = False WAGTAILSEARCH_BACKENDS = { 'default': { 'BACKEND': 'wagtail.wagtailsearch.backends.elasticsearch.ElasticSearch', 'INDEX': 'wagtaildemo' } } CACHES = { 'default': { 'BACKEND': 'redis_cache.cache.RedisCache', 'LOCATION': '127.0.0.1:6379', 'KEY_PREFIX': 'wagtaildemo', 'OPTIONS': { 'CLIENT_CLASS': 'redis_cache.client.DefaultClient', } } } # Use the cached template loader TEMPLATE_LOADERS = ( ('django.template.loaders.cached.Loader', ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', )), ) try: except ImportError: pass
19.447368
80
0.618403
from .base import * DEBUG = False WAGTAILSEARCH_BACKENDS = { 'default': { 'BACKEND': 'wagtail.wagtailsearch.backends.elasticsearch.ElasticSearch', 'INDEX': 'wagtaildemo' } } CACHES = { 'default': { 'BACKEND': 'redis_cache.cache.RedisCache', 'LOCATION': '127.0.0.1:6379', 'KEY_PREFIX': 'wagtaildemo', 'OPTIONS': { 'CLIENT_CLASS': 'redis_cache.client.DefaultClient', } } } # Use the cached template loader TEMPLATE_LOADERS = ( ('django.template.loaders.cached.Loader', ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', )), ) try: from .local import * except ImportError: pass
0
0
0
0
0
0
0
-3
45
cacd68ed453b920081ba00b225a82efbfcad337e
590
py
Python
algorithms/decisiontree/decisiontree.classification.py
Marcnuth/DataScienceInterestGroup
cae73aa9f6ab1588b565492225a1086b93e121f6
[ "Apache-2.0" ]
null
null
null
algorithms/decisiontree/decisiontree.classification.py
Marcnuth/DataScienceInterestGroup
cae73aa9f6ab1588b565492225a1086b93e121f6
[ "Apache-2.0" ]
null
null
null
algorithms/decisiontree/decisiontree.classification.py
Marcnuth/DataScienceInterestGroup
cae73aa9f6ab1588b565492225a1086b93e121f6
[ "Apache-2.0" ]
null
null
null
from sklearn import tree from sklearn.datasets import load_iris from sklearn.externals.six import StringIO import pydot from IPython.display import Image if __name__ == '__main__': iris = load_iris() print predictByDTC(iris.data, iris.target, iris.data[0:,])
22.692308
62
0.713559
from sklearn import tree from sklearn.datasets import load_iris from sklearn.externals.six import StringIO import pydot from IPython.display import Image def predictByDTC(X,Y,test): clf = tree.DecisionTreeClassifier().fit(X, Y) #Visualize decision tree #dot_data = StringIO() #tree.export_graphviz(clf, out_file=dot_data) #graph = pydot.graph_from_dot_data(dot_data.getvalue()) #graph.write_pdf("dt.pdf") return clf.predict(test) if __name__ == '__main__': iris = load_iris() print predictByDTC(iris.data, iris.target, iris.data[0:,])
0
0
0
0
0
286
0
0
23
8718ddc93fcc419c4999d37a997527ee8f0ed08c
846
py
Python
ktts.py
Jeyadevanjd/ktts
3e6aef7546abfbdf08b533b757e8353aae9caa7e
[ "MIT" ]
1
2020-05-15T08:21:42.000Z
2020-05-15T08:21:42.000Z
ktts.py
Jeyadevanjd/ktts
3e6aef7546abfbdf08b533b757e8353aae9caa7e
[ "MIT" ]
null
null
null
ktts.py
Jeyadevanjd/ktts
3e6aef7546abfbdf08b533b757e8353aae9caa7e
[ "MIT" ]
null
null
null
import os from configparser import ConfigParser configr = ConfigParser() pp = os.getcwd() config = ConfigParser() val = [] path = pp para = path + "/det.ini" print(para) val2 = [] config.read(para) ad = config['installation']['installation'] print(pp) if ad == "False": pas = input("pleae enter your password for root permission:") ll = "echo " + pas + " |" + " sudo -S -k apt-get install flite" if ad == "False": print("starting") os.system(ll) config['installation'] = { "installation" : "true" } with open(para, 'w') as f: config.write(f) print("done") #say("a quick brown fox jumps over the lazy dog")
24.882353
84
0.605201
import os import sys from configparser import ConfigParser configr = ConfigParser() from subprocess import Popen as pop pp = os.getcwd() config = ConfigParser() val = [] path = pp para = path + "/det.ini" print(para) val2 = [] config.read(para) ad = config['installation']['installation'] print(pp) if ad == "False": pas = input("pleae enter your password for root permission:") ll = "echo " + pas + " |" + " sudo -S -k apt-get install flite" if ad == "False": print("starting") os.system(ll) config['installation'] = { "installation" : "true" } with open(para, 'w') as f: config.write(f) print("done") def say(x): print(x) xr = '"' + x + '"' exe = "cd " + path + " && " + "flite -voice ./cmu_us_eey.flitevox -t" + " " + xr os.system(exe) #say("a quick brown fox jumps over the lazy dog")
0
0
0
0
0
130
0
3
66
6d684bef9ff874d142d8e3ac37ec1b10bc574e68
675
py
Python
funds/migrations/0008_auto_20211205_0852.py
cnlis/lib_books
05bed0f9775826e0b1f968a766ddf5c2d1d55f40
[ "MIT" ]
null
null
null
funds/migrations/0008_auto_20211205_0852.py
cnlis/lib_books
05bed0f9775826e0b1f968a766ddf5c2d1d55f40
[ "MIT" ]
null
null
null
funds/migrations/0008_auto_20211205_0852.py
cnlis/lib_books
05bed0f9775826e0b1f968a766ddf5c2d1d55f40
[ "MIT" ]
null
null
null
# Generated by Django 3.2.9 on 2021-12-05 08:52
23.275862
49
0.551111
# Generated by Django 3.2.9 on 2021-12-05 08:52 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('funds', '0007_document_type'), ] operations = [ migrations.RenameField( model_name='fund', old_name='fund_count', new_name='income_count', ), migrations.AddField( model_name='fund', name='outcome_count', field=models.IntegerField(default=0), ), migrations.AddField( model_name='fund', name='pupils', field=models.IntegerField(default=0), ), ]
0
0
0
561
0
0
0
19
46
8ad2d2a254ba090cf3c2576f441bf3cfe9241a0a
1,117
py
Python
web/practicas/practica2/parser.py
luisjimenez6245/escom
a1ae1f988d02f88844f5d29fba75e7cee04998db
[ "MIT" ]
null
null
null
web/practicas/practica2/parser.py
luisjimenez6245/escom
a1ae1f988d02f88844f5d29fba75e7cee04998db
[ "MIT" ]
null
null
null
web/practicas/practica2/parser.py
luisjimenez6245/escom
a1ae1f988d02f88844f5d29fba75e7cee04998db
[ "MIT" ]
1
2020-03-03T04:16:42.000Z
2020-03-03T04:16:42.000Z
text = " <option>lvaro Obregn</option>\n" +" <option>Azcapotzalco</option>\n" +" <option>Benito Jurez</option>\n" +" <option>Coyoacn</option>\n" +" <option>Cuajimalpa de Morelos</option>\n" +" <option>Cuauhtmoc</option>\n" +" <option>Gustavo A. Madero</option>\n" +" <option>Iztacalco</option>\n" +" <option>Iztapalapa</option>\n" +" <option>Magdalena Contreras</option>\n" +" <option>Miguel Hidalgo</option>\n" +" <option>Milpa Alta</option>\n" +" <option>Tlhuac</option>\n" +" <option>Tlalpan</option> \n" +" <option>Venustiano Carranza</option>\n" +" <option>Xochimilco</option> " text = text.replace("<option>", "").replace("</option>", "").replace(" ", "") items = text.split("\n") res = "" for item in items: res += "<option value=\""+item+"\">" +item+ "</option>\n" print(res)
101.545455
909
0.45658
text = " <option>Álvaro Obregón</option>\n" +" <option>Azcapotzalco</option>\n" +" <option>Benito Juárez</option>\n" +" <option>Coyoacán</option>\n" +" <option>Cuajimalpa de Morelos</option>\n" +" <option>Cuauhtémoc</option>\n" +" <option>Gustavo A. Madero</option>\n" +" <option>Iztacalco</option>\n" +" <option>Iztapalapa</option>\n" +" <option>Magdalena Contreras</option>\n" +" <option>Miguel Hidalgo</option>\n" +" <option>Milpa Alta</option>\n" +" <option>Tláhuac</option>\n" +" <option>Tlalpan</option> \n" +" <option>Venustiano Carranza</option>\n" +" <option>Xochimilco</option> " text = text.replace("<option>", "").replace("</option>", "").replace(" ", "") items = text.split("\n") res = "" for item in items: res += "<option value=\""+item+"\">" +item+ "</option>\n" print(res)
12
0
0
0
0
0
0
0
0
13ffa40792c9a2978d3b11a7f70c68598ebefae1
254
py
Python
Aulas/Aula13/tk01.py
matheusmenezs/com220
d699f00892df1259249ae012aa2a02f63ae0f06f
[ "MIT" ]
null
null
null
Aulas/Aula13/tk01.py
matheusmenezs/com220
d699f00892df1259249ae012aa2a02f63ae0f06f
[ "MIT" ]
null
null
null
Aulas/Aula13/tk01.py
matheusmenezs/com220
d699f00892df1259249ae012aa2a02f63ae0f06f
[ "MIT" ]
null
null
null
# tk01.py main()
18.142857
45
0.590551
# tk01.py import tkinter as tk def main(): # Cria a janela janela = tk.Tk() janela.title('Primeira janela') # Entra no mainloop, o que faz com que # a janela seja renderizada na tela janela.mainloop() main()
0
0
0
0
0
192
0
-1
45
1bf61e9ce9b3a3f64582a8b86bf57fcde353dd25
3,411
py
Python
stash/database.py
fkolacek/Stash
58c2e38306a89bf1b1b63d427ac5db9134471cc4
[ "MIT" ]
null
null
null
stash/database.py
fkolacek/Stash
58c2e38306a89bf1b1b63d427ac5db9134471cc4
[ "MIT" ]
null
null
null
stash/database.py
fkolacek/Stash
58c2e38306a89bf1b1b63d427ac5db9134471cc4
[ "MIT" ]
null
null
null
# # Author: Frantisek Kolacek <[email protected] # Version: 1.0 #
29.66087
128
0.577543
# # Author: Frantisek Kolacek <[email protected] # Version: 1.0 # import logging import sqlite3 from datetime import datetime from .exception import StashDatabaseException class StashDatabase: config = None connection = None cursor = None def __init__(self, **config): try: self.config = config self.connection = sqlite3.connect(self.config['name']) self.connection.row_factory = sqlite3.Row self.cursor = self.connection.cursor() self.create_schema() except sqlite3.Error as e: raise StashDatabaseException(e) from None def close(self): if self.connection: self.connection.commit() self.cursor.close() self.connection.close() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() def create_schema(self): logging.info('Checking/creating DB schema') self.query("""CREATE TABLE IF NOT EXISTS repos ( id INTEGER PRIMARY KEY, name TEXT NOT NULL, type TEXT NOT NULL, remote TEXT NOT NULL, description TEXT, created TEXT, updated TEXT, score INTEGER DEFAULT 0);""") self.query("""CREATE TABLE IF NOT EXISTS tokens ( id INTEGER PRIMARY KEY, token TEXT NOT NULL UNIQUE);""") token = self.config.get('token') if token and not self.is_token(token): self.query('INSERT INTO tokens (token) VALUES (?)', [token]) def is_token(self, token): return self.query_exists('SELECT COUNT(*) FROM tokens WHERE token = ?', [token]) def is_repo(self, id): return self.query_exists('SELECT COUNT(*) FROM repos WHERE id = ?', [id]) def add_repo(self, name, type, remote, description): sql = 'INSERT INTO repos (name, type, remote, description, created, score) VALUES (?, ?, ?, ?, ?, ?)' self.query(sql, [name, type, remote, description, self.get_now(), 0]) def del_repo(self, id): self.query('DELETE FROM repos WHERE id = ?', [id]) def get_repo(self, id): if not self.is_repo(id): return None result = self.query('SELECT id, name, type, remote, description, created, updated, score FROM repos WHERE id = ?', [id]) return self.dict_from_row(result.fetchone()) def get_repos(self): repos = [] result = self.query('SELECT id, name, type, remote, description, created, updated, score FROM repos') for repo in result.fetchall(): repos.append(self.dict_from_row(repo)) return repos def query(self, sql, args=None): args = [] if args is None else args logging.debug('Executing: {} [{}]'.format(sql, ','.join(str(v) for v in args))) data = self.cursor.execute(sql, args) self.connection.commit() return data def query_exists(self, sql, args=None): args = [] if args is None else args return self.query(sql, args).fetchone()[0] > 0 @staticmethod def get_now(): return datetime.now().strftime('%Y-%m-%d %H:%M:%S') @staticmethod def dict_from_row(row): return dict(zip(row.keys(), row))
0
133
0
3,082
0
0
0
18
113
3d9ba12ebbec8fcf3abd7c138d26883b8b57674c
1,321
py
Python
Flask/learnflask.py
subash-kc/2022-01-04-Python
5ce51e4265bcd860a4e62423edef6ec9cd1437b4
[ "MIT" ]
1
2022-01-14T18:03:42.000Z
2022-01-14T18:03:42.000Z
Flask/learnflask.py
subash-kc/2022-01-04-Python
5ce51e4265bcd860a4e62423edef6ec9cd1437b4
[ "MIT" ]
null
null
null
Flask/learnflask.py
subash-kc/2022-01-04-Python
5ce51e4265bcd860a4e62423edef6ec9cd1437b4
[ "MIT" ]
null
null
null
""" Handle only one request one time not good for developer Flask is a small and lightweight Python web framework that provides useful tools and features that make creating web applications in Python easier. It gives developers flexibility and is a more accessible framework for new developers since you can build a web application quickly using only a single Python file Flask is a web development framework created in Python language. This Framework is based on the robust foundation of Jinja2 templates engine and Werkzeug comprehensive WSGI web application library. """ # An object of Flask class is our WSGI application from flask import Flask # Flask constructor takes the name of current # module (__name__) as argument app = Flask(__name__) # route() function of the Flask class is a # decorator, tells the application which URL # should call the associated function #not a good way to implement below code in flask app.add_url_rule("/hello", "hello", hello_world1) if __name__ == "__main__": app.run(host="0.0.0.0", port=2224) # runs the application # app.run(host="0.0.0.0", port=2224, debug=True) # DEBUG MODE
32.219512
147
0.761544
""" Handle only one request one time not good for developer Flask is a small and lightweight Python web framework that provides useful tools and features that make creating web applications in Python easier. It gives developers flexibility and is a more accessible framework for new developers since you can build a web application quickly using only a single Python file Flask is a web development framework created in Python language. This Framework is based on the robust foundation of Jinja2 templates engine and Werkzeug comprehensive WSGI web application library. """ # An object of Flask class is our WSGI application from flask import Flask # Flask constructor takes the name of current # module (__name__) as argument app = Flask(__name__) # route() function of the Flask class is a # decorator, tells the application which URL # should call the associated function @app.route("/") def hello_world(): return "Hello World" @app.route("/subash") def hello_subash(): return "Hello, Namaste, Subash KC" #not a good way to implement below code in flask def hello_world1(): return "hello world" app.add_url_rule("/hello", "hello", hello_world1) if __name__ == "__main__": app.run(host="0.0.0.0", port=2224) # runs the application # app.run(host="0.0.0.0", port=2224, debug=True) # DEBUG MODE
0
96
0
0
0
22
0
0
68
734d4660acd1fa981bb20e9452efd630f2edbc0e
17,263
py
Python
platformio/platforms/base.py
eiginn/platformio
33502f82f26e731f5bdc38c1ea6b17d1565dedd3
[ "Apache-2.0" ]
2
2020-05-12T15:10:37.000Z
2021-07-02T15:41:56.000Z
platformio/platforms/base.py
eiginn/platformio
33502f82f26e731f5bdc38c1ea6b17d1565dedd3
[ "Apache-2.0" ]
null
null
null
platformio/platforms/base.py
eiginn/platformio
33502f82f26e731f5bdc38c1ea6b17d1565dedd3
[ "Apache-2.0" ]
1
2018-11-30T22:34:24.000Z
2018-11-30T22:34:24.000Z
# Copyright 2014-2016 Ivan Kravets <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. PLATFORM_PACKAGES = { "framework-arduinoavr": [ ("Arduino Wiring-based Framework (AVR Core, 1.6)", "http://arduino.cc/en/Reference/HomePage") ], "framework-arduinosam": [ ("Arduino Wiring-based Framework (SAM Core, 1.6)", "http://arduino.cc/en/Reference/HomePage") ], "framework-arduinoteensy": [ ("Arduino Wiring-based Framework", "http://arduino.cc/en/Reference/HomePage") ], "framework-arduinomsp430": [ ("Arduino Wiring-based Framework (MSP430 Core)", "http://arduino.cc/en/Reference/HomePage") ], "framework-arduinoespressif": [ ("Arduino Wiring-based Framework (ESP8266 Core)", "https://github.com/esp8266/Arduino") ], "framework-arduinonordicnrf51": [ ("Arduino Wiring-based Framework (RFduino Core)", "https://github.com/RFduino/RFduino") ], "framework-energiamsp430": [ ("Energia Wiring-based Framework (MSP430 Core)", "http://energia.nu/reference/") ], "framework-energiativa": [ ("Energia Wiring-based Framework (LM4F Core)", "http://energia.nu/reference/") ], "framework-cmsis": [ ("Vendor-independent hardware abstraction layer for the Cortex-M " "processor series", "http://www.arm.com/products/processors/" "cortex-m/cortex-microcontroller-software-interface-standard.php") ], "framework-spl": [ ("Standard Peripheral Library for STM32 MCUs", "http://www.st.com" "/web/catalog/tools/FM147/CL1794/SC961/SS1743/PF257890") ], "framework-libopencm3": [ ("libOpenCM3 Framework", "http://www.libopencm3.org/") ], "framework-mbed": [ ("mbed Framework", "http://mbed.org") ], "framework-wiringpi": [ ("GPIO Interface library for the Raspberry Pi", "http://wiringpi.com") ], "sdk-esp8266": [ ("ESP8266 SDK", "http://bbs.espressif.com") ], "ldscripts": [ ("Linker Scripts", "https://sourceware.org/binutils/docs/ld/Scripts.html") ], "toolchain-atmelavr": [ ("avr-gcc", "https://gcc.gnu.org/wiki/avr-gcc"), ("GDB", "http://www.gnu.org/software/gdb/"), ("AVaRICE", "http://avarice.sourceforge.net/"), ("SimulAVR", "http://www.nongnu.org/simulavr/") ], "toolchain-gccarmnoneeabi": [ ("gcc-arm-embedded", "https://launchpad.net/gcc-arm-embedded"), ("GDB", "http://www.gnu.org/software/gdb/") ], "toolchain-gccarmlinuxgnueabi": [ ("GCC for Linux ARM GNU EABI", "https://gcc.gnu.org"), ("GDB", "http://www.gnu.org/software/gdb/") ], "toolchain-gccmingw32": [ ("MinGW", "http://www.mingw.org") ], "toolchain-gcclinux32": [ ("GCC for Linux i686", "https://gcc.gnu.org") ], "toolchain-gcclinux64": [ ("GCC for Linux x86_64", "https://gcc.gnu.org") ], "toolchain-xtensa": [ ("xtensa-gcc", "https://github.com/jcmvbkbc/gcc-xtensa"), ("GDB", "http://www.gnu.org/software/gdb/") ], "toolchain-timsp430": [ ("msp-gcc", "http://sourceforge.net/projects/mspgcc/"), ("GDB", "http://www.gnu.org/software/gdb/") ], "tool-scons": [ ("SCons software construction tool", "http://www.scons.org") ], "tool-avrdude": [ ("AVRDUDE", "http://www.nongnu.org/avrdude/") ], "tool-micronucleus": [ ("Micronucleus", "https://github.com/micronucleus/micronucleus") ], "tool-bossac": [ ("BOSSA CLI", "https://sourceforge.net/projects/b-o-s-s-a/") ], "tool-openocd": [ ("OpenOCD", "http://openocd.org") ], "tool-stlink": [ ("ST-Link", "https://github.com/texane/stlink") ], "tool-teensy": [ ("Teensy Loader", "https://www.pjrc.com/teensy/loader.html") ], "tool-lm4flash": [ ("Flash Programmer", "http://www.ti.com/tool/lmflashprogrammer") ], "tool-mspdebug": [ ("MSPDebug", "http://mspdebug.sourceforge.net/") ], "tool-esptool": [ ("esptool-ck", "https://github.com/igrr/esptool-ck") ], "tool-rfdloader": [ ("rfdloader", "https://github.com/RFduino/RFduino") ], "tool-mkspiffs": [ ("Tool to build and unpack SPIFFS images", "https://github.com/igrr/mkspiffs") ] }
33.070881
78
0.573307
# Copyright 2014-2016 Ivan Kravets <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re import sys from imp import load_source from multiprocessing import cpu_count from os.path import isdir, isfile, join import click from platformio import app, exception, util from platformio.app import get_state_item, set_state_item from platformio.pkgmanager import PackageManager PLATFORM_PACKAGES = { "framework-arduinoavr": [ ("Arduino Wiring-based Framework (AVR Core, 1.6)", "http://arduino.cc/en/Reference/HomePage") ], "framework-arduinosam": [ ("Arduino Wiring-based Framework (SAM Core, 1.6)", "http://arduino.cc/en/Reference/HomePage") ], "framework-arduinoteensy": [ ("Arduino Wiring-based Framework", "http://arduino.cc/en/Reference/HomePage") ], "framework-arduinomsp430": [ ("Arduino Wiring-based Framework (MSP430 Core)", "http://arduino.cc/en/Reference/HomePage") ], "framework-arduinoespressif": [ ("Arduino Wiring-based Framework (ESP8266 Core)", "https://github.com/esp8266/Arduino") ], "framework-arduinonordicnrf51": [ ("Arduino Wiring-based Framework (RFduino Core)", "https://github.com/RFduino/RFduino") ], "framework-energiamsp430": [ ("Energia Wiring-based Framework (MSP430 Core)", "http://energia.nu/reference/") ], "framework-energiativa": [ ("Energia Wiring-based Framework (LM4F Core)", "http://energia.nu/reference/") ], "framework-cmsis": [ ("Vendor-independent hardware abstraction layer for the Cortex-M " "processor series", "http://www.arm.com/products/processors/" "cortex-m/cortex-microcontroller-software-interface-standard.php") ], "framework-spl": [ ("Standard Peripheral Library for STM32 MCUs", "http://www.st.com" "/web/catalog/tools/FM147/CL1794/SC961/SS1743/PF257890") ], "framework-libopencm3": [ ("libOpenCM3 Framework", "http://www.libopencm3.org/") ], "framework-mbed": [ ("mbed Framework", "http://mbed.org") ], "framework-wiringpi": [ ("GPIO Interface library for the Raspberry Pi", "http://wiringpi.com") ], "sdk-esp8266": [ ("ESP8266 SDK", "http://bbs.espressif.com") ], "ldscripts": [ ("Linker Scripts", "https://sourceware.org/binutils/docs/ld/Scripts.html") ], "toolchain-atmelavr": [ ("avr-gcc", "https://gcc.gnu.org/wiki/avr-gcc"), ("GDB", "http://www.gnu.org/software/gdb/"), ("AVaRICE", "http://avarice.sourceforge.net/"), ("SimulAVR", "http://www.nongnu.org/simulavr/") ], "toolchain-gccarmnoneeabi": [ ("gcc-arm-embedded", "https://launchpad.net/gcc-arm-embedded"), ("GDB", "http://www.gnu.org/software/gdb/") ], "toolchain-gccarmlinuxgnueabi": [ ("GCC for Linux ARM GNU EABI", "https://gcc.gnu.org"), ("GDB", "http://www.gnu.org/software/gdb/") ], "toolchain-gccmingw32": [ ("MinGW", "http://www.mingw.org") ], "toolchain-gcclinux32": [ ("GCC for Linux i686", "https://gcc.gnu.org") ], "toolchain-gcclinux64": [ ("GCC for Linux x86_64", "https://gcc.gnu.org") ], "toolchain-xtensa": [ ("xtensa-gcc", "https://github.com/jcmvbkbc/gcc-xtensa"), ("GDB", "http://www.gnu.org/software/gdb/") ], "toolchain-timsp430": [ ("msp-gcc", "http://sourceforge.net/projects/mspgcc/"), ("GDB", "http://www.gnu.org/software/gdb/") ], "tool-scons": [ ("SCons software construction tool", "http://www.scons.org") ], "tool-avrdude": [ ("AVRDUDE", "http://www.nongnu.org/avrdude/") ], "tool-micronucleus": [ ("Micronucleus", "https://github.com/micronucleus/micronucleus") ], "tool-bossac": [ ("BOSSA CLI", "https://sourceforge.net/projects/b-o-s-s-a/") ], "tool-openocd": [ ("OpenOCD", "http://openocd.org") ], "tool-stlink": [ ("ST-Link", "https://github.com/texane/stlink") ], "tool-teensy": [ ("Teensy Loader", "https://www.pjrc.com/teensy/loader.html") ], "tool-lm4flash": [ ("Flash Programmer", "http://www.ti.com/tool/lmflashprogrammer") ], "tool-mspdebug": [ ("MSPDebug", "http://mspdebug.sourceforge.net/") ], "tool-esptool": [ ("esptool-ck", "https://github.com/igrr/esptool-ck") ], "tool-rfdloader": [ ("rfdloader", "https://github.com/RFduino/RFduino") ], "tool-mkspiffs": [ ("Tool to build and unpack SPIFFS images", "https://github.com/igrr/mkspiffs") ] } def get_packages(): return PLATFORM_PACKAGES class PlatformFactory(object): @staticmethod def get_clsname(type_): return "%s%sPlatform" % (type_.upper()[0], type_.lower()[1:]) @staticmethod def load_module(type_, path): module = None try: module = load_source( "platformio.platforms.%s" % type_, path) except ImportError: raise exception.UnknownPlatform(type_) return module @classmethod @util.memoized def _lookup_platforms(cls): platforms = {} for d in (util.get_home_dir(), util.get_source_dir()): pdir = join(d, "platforms") if not isdir(pdir): continue for p in sorted(os.listdir(pdir)): if (p in ("__init__.py", "base.py") or not p.endswith(".py")): continue type_ = p[:-3] path = join(pdir, p) try: isplatform = hasattr( cls.load_module(type_, path), cls.get_clsname(type_) ) if isplatform: platforms[type_] = path except exception.UnknownPlatform: pass return platforms @classmethod def get_platforms(cls, installed=False): platforms = cls._lookup_platforms() if not installed: return platforms installed_platforms = {} for type_ in get_state_item("installed_platforms", []): if type_ in platforms: installed_platforms[type_] = platforms[type_] return installed_platforms @classmethod def newPlatform(cls, type_): platforms = cls.get_platforms() if type_ not in platforms: raise exception.UnknownPlatform(type_) _instance = getattr( cls.load_module(type_, platforms[type_]), cls.get_clsname(type_) )() assert isinstance(_instance, BasePlatform) return _instance class BasePlatform(object): PACKAGES = {} LINE_ERROR_RE = re.compile(r"(\s+error|error[:\s]+)", re.I) def __init__(self): self._found_error = False self._last_echo_line = None # 1 = errors # 2 = 1 + warnings # 3 = 2 + others self._verbose_level = 3 def get_type(self): return self.__class__.__name__[:-8].lower() def get_name(self): return self.get_type().title() def get_build_script(self): builtin = join(util.get_source_dir(), "builder", "scripts", "%s.py" % self.get_type()) if isfile(builtin): return builtin raise NotImplementedError() def get_description(self): if self.__doc__: doclines = [l.strip() for l in self.__doc__.splitlines() if l.strip()] return " ".join(doclines[:-1]).strip() else: raise NotImplementedError() def get_vendor_url(self): if self.__doc__ and "http" in self.__doc__: return self.__doc__[self.__doc__.index("http"):].strip() else: raise NotImplementedError() def is_embedded(self): for name, opts in self.get_packages().items(): if name == "framework-mbed" or opts.get("alias") == "uploader": return True return False def get_packages(self): return self.PACKAGES def get_package_alias(self, pkgname): return self.PACKAGES[pkgname].get("alias") def pkg_aliases_to_names(self, aliases): names = [] for alias in aliases: name = alias # lookup by package aliases for _name, _opts in self.get_packages().items(): if _opts.get("alias") == alias: name = None names.append(_name) # if alias is the right name if name: names.append(name) return names def get_default_packages(self): return [k for k, v in self.get_packages().items() if v.get("default", False)] def get_installed_packages(self): pm = PackageManager() return [n for n in self.get_packages().keys() if pm.is_installed(n)] def install(self, with_packages=None, without_packages=None, skip_default_packages=False): with_packages = set( self.pkg_aliases_to_names(with_packages or [])) without_packages = set( self.pkg_aliases_to_names(without_packages or [])) upkgs = with_packages | without_packages ppkgs = set(self.get_packages().keys()) if not upkgs.issubset(ppkgs): raise exception.UnknownPackage(", ".join(upkgs - ppkgs)) requirements = [] for name, opts in self.get_packages().items(): if name in without_packages: continue elif (name in with_packages or (not skip_default_packages and opts.get("default"))): requirements.append(name) pm = PackageManager() for name in requirements: pm.install(name) # register installed platform data = get_state_item("installed_platforms", []) if self.get_type() not in data: data.append(self.get_type()) set_state_item("installed_platforms", data) return len(requirements) def uninstall(self): platform = self.get_type() installed_platforms = PlatformFactory.get_platforms( installed=True).keys() if platform not in installed_platforms: raise exception.PlatformNotInstalledYet(platform) deppkgs = set() for item in installed_platforms: if item == platform: continue p = PlatformFactory.newPlatform(item) deppkgs = deppkgs.union(set(p.get_packages().keys())) pm = PackageManager() for name in self.get_packages().keys(): if not pm.is_installed(name) or name in deppkgs: continue pm.uninstall(name) # unregister installed platform installed_platforms.remove(platform) set_state_item("installed_platforms", installed_platforms) return True def update(self): pm = PackageManager() for name in self.get_installed_packages(): pm.update(name) def is_outdated(self): pm = PackageManager() obsolated = pm.get_outdated() return not set(self.get_packages().keys()).isdisjoint(set(obsolated)) def configure_default_packages(self, envoptions, targets): # enbale used frameworks for pkg_name in self.pkg_aliases_to_names(["framework"]): for framework in envoptions.get("framework", "").split(","): framework = framework.lower().strip() if not framework: continue if framework in pkg_name: self.PACKAGES[pkg_name]['default'] = True # append SCons tool self.PACKAGES['tool-scons'] = {"default": True} # enable upload tools for upload targets if any(["upload" in t for t in targets] + ["program" in targets]): for _name, _opts in self.PACKAGES.iteritems(): if _opts.get("alias") == "uploader": self.PACKAGES[_name]['default'] = True elif "uploadlazy" in targets: # skip all packages, allow only upload tools self.PACKAGES[_name]['default'] = False def _install_default_packages(self): installed_platforms = PlatformFactory.get_platforms( installed=True).keys() if (self.get_type() in installed_platforms and set(self.get_default_packages()) <= set(self.get_installed_packages())): return True if (not app.get_setting("enable_prompts") or self.get_type() in installed_platforms or click.confirm( "The platform '%s' has not been installed yet. " "Would you like to install it now?" % self.get_type())): return self.install() else: raise exception.PlatformNotInstalledYet(self.get_type()) def run(self, variables, targets, verbose): assert isinstance(variables, list) assert isinstance(targets, list) envoptions = {} for v in variables: _name, _value = v.split("=", 1) envoptions[_name.lower()] = _value self.configure_default_packages(envoptions, targets) self._install_default_packages() self._verbose_level = int(verbose) if "clean" in targets: targets.remove("clean") targets.append("-c") if "build_script" not in envoptions: variables.append("BUILD_SCRIPT=%s" % self.get_build_script()) for v in variables: if not v.startswith("BUILD_SCRIPT="): continue _, path = v.split("=", 1) if not isfile(path): raise exception.BuildScriptNotFound(path) # append aliases of the installed packages installed_packages = PackageManager.get_installed() for name, options in self.get_packages().items(): if "alias" not in options or name not in installed_packages: continue variables.append( "PIOPACKAGE_%s=%s" % (options['alias'].upper(), name)) self._found_error = False result = self._run_scons(variables, targets) assert "returncode" in result # if self._found_error: # result['returncode'] = 1 if self._last_echo_line == ".": click.echo("") return result def _run_scons(self, variables, targets): # pass current PYTHONPATH to SCons if "PYTHONPATH" in os.environ: _PYTHONPATH = os.environ.get("PYTHONPATH").split(os.pathsep) else: _PYTHONPATH = [] for p in os.sys.path: if p not in _PYTHONPATH: _PYTHONPATH.append(p) os.environ['PYTHONPATH'] = os.pathsep.join(_PYTHONPATH) result = util.exec_command( [ os.path.normpath(sys.executable), join(util.get_home_dir(), "packages", "tool-scons", "script", "scons"), "-Q", "-j %d" % self.get_job_nums(), "--warn=no-no-parallel-support", "-f", join(util.get_source_dir(), "builder", "main.py") ] + variables + targets, stdout=util.AsyncPipe(self.on_run_out), stderr=util.AsyncPipe(self.on_run_err) ) return result def on_run_out(self, line): self._echo_line(line, level=3) def on_run_err(self, line): is_error = self.LINE_ERROR_RE.search(line) is not None if is_error: self._found_error = True self._echo_line(line, level=1 if is_error else 2) def _echo_line(self, line, level): assert 1 <= level <= 3 fg = ("red", "yellow", None)[level - 1] if level == 3 and "is up to date" in line: fg = "green" if level > self._verbose_level: click.secho(".", fg=fg, err=level < 3, nl=False) self._last_echo_line = "." return if self._last_echo_line == ".": click.echo("") self._last_echo_line = line click.secho(line, fg=fg, err=level < 3) @staticmethod def get_job_nums(): try: return cpu_count() except NotImplementedError: return 1
0
2,024
0
9,717
0
27
0
81
427
ae7911041f957339b7880da7f8a77caa9715da61
2,462
py
Python
kedb/files/settings.py
salt-formulas/salt-formula-kedb
0739d4c8c5278ede0275820b8c5ba810e746c8f1
[ "Apache-2.0" ]
null
null
null
kedb/files/settings.py
salt-formulas/salt-formula-kedb
0739d4c8c5278ede0275820b8c5ba810e746c8f1
[ "Apache-2.0" ]
null
null
null
kedb/files/settings.py
salt-formulas/salt-formula-kedb
0739d4c8c5278ede0275820b8c5ba810e746c8f1
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- {%- set app = pillar.kedb.server %} from os.path import join, dirname, abspath, normpath DATABASES = { 'default': { {%- if app.database.engine == 'mysql' %} 'ENGINE': 'django.db.backends.mysql', 'PORT': '3306', 'OPTIONS': {'init_command': 'SET storage_engine=INNODB,character_set_connection=utf8,collation_connection=utf8_unicode_ci', }, {% else %} 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'PORT': '5432', {%- endif %} 'HOST': '{{ app.database.host }}', 'NAME': '{{ app.database.name }}', 'PASSWORD': '{{ app.database.password }}', 'USER': '{{ app.database.user }}' } } CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache', 'LOCATION': '{{ app.cache.host }}:11211', 'TIMEOUT': 120, 'KEY_PREFIX': '{{ app.cache.prefix }}' } } EMAIL_HOST = '{{ app.mail.host }}', EMAIL_HOST_USER = '{{ app.mail.user }}', EMAIL_HOST_PASSWORD = '{{ app.mail.password }}' {%- if pillar.linux is defined %} TIME_ZONE = '{{ pillar.linux.system.timezone }}' {%- else %} TIME_ZONE = '{{ pillar.system.timezone }}' {%- endif %} SECRET_KEY = '{{ app.secret_key }}' {%- if app.logger_handler is defined %} LOCAL_INSTALLED_APPS = ( 'raven.contrib.django.raven_compat', ) {%- else %} LOGGING = { 'version': 1, # When set to True this will disable all logging except # for loggers specified in this configuration dictionary. Note that # if nothing is specified here and disable_existing_loggers is True, # django.db.backends will still log unless it is disabled explicitly. 'disable_existing_loggers': False, 'root': { 'level': 'WARNING', 'handlers': ['sentry'], }, 'formatters': { 'verbose': { 'format': '%(asctime)s %(process)d %(levelname)s %(name)s ' '%(message)s' }, }, 'handlers': { 'sentry': { 'level': 'ERROR', 'class': 'raven.contrib.django.raven_compat.handlers.SentryHandler', }, 'file': { 'level': 'DEBUG', 'class': 'logging.FileHandler', 'filename': '/var/log/kedb/django.log', 'formatter': 'verbose', }, }, } {%- endif %} RAVEN_CONFIG = { {% if app.logger_handler is defined %} 'dsn': '{{ app.logger_handler.dsn }}', {% endif %} }
28.627907
134
0.561738
# -*- coding: utf-8 -*- {%- set app = pillar.kedb.server %} from os.path import join, dirname, abspath, normpath DATABASES = { 'default': { {%- if app.database.engine == 'mysql' %} 'ENGINE': 'django.db.backends.mysql', 'PORT': '3306', 'OPTIONS': {'init_command': 'SET storage_engine=INNODB,character_set_connection=utf8,collation_connection=utf8_unicode_ci', }, {% else %} 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'PORT': '5432', {%- endif %} 'HOST': '{{ app.database.host }}', 'NAME': '{{ app.database.name }}', 'PASSWORD': '{{ app.database.password }}', 'USER': '{{ app.database.user }}' } } CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache', 'LOCATION': '{{ app.cache.host }}:11211', 'TIMEOUT': 120, 'KEY_PREFIX': '{{ app.cache.prefix }}' } } EMAIL_HOST = '{{ app.mail.host }}', EMAIL_HOST_USER = '{{ app.mail.user }}', EMAIL_HOST_PASSWORD = '{{ app.mail.password }}' {%- if pillar.linux is defined %} TIME_ZONE = '{{ pillar.linux.system.timezone }}' {%- else %} TIME_ZONE = '{{ pillar.system.timezone }}' {%- endif %} SECRET_KEY = '{{ app.secret_key }}' {%- if app.logger_handler is defined %} LOCAL_INSTALLED_APPS = ( 'raven.contrib.django.raven_compat', ) {%- else %} LOGGING = { 'version': 1, # When set to True this will disable all logging except # for loggers specified in this configuration dictionary. Note that # if nothing is specified here and disable_existing_loggers is True, # django.db.backends will still log unless it is disabled explicitly. 'disable_existing_loggers': False, 'root': { 'level': 'WARNING', 'handlers': ['sentry'], }, 'formatters': { 'verbose': { 'format': '%(asctime)s %(process)d %(levelname)s %(name)s ' '%(message)s' }, }, 'handlers': { 'sentry': { 'level': 'ERROR', 'class': 'raven.contrib.django.raven_compat.handlers.SentryHandler', }, 'file': { 'level': 'DEBUG', 'class': 'logging.FileHandler', 'filename': '/var/log/kedb/django.log', 'formatter': 'verbose', }, }, } {%- endif %} RAVEN_CONFIG = { {% if app.logger_handler is defined %} 'dsn': '{{ app.logger_handler.dsn }}', {% endif %} }
0
0
0
0
0
0
0
0
0
276b2b75102958887a594dd0dc549f5b1e092d4b
6,243
py
Python
snesc_checker.py
wminner/SNES-Classic-Checker
9b9fc1b72ad4d64969d3456cd1b5d05cd03c7d46
[ "MIT" ]
3
2017-08-23T01:32:31.000Z
2018-01-09T03:11:24.000Z
snesc_checker.py
wminner/SNES-Classic-Checker
9b9fc1b72ad4d64969d3456cd1b5d05cd03c7d46
[ "MIT" ]
null
null
null
snesc_checker.py
wminner/SNES-Classic-Checker
9b9fc1b72ad4d64969d3456cd1b5d05cd03c7d46
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import sys # import browser_cookie3 # Create email with subject and body, then sends via gmail address provided # Gets and caches your gmail address # Gets your gmail password (does not cache) # Strip off script name in arg list if __name__ == "__main__": main(sys.argv[1:])
31.852041
168
0.682364
#!/usr/bin/env python3 import re, sys import getopt, pickle import time, datetime import urllib.request import smtplib from email.mime.text import MIMEText import getpass # import browser_cookie3 def main(argv): default_send_email = "<your_sender_gmail>@gmail.com" default_receive_email = "<your_receiver_gmail>@gmail.com" sleep_time = 60 test_run = False max_alerts = -1 # -1 means unlimited alerts num_alerts = 0 websites = ['Bestbuy', 'Walmart', 'BHPhoto'] search_strings = { 'Amazon' : b"Currently unavailable.", 'Bestbuy' : b"data-add-to-cart-message=\"Coming Soon\"", 'Walmart' : b'<span class="copy-mini display-block-xs font-bold u-textBlack">Out of stock<link itemprop="availability" href="https://schema.org/OutOfStock"/></span>', 'BHPhoto' : b"data-selenium=\"notStock\">New Item - Coming Soon", 'Target' : b'class="sbc-add-to-cart btn btn-primary btn-lg btn-block sbc-selected" disabled=""> coming soon </button>' } urls = { 'Amazon' : "https://www.amazon.com/gp/product/B0721GGGS9", 'Bestbuy' : "http://www.bestbuy.com/site/nintendo-entertainment-system-snes-classic-edition/5919830.p?skuId=5919830", 'Walmart' : "https://www.walmart.com/ip/PO-HDW-PLACEHOLDER-652-WM50-Universal/55791858", 'BHPhoto' : "https://www.bhphotovideo.com/c/product/1347308-REG/nintendo_snes_super_nintendo_classic_edition.html", 'Target' : "https://www.target.com/p/snes-classic-edition/-/A-52826093" } def print_usage(): print("Usage: snesc_checker.py [option(s)]") print(" [-n <max_num_of_alerts>] limits the max number of alerts") print(" [-s <sleep_time_in_sec>] changes the sleep time") print(" [-t] test email mode") def search_website(website, url): if website == 'Amazon' or website == 'Target': # Not working, removed from websites list # cj = browser_cookie3.firefox() # opener = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cj)) opener = urllib.request.build_opener() opener.addheaders = [('User-Agent', 'Mozilla/5.0')] else: opener = urllib.request.build_opener() try: response = opener.open(url) html = response.read() except Exception as e: print(e) print("Exception occurred during {0} fetch!".format(website)) return 0 if search_strings[website] in html: print("{0} Unavailble {1}...".format(website, datetime.datetime.now())) # send_email(sender, sender_pass, receiver, "Not in stock", "test {0}".format(url)) return 0 else: print("\n{0} IN STOCK {1}!!!!!!!!!!!!!!!!!!!!!!!!!\n".format(website.upper(), datetime.datetime.now())) send_email(sender, sender_pass, receiver, "SNES CLASSIC IN STOCK AT {0}".format(website.upper()), url) return 1 def progress_bar(): print("|0%", end="") for k in range(int(sleep_time/2)-6): print(" ", end="") print("Sleep ", end="") for k in range(int(sleep_time/2)-6): print(" ", end="") print("100%|\n|", end="") sleep_cnt = 0 while sleep_cnt < sleep_time: time.sleep(1) print(".", end="", flush=True) sleep_cnt += 1 print('|') # Parse arguments if len(sys.argv) != 0: try: opts, args = getopt.getopt(argv, "htn:s:", ["num=, sleep="]) except getopt.GetoptError: print_usage() sys.exit(2) for opt, arg in opts: if opt == '-h': print_usage() sys.exit() elif opt == '-t': test_run = True elif opt in ('-s', '--sleep='): sleep_time = int(arg) elif opt in ('-n', '--num='): max_alerts = int(arg) if max_alerts <= 0: print("Invalid max number of alerts! Exiting...") sys.exit(2) # Get email and password from which to send and receive alerts sender = get_gmail_address(default_send_email, "send") sender_pass = get_password(sender) receiver = get_gmail_address(default_receive_email, "receive") print("") if test_run: print("Sent test email.") send_email(sender, sender_pass, receiver, "SNES Classic Checker - Test Email", "It works!") # Main loop try: while True: for website in websites: num_alerts += search_website(website, urls[website]) if max_alerts >= 0 and num_alerts >= max_alerts: print("Reached max number of alerts! Exiting...") send_email(sender, sender_pass, receiver, "SNES Classic Checker - Max Alerts Reached", "Please restart SNES Classic Checker to receive more email alerts!") sys.exit() # Wait for a while before checking again # time.sleep(sleep_time) progress_bar() except KeyboardInterrupt: print("\nExiting...") # Create email with subject and body, then sends via gmail address provided def send_email(sender, sender_pass, receiver, subject, body): # Create email msg = MIMEText(body) msg['Subject'] = subject msg['From'] = sender msg['To'] = receiver # Send email out server = smtplib.SMTP('smtp.gmail.com', 587) server.starttls() server.login(sender, sender_pass) server.send_message(msg) server.quit() # Gets and caches your gmail address def get_gmail_address(default_addr, mode): last_email_addr = "{0}_email.pkl".format(mode) # Try to get pickle of last IP address try: with open(last_email_addr, 'rb') as fp: last_addr = pickle.load(fp) except IOError: last_addr = None if mode == "send": if last_addr: addr = input("Enter your {0} gmail address (or return to use {1}): ".format(mode.upper(), last_addr)) or last_addr else: addr = input("Enter your {0} gmail address: ".format(mode.upper())) else: if last_addr: addr = input("Enter your {0} gmail address (or return to use {1}): ".format(mode.upper(), last_addr)) or last_addr else: addr = input("Enter your {0} gmail address: ".format(mode.upper())) # Validate address pattern = re.compile("[^@][email protected]") match = re.match(pattern, addr) if not match: print("Gmail address \"{0}\" is not valid!".format(addr)) sys.exit(1) # Save the last used IP address to pickle file with open(last_email_addr, 'wb') as fp: pickle.dump(addr, fp) return addr # Gets your gmail password (does not cache) def get_password(email): password = getpass.getpass("Enter password for {0}: ".format(email)) if not password: print("Email password should not be empty!") sys.exit(1) return password # Strip off script name in arg list if __name__ == "__main__": main(sys.argv[1:])
0
0
0
0
0
5,708
0
5
222
0ecd9b1334e318b4ccffc4b6eeae536b6e03414f
186
py
Python
python-flask-server-generated/swagger_server/controllers/__init__.py
procube-open/pdns_certbot_server
516207b2416781c94a8620bb3a1d0897c773142d
[ "MIT" ]
null
null
null
python-flask-server-generated/swagger_server/controllers/__init__.py
procube-open/pdns_certbot_server
516207b2416781c94a8620bb3a1d0897c773142d
[ "MIT" ]
null
null
null
python-flask-server-generated/swagger_server/controllers/__init__.py
procube-open/pdns_certbot_server
516207b2416781c94a8620bb3a1d0897c773142d
[ "MIT" ]
null
null
null
import threading import logging LOCK = threading.Lock() logger = logging.getLogger("CERTBOT") handler = logging.StreamHandler() logger.addHandler(handler) logger.setLevel(logging.INFO)
20.666667
37
0.801075
import threading import logging LOCK = threading.Lock() logger = logging.getLogger("CERTBOT") handler = logging.StreamHandler() logger.addHandler(handler) logger.setLevel(logging.INFO)
0
0
0
0
0
0
0
0
0
a09b9af2b847bf39b063ead0a72aab28cd93427e
126
py
Python
wtpy/apps/__init__.py
Huijun-Cui/wtpy
9a8243a20b944fbb37aa33d81215b7b36ac7b1e2
[ "MIT" ]
null
null
null
wtpy/apps/__init__.py
Huijun-Cui/wtpy
9a8243a20b944fbb37aa33d81215b7b36ac7b1e2
[ "MIT" ]
null
null
null
wtpy/apps/__init__.py
Huijun-Cui/wtpy
9a8243a20b944fbb37aa33d81215b7b36ac7b1e2
[ "MIT" ]
null
null
null
from .WtBtAnalyst import WtBtAnalyst from .WtCtaOptimizer import WtCtaOptimizer __all__ = ["WtBtAnalyst","WtCtaOptimizer"]
31.5
43
0.809524
from .WtBtAnalyst import WtBtAnalyst from .WtCtaOptimizer import WtCtaOptimizer __all__ = ["WtBtAnalyst","WtCtaOptimizer"]
0
0
0
0
0
0
0
0
0
86633a33a9926907327bdb9b93dde0ee954c35a3
729
py
Python
tests/debugger.py
fferri/pygolog
98a4c5d9de053ee2e43ae2f61fa9f098eb38598a
[ "BSD-3-Clause" ]
7
2017-06-15T14:56:37.000Z
2021-11-12T22:27:47.000Z
tests/debugger.py
fferri/pygolog
98a4c5d9de053ee2e43ae2f61fa9f098eb38598a
[ "BSD-3-Clause" ]
null
null
null
tests/debugger.py
fferri/pygolog
98a4c5d9de053ee2e43ae2f61fa9f098eb38598a
[ "BSD-3-Clause" ]
1
2021-05-14T11:13:01.000Z
2021-05-14T11:13:01.000Z
#!/usr/bin/env python3 from domains.math1 import S s = S(0) p = Sequence( Choose( Exec(S.incr()), Exec(S.double()) ), Choose( Exec(S.incr()), Exec(S.double()) ), Test(lambda s: s.n == 1) ) debug(p, s)
22.78125
71
0.489712
#!/usr/bin/env python3 from collections import defaultdict from copy import copy from strips import * from golog_program import * from domains.math1 import S s = S(0) p = Sequence( Choose( Exec(S.incr()), Exec(S.double()) ), Choose( Exec(S.incr()), Exec(S.double()) ), Test(lambda s: s.n == 1) ) def debug(p, s, a=[], depth=0): print(' '*depth+'%s' % a) print(' '*depth+'s: %s' % s) print(' '*depth+'p: %s%s' % (p, ' (final)' if p.final(s) else '')) i = input('> [c=creep, other=skip] ') if i != 'c': return for pn, sn, an in p.trans(s): debug(pn, sn, an[len(a):], depth+1) debug(p, s)
0
0
0
0
0
291
0
19
112
c7b05272d678883c8d35b24c852e7ccef6f65d43
12,515
py
Python
tests/test_utf8inputtext.py
polm/SudachiPy
9eae063baa65d230cd89e382685fe9e410577125
[ "Apache-2.0" ]
3
2017-09-21T14:56:30.000Z
2017-11-10T05:44:30.000Z
tests/test_utf8inputtext.py
polm/SudachiPy
9eae063baa65d230cd89e382685fe9e410577125
[ "Apache-2.0" ]
null
null
null
tests/test_utf8inputtext.py
polm/SudachiPy
9eae063baa65d230cd89e382685fe9e410577125
[ "Apache-2.0" ]
1
2021-12-17T05:39:38.000Z
2021-12-17T05:39:38.000Z
# Copyright (c) 2019 Works Applications Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import sudachipy.dictionarylib as dictionarylib if __name__ == '__main__': unittest.main()
48.886719
111
0.703076
# Copyright (c) 2019 Works Applications Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest import sudachipy import sudachipy.dictionarylib as dictionarylib class TestUTF8InputText(unittest.TestCase): def setUp(self): self.TEXT = "âbC1あ234漢字𡈽アゴ" self.bytes = [ b'0xC3', b'0xA2', b'0xEF', b'0xBD', b'0x82', b'0x43', b'0x31', b'0xE3', b'0x81', b'0x82', b'0x32', b'0x33', b'0x34', b'0xE6', b'0xBC', b'0xA2', b'0xE5', b'0xAD', b'0x97', b'0xF0', b'0xA1', b'0x88', b'0xBD', b'0xE3', b'0x82', b'0xA2', b'0xEF', b'0xBD', b'0xBA', b'0xEF', b'0xBE', b'0x9E' ] self.input = None grammar = self.MockGrammar() char_category = dictionarylib.charactercategory.CharacterCategory() this_dir = os.path.dirname(os.path.abspath(__file__)) char_category.read_character_definition(os.path.join(this_dir, 'resources/char.def')) grammar.set_character_category(char_category) self.builder = sudachipy.utf8inputtextbuilder.UTF8InputTextBuilder(self.TEXT, grammar) def test_get_original_text(self): self.assertEqual(self.builder.get_original_text(), self.TEXT) self.assertEqual(self.builder.get_text(), self.TEXT) self.input = self.builder.build() self.assertEqual(self.input.get_original_text(), self.TEXT) self.assertEqual(self.input.get_text(), self.TEXT) def test_get_byte_text(self): input_ = self.builder.build() self.assertEqual(len(input_.get_byte_text()), 32) self.assertEqual(self.TEXT.encode('utf-8'), input_.get_byte_text()) def test_get_original_index(self): input_ = self.builder.build() self.assertEqual(input_.get_original_index(0), 0) self.assertEqual(input_.get_original_index(1), 0) self.assertEqual(input_.get_original_index(2), 1) self.assertEqual(input_.get_original_index(4), 1) self.assertEqual(input_.get_original_index(6), 3) self.assertEqual(input_.get_original_index(7), 4) self.assertEqual(input_.get_original_index(10), 5) self.assertEqual(input_.get_original_index(18), 9) self.assertEqual(input_.get_original_index(19), 10) self.assertEqual(input_.get_original_index(22), 10) self.assertEqual(input_.get_original_index(23), 11) self.assertEqual(input_.get_original_index(28), 12) self.assertEqual(input_.get_original_index(31), 13) def test_get_char_category_types(self): input_ = self.builder.build() self.assertTrue(dictionarylib.categorytype.CategoryType.ALPHA in input_.get_char_category_types(0)) self.assertTrue(dictionarylib.categorytype.CategoryType.ALPHA in input_.get_char_category_types(2)) self.assertTrue(dictionarylib.categorytype.CategoryType.ALPHA in input_.get_char_category_types(5)) self.assertTrue(dictionarylib.categorytype.CategoryType.NUMERIC in input_.get_char_category_types(6)) self.assertTrue(dictionarylib.categorytype.CategoryType.HIRAGANA in input_.get_char_category_types(7)) self.assertTrue(dictionarylib.categorytype.CategoryType.HIRAGANA in input_.get_char_category_types(9)) self.assertTrue(dictionarylib.categorytype.CategoryType.NUMERIC in input_.get_char_category_types(10)) self.assertTrue(dictionarylib.categorytype.CategoryType.KANJI in input_.get_char_category_types(13)) self.assertTrue(dictionarylib.categorytype.CategoryType.KANJI in input_.get_char_category_types(18)) self.assertTrue(dictionarylib.categorytype.CategoryType.DEFAULT in input_.get_char_category_types(19)) self.assertTrue(dictionarylib.categorytype.CategoryType.DEFAULT in input_.get_char_category_types(22)) self.assertTrue(dictionarylib.categorytype.CategoryType.KATAKANA in input_.get_char_category_types(23)) self.assertTrue(dictionarylib.categorytype.CategoryType.KATAKANA in input_.get_char_category_types(26)) self.assertTrue(dictionarylib.categorytype.CategoryType.KATAKANA in input_.get_char_category_types(31)) def test_get_char_category_continuous_length(self): input_ = self.builder.build() self.assertEqual(input_.get_char_category_continuous_length(0), 6) self.assertEqual(input_.get_char_category_continuous_length(1), 5) self.assertEqual(input_.get_char_category_continuous_length(2), 4) self.assertEqual(input_.get_char_category_continuous_length(5), 1) self.assertEqual(input_.get_char_category_continuous_length(6), 1) self.assertEqual(input_.get_char_category_continuous_length(7), 3) self.assertEqual(input_.get_char_category_continuous_length(10), 3) self.assertEqual(input_.get_char_category_continuous_length(11), 2) self.assertEqual(input_.get_char_category_continuous_length(12), 1) self.assertEqual(input_.get_char_category_continuous_length(19), 4) self.assertEqual(input_.get_char_category_continuous_length(22), 1) self.assertEqual(input_.get_char_category_continuous_length(23), 9) self.assertEqual(input_.get_char_category_continuous_length(26), 6) self.assertEqual(input_.get_char_category_continuous_length(31), 1) def test_replace_with_same_length(self): self.builder.replace(8, 10, "ああ") self.assertEqual(self.builder.get_original_text(), self.TEXT) self.assertEqual(self.builder.get_text(), "âbC1あ234ああ𡈽アゴ") input_ = self.builder.build() self.assertEqual(input_.get_original_text(), self.TEXT) self.assertEqual(input_.get_text(), "âbC1あ234ああ𡈽アゴ") self.assertEqual(len(input_.get_byte_text()), 32) self.assertEqual(input_.get_original_index(0), 0) self.assertEqual(input_.get_original_index(12), 7) self.assertEqual(input_.get_original_index(13), 8) self.assertEqual(input_.get_original_index(15), 8) self.assertEqual(input_.get_original_index(16), 10) self.assertEqual(input_.get_original_index(18), 10) self.assertEqual(input_.get_original_index(19), 10) self.assertEqual(input_.get_original_index(22), 10) self.assertEqual(input_.get_original_index(31), 13) def test_replaceWithDeletion(self): self.builder.replace(8, 10, "あ") self.assertEqual(self.builder.get_original_text(), self.TEXT) self.assertEqual(self.builder.get_text(), "âbC1あ234あ𡈽アゴ") input_ = self.builder.build() self.assertEqual(input_.get_original_text(), self.TEXT) self.assertEqual(input_.get_text(), "âbC1あ234あ𡈽アゴ") self.assertEqual(len(input_.get_byte_text()), 29) self.assertEqual(input_.get_original_index(0), 0) self.assertEqual(input_.get_original_index(12), 7) self.assertEqual(input_.get_original_index(13), 8) self.assertEqual(input_.get_original_index(15), 8) self.assertEqual(input_.get_original_index(16), 10) self.assertEqual(input_.get_original_index(19), 10) self.assertEqual(input_.get_original_index(28), 13) def test_replaceWithInsertion(self): self.builder.replace(8, 10, "あああ") self.assertEqual(self.builder.get_original_text(), self.TEXT) self.assertEqual(self.builder.get_text(), "âbC1あ234あああ𡈽アゴ") input_ = self.builder.build() self.assertEqual(input_.get_original_text(), self.TEXT) self.assertEqual(input_.get_text(), "âbC1あ234あああ𡈽アゴ") self.assertEqual(len(input_.get_byte_text()), 35) self.assertEqual(input_.get_original_index(0), 0) # â self.assertEqual(input_.get_original_index(12), 7) # 4 self.assertEqual(input_.get_original_index(13), 8) # >あ< ああ self.assertEqual(input_.get_original_index(21), 10) # ああ >あ< self.assertEqual(input_.get_original_index(22), 10) # 𡈽 self.assertEqual(input_.get_original_index(25), 10) # 𡈽 self.assertEqual(input_.get_original_index(35), 14) # ゙ def test_replaceMultiTimes(self): self.builder.replace(0, 1, "a") self.builder.replace(1, 2, "b") self.builder.replace(2, 3, "c") self.builder.replace(10, 11, "土") self.builder.replace(12, 14, "ゴ") input_ = self.builder.build() self.assertEqual(input_.get_original_text(), self.TEXT) self.assertEqual(input_.get_text(), "abc1あ234漢字土アゴ") self.assertEqual(len(input_.get_byte_text()), 25) self.assertEqual(input_.get_original_index(0), 0) self.assertEqual(input_.get_original_index(1), 1) self.assertEqual(input_.get_original_index(2), 2) self.assertEqual(input_.get_original_index(7), 5) self.assertEqual(input_.get_original_index(8), 6) self.assertEqual(input_.get_original_index(9), 7) self.assertEqual(input_.get_original_index(15), 9) self.assertEqual(input_.get_original_index(16), 10) self.assertEqual(input_.get_original_index(18), 10) self.assertEqual(input_.get_original_index(19), 11) self.assertEqual(input_.get_original_index(21), 11) self.assertEqual(input_.get_original_index(22), 12) self.assertEqual(input_.get_original_index(24), 12) def test_getByteLengthByCodePoints(self): input_ = self.builder.build() self.assertEqual(input_.get_code_points_offset_length(0, 1), 2) self.assertEqual(input_.get_code_points_offset_length(0, 4), 7) self.assertEqual(input_.get_code_points_offset_length(10, 1), 1) self.assertEqual(input_.get_code_points_offset_length(11, 1), 1) self.assertEqual(input_.get_code_points_offset_length(12, 1), 1) self.assertEqual(input_.get_code_points_offset_length(13, 2), 6) self.assertEqual(input_.get_code_points_offset_length(19, 1), 4) self.assertEqual(input_.get_code_points_offset_length(23, 3), 9) def test_codePointCount(self): input_ = self.builder.build() self.assertEqual(input_.code_point_count(0, 2), 1) self.assertEqual(input_.code_point_count(0, 7), 4) self.assertEqual(input_.code_point_count(13, 19), 2) def test_canBow(self): input_ = self.builder.build() self.assertTrue(input_.can_bow(0)) # â self.assertFalse(input_.can_bow(1)) self.assertFalse(input_.can_bow(2)) # b self.assertFalse(input_.can_bow(3)) self.assertFalse(input_.can_bow(4)) self.assertFalse(input_.can_bow(5)) # C self.assertTrue(input_.can_bow(6)) # 1 self.assertTrue(input_.can_bow(7)) # あ self.assertTrue(input_.can_bow(19)) # 𡈽 self.assertFalse(input_.can_bow(20)) self.assertFalse(input_.can_bow(21)) self.assertFalse(input_.can_bow(22)) self.assertTrue(input_.can_bow(23)) # ア def test_getWordCandidateLength(self): input_ = self.builder.build() self.assertEqual(input_.get_word_candidate_length(0), 6) self.assertEqual(input_.get_word_candidate_length(6), 1) self.assertEqual(input_.get_word_candidate_length(19), 4) self.assertEqual(input_.get_word_candidate_length(29), 3) class MockGrammar: char_category = None def get_part_of_speech_size(self): return 0 def get_part_of_speech_string(self, pos_id): return None def get_part_of_speech_id(self, pos): return 0 def get_connect_cost(self, left_id, right_id, cost=None): if cost is None: return 0 else: return def get_bos_parameter(self): return None def get_eos_parameter(self): return None def get_character_category(self): return self.char_category def set_character_category(self, char_category): self.char_category = char_category if __name__ == '__main__': unittest.main()
277
0
0
11,661
0
0
0
-17
69
9694a2f313620b91b57ba7cf9877cc25e3d3f26a
8,996
py
Python
mtil/reward_injection_wrappers.py
qxcv/mtil
62608046efb570b53f8107b8de9a7a1f28aee28a
[ "0BSD" ]
1
2021-01-18T23:57:07.000Z
2021-01-18T23:57:07.000Z
mtil/reward_injection_wrappers.py
qxcv/mtil
62608046efb570b53f8107b8de9a7a1f28aee28a
[ "0BSD" ]
null
null
null
mtil/reward_injection_wrappers.py
qxcv/mtil
62608046efb570b53f8107b8de9a7a1f28aee28a
[ "0BSD" ]
null
null
null
"""Wrappers for rlpyt algorithms that inject reward from a custom reward model at execution time. TODO: need to figure out exactly how I'm going to do this for algorithms other than PG. Some notes: - For PG algorithms (PPO + A2C) it's easy to override the reward used at training time by subclassing & overriding the process_returns(samples) method. This won't work for algos with replay buffers! - Not sure what to do for DQN. Prioritised DQN is a pain (and probably not possible to do efficiently anyway, so I may as well skip it). Probably my best bet is to override the loss() function to use actual reward. That will also be annoying b/c by default the algorithm uses a "return_" thing calculated by the replay buffer; to avoid that, I'll have to touch most parts of the loss() method (so say goodbye to forward-compat with future versions of rlpyt). - Also not yet sure how to customise reward evaluation in samplers; perhaps I shouldn't be doing that at all, and should instead write my own eval code? I'll definitely need my own code if I want to display both eval_score and the learnt reward.""" # ################# # # For PG algorithms # # ################# # # ################ # # For DQN variants # # ################ # # (TODO: going to try policy gradient first & then move to DQN if it seems more # efficient)
39.113043
79
0.626723
"""Wrappers for rlpyt algorithms that inject reward from a custom reward model at execution time. TODO: need to figure out exactly how I'm going to do this for algorithms other than PG. Some notes: - For PG algorithms (PPO + A2C) it's easy to override the reward used at training time by subclassing & overriding the process_returns(samples) method. This won't work for algos with replay buffers! - Not sure what to do for DQN. Prioritised DQN is a pain (and probably not possible to do efficiently anyway, so I may as well skip it). Probably my best bet is to override the loss() function to use actual reward. That will also be annoying b/c by default the algorithm uses a "return_" thing calculated by the replay buffer; to avoid that, I'll have to touch most parts of the loss() method (so say goodbye to forward-compat with future versions of rlpyt…). - Also not yet sure how to customise reward evaluation in samplers; perhaps I shouldn't be doing that at all, and should instead write my own eval code? I'll definitely need my own code if I want to display both eval_score and the learnt reward.""" from collections import namedtuple import warnings from rlpyt.algos.pg.a2c import A2C from rlpyt.algos.pg.ppo import PPO from rlpyt.utils.tensor import infer_leading_dims, restore_leading_dims import torch from mtil.utils.misc import RunningMeanVariance, tree_map # ################# # # For PG algorithms # # ################# # class RewardEvaluatorMT: """Batching, multi-task reward evaluator which can optionally standardise reward values.""" def __init__(self, task_ids_and_names, reward_model, obs_dims, batch_size=256, target_std=0.1, normalise=False): self.task_ids_and_names = task_ids_and_names self.batch_size = batch_size self.target_std = target_std self.normalise = normalise self.obs_dims = obs_dims if normalise: # TODO: replace self.rew_running_average with # self.rew_running_averages (appropriately indexed) num_tasks = 1 + max( task_id for env_name, task_id in self.task_ids_and_names) self.rew_running_averages = [ RunningMeanVariance(()) for _ in range(num_tasks) ] self.dev = next(iter(reward_model.parameters())).device self.reward_model = reward_model def evaluate(self, obs_tuple, act_tensor, update_stats=True): # put model into eval mode if necessary old_training = self.reward_model.training if old_training: self.reward_model.eval() with torch.no_grad(): # flatten observations & actions obs_image = obs_tuple.observation old_dev = obs_image.device lead_dim, T, B, _ = infer_leading_dims(obs_image, self.obs_dims) # use tree_map so we are able to handle the namedtuple directly obs_flat = tree_map( lambda t: t.view((T * B, ) + t.shape[lead_dim:]), obs_tuple) act_flat = act_tensor.view((T * B, ) + act_tensor.shape[lead_dim:]) # now evaluate one batch at a time reward_tensors = [] for b_start in range(0, T * B, self.batch_size): obs_batch = obs_flat[b_start:b_start + self.batch_size] act_batch = act_flat[b_start:b_start + self.batch_size] dev_obs = tree_map(lambda t: t.to(self.dev), obs_batch) dev_acts = act_batch.to(self.dev) dev_reward = self.reward_model(dev_obs, dev_acts) reward_tensors.append(dev_reward.to(old_dev)) # join together the batch results new_reward_flat = torch.cat(reward_tensors, 0) new_reward = restore_leading_dims(new_reward_flat, lead_dim, T, B) task_ids = obs_tuple.task_id assert new_reward.shape == task_ids.shape # put back into training mode if necessary if old_training: self.reward_model.train(old_training) # normalise if necessary if self.normalise: mus = [] stds = [] for task_id, averager in enumerate(self.rew_running_averages): if update_stats: id_sub = task_ids.view((-1, )) == task_id if not torch.any(id_sub): continue rew_sub = new_reward.view((-1, ))[id_sub] averager.update(rew_sub) mus.append(averager.mean.item()) stds.append(averager.std.item()) mus = new_reward.new_tensor(mus) stds = new_reward.new_tensor(stds) denom = torch.max(stds.new_tensor(1e-3), stds / self.target_std) denom_sub = denom[task_ids] mu_sub = mus[task_ids] # only bother applying result if we've actually seen an update # before (otherwise reward will be insane) new_reward = (new_reward - mu_sub) / denom_sub return new_reward class CustomRewardMixinPg: # filled in by set_reward_model() _reward_model = None # filled in by set_reward_model() _dev = None # filled in by process_returns() _last_rew_ret_adv = None # filled in by optimize_agent() _RRAInfo = None # _custom_logging_fields is used by GAILMinibatchRl (also also be # optimize_agent()) _custom_logging_fields = ('synthRew', 'synthRet', 'synthAdv') def __init__(self, *args, true_reward_weight=None, **kwargs): super().__init__(*args, **kwargs) self._true_reward_weight = true_reward_weight if self._true_reward_weight: assert 0 < self._true_reward_weight <= 1.0, \ f"true_reward_weight must be in [0,1], but was " \ f"{self._true_reward_weight} (this code takes a convex " \ f"combination of true & GAIL rewards)" warnings.warn( "USING GROUND TRUTH REWARD (!) in CustomRewardMixinPg. This " "is only for debugging, so remember to disable it later!") def set_reward_evaluator(self, reward_evaluator): self._reward_eval = reward_evaluator def process_returns(self, samples): assert self._reward_eval is not None, \ "must call .set_reward_eval() on algorithm before continuing" # evaluate new rewards new_reward = self._reward_eval.evaluate(samples.env.observation, samples.agent.action) # sanity-check reward shapes assert new_reward.shape == samples.env.reward.shape, \ (new_reward.shape, samples.env.reward.shape) if self._true_reward_weight: # debuging branch: use ground truth rewards alpha = self._true_reward_weight warnings.warn(f"USING GROUND TRUTH REWARD (!) at alpha={alpha}") env_reward = samples.env.reward new_reward = (1 - alpha) * new_reward + alpha * env_reward # replace rewards new_samples = samples._replace(env=samples.env._replace( reward=new_reward)) # actually do return/advantage calculations return_, advantage, valid = super().process_returns(new_samples) # record old reward, return, and advantage so that we can log stats # later self._last_rew_ret_adv = (new_reward, return_, advantage) return return_, advantage, valid @staticmethod def _to_cpu_list(t): # rlpyt logging code only pays attention to lists of numbers, so if I # want my synthetic reward etc. to be logged then I need to put it here return list(t.detach().cpu().flatten().numpy()) def optimize_agent(self, itr, samples): # slightly hacky, but whatever opt_info = super().optimize_agent(itr, samples) # log extra data if self._RRAInfo is None: old_fields = opt_info._fields all_fields = [*old_fields, *self._custom_logging_fields] self._RRAInfo = namedtuple('_RRAInfo', all_fields) rew, ret, adv = self._last_rew_ret_adv rra_info = self._RRAInfo(**opt_info._asdict(), synthRew=self._to_cpu_list(rew), synthRet=self._to_cpu_list(ret), synthAdv=self._to_cpu_list(adv)) # being defensive: I want to see exception if we try to unpack the same # thing twice self._last_rew_ret_adv = None return rra_info class CustomRewardPPO(CustomRewardMixinPg, PPO): pass class CustomRewardA2C(CustomRewardMixinPg, A2C): pass # ################ # # For DQN variants # # ################ # # (TODO: going to try policy gradient first & then move to DQN if it seems more # efficient)
3
231
0
7,046
0
0
0
110
249
3594e17236136b711372a9945750692b0c864ddd
1,701
py
Python
src/apps/alarm_clock/tests/test_alarm_time.py
stefanhoelzl/alarm-clock
efba84e71fcade26bef020dc7eaa10181ea9f96c
[ "MIT" ]
1
2019-07-31T12:39:53.000Z
2019-07-31T12:39:53.000Z
src/apps/alarm_clock/tests/test_alarm_time.py
stefanhoelzl/alarm-clock
efba84e71fcade26bef020dc7eaa10181ea9f96c
[ "MIT" ]
null
null
null
src/apps/alarm_clock/tests/test_alarm_time.py
stefanhoelzl/alarm-clock
efba84e71fcade26bef020dc7eaa10181ea9f96c
[ "MIT" ]
1
2019-10-04T04:32:20.000Z
2019-10-04T04:32:20.000Z
# time.localtime(126000) 35*60*60 # time.struct_time(tm_year=1970, tm_mon=1, tm_mday=2, # tm_hour=12, tm_min=0, tm_sec=0, # tm_wday=4, tm_yday=2, tm_isdst=0)
30.375
80
0.633157
import pytest from unittest.mock import patch from ..alarm_time import diff_between_weekdays, get_next_weekday, next_time # time.localtime(126000) 35*60*60 # time.struct_time(tm_year=1970, tm_mon=1, tm_mday=2, # tm_hour=12, tm_min=0, tm_sec=0, # tm_wday=4, tm_yday=2, tm_isdst=0) def time_(hours=0, minutes=0): return 126000 + (hours * 60 + minutes) * 60 class TestDiffBetweenWeekdays: @pytest.mark.parametrize("current, next, diff", ( (0, 1, 1), (0, 0, 0), (6, 0, 1), (6, 6, 0), )) def test_allDays(self, current, next, diff): assert diff_between_weekdays(current, next) == diff class TestGetNextWeekday: def test_singleValueInList(self): assert get_next_weekday(2, (1,)) == 1 def test_multipleOrderedDays(self): assert get_next_weekday(1, (1, 4)) == 4 def test_multipleOrderedDaysWithOverflow(self): assert get_next_weekday(4, (1, 4)) == 1 def test_multipleUnorderedDays(self): assert get_next_weekday(3, (4, 1, 3)) == 4 def test_multipleUnorderedDaysWithOverflow(self): assert get_next_weekday(4, (4, 1, 3)) == 1 class TestNextTime: def test_sameDay_later(self): assert next_time(13, 0, current_time=time_()) == time_(1, 0) def test_sameDay_later_withDays(self): nt = next_time(13, 0, days=(0, 1, 2, 3, 4, 5, 6), current_time=time_()) assert nt == time_(1, 0) def test_sameDay_earlier_getsNextDay(self): assert next_time(11, 0, current_time=time_()) == time_(23, 0) def test_days(self): assert next_time(12, 0, days=(6,), current_time=time_()) == time_(48, 0)
0
236
0
971
0
57
0
56
184
8dcff54d0b2c4427d452f34f93a80e755ff0e5b6
422
py
Python
Array/python/reverse_aryasoni98.py
CodeTrophs/450DSA
84ab1b13cd837b860c4b747d567e3507b29291b3
[ "MIT" ]
5
2021-05-15T13:35:33.000Z
2021-07-21T09:35:51.000Z
Array/python/reverse_aryasoni98.py
CodeTrophs/450DSA
84ab1b13cd837b860c4b747d567e3507b29291b3
[ "MIT" ]
1
2021-07-17T12:20:09.000Z
2021-07-20T08:25:02.000Z
Array/python/reverse_aryasoni98.py
CodeTrophs/450DSA
84ab1b13cd837b860c4b747d567e3507b29291b3
[ "MIT" ]
8
2021-05-26T22:22:07.000Z
2021-12-16T04:35:32.000Z
# Approach 1 # reverseList([1, 2, 3, 4, 5, 6], 0, 5) = [6 5 4 3 2 1] # Approach 2 # reverseList([1, 2, 3, 4, 5, 6], 0, 5) = [6 5 4 3 2 1]
20.095238
55
0.509479
# Approach 1 def reverseList(A, start, end): while start < end: A[start], A[end] = A[end], A[start] start += 1 end -= 1 # reverseList([1, 2, 3, 4, 5, 6], 0, 5) = [6 5 4 3 2 1] # Approach 2 def reverseList(A, start, end): if start >= end: return A[start], A[end] = A[end], A[start] reverseList(A, start+1, end-1) # reverseList([1, 2, 3, 4, 5, 6], 0, 5) = [6 5 4 3 2 1]
0
0
0
0
0
234
0
0
46
9022b4a37c85bb12d4642e5a3cdab4efa2f30215
1,140
py
Python
apps/comment/models.py
aplot249/my_blog
7cfcd67991f0a6dc861847514e8d0fca2213fa8b
[ "MIT" ]
null
null
null
apps/comment/models.py
aplot249/my_blog
7cfcd67991f0a6dc861847514e8d0fca2213fa8b
[ "MIT" ]
5
2021-06-02T01:30:26.000Z
2022-03-12T00:24:27.000Z
apps/comment/models.py
qq1788lover/my_blog
7cfcd67991f0a6dc861847514e8d0fca2213fa8b
[ "MIT" ]
null
null
null
# django-ckeditor # from ckeditor.fields import RichTextField # django-mptt #
40.714286
117
0.740351
from django.db import models from django.contrib.auth.models import User from article.models import ArticlePost # django-ckeditor # from ckeditor.fields import RichTextField from ckeditor_uploader.fields import RichTextUploadingField # django-mptt from mptt.models import MPTTModel, TreeForeignKey # 博文的评论 class Comment(MPTTModel): article = models.ForeignKey(ArticlePost,on_delete=models.CASCADE,related_name='comments') #对哪个文章进行评论 user = models.ForeignKey(User,on_delete=models.CASCADE,related_name='comments') #谁评论的 # mptt树形结构 parent = TreeForeignKey('self',on_delete=models.CASCADE,null=True,blank=True,related_name='children') # 记录二级评论回复给谁, str reply_to = models.ForeignKey(User,null=True,blank=True,on_delete=models.CASCADE,related_name='replyers') #评论给谁 body = RichTextUploadingField() #RichTextField() #评论的内容 created = models.DateTimeField(auto_now_add=True) #评论时间 class MPTTMeta: order_insertion_by = ['created'] def __str__(self): return self.body[:20] class Meta: verbose_name = "文章评论" verbose_name_plural = verbose_name
147
0
0
766
0
0
0
112
132
70dc5ccb8c9fff90f926591a0f6bb044989fa3fa
1,490
py
Python
test_city.py
wang-xinyu/csp.pytorch
8d5187358c1eb0fbf7ba5f184b9afed6c2518ad3
[ "MIT" ]
13
2020-03-29T13:35:55.000Z
2021-04-11T10:45:53.000Z
test_city.py
wang-xinyu/csp.pytorch
8d5187358c1eb0fbf7ba5f184b9afed6c2518ad3
[ "MIT" ]
2
2020-09-08T09:53:08.000Z
2020-09-16T04:18:03.000Z
test_city.py
wang-xinyu/csp.pytorch
8d5187358c1eb0fbf7ba5f184b9afed6c2518ad3
[ "MIT" ]
6
2020-05-24T21:49:17.000Z
2021-07-06T09:14:42.000Z
import torch import cv2 import numpy as np import os from models.cspnet import CSPNet_p3p4p5 from utils.keras_weights_loader import load_keras_weights if __name__ == '__main__': device = 'cuda:0' weights_path = 'net_e121_l0.hdf5' out_path = 'output/valresults/city/h/off/121' input_dim = [1024, 2048] if not os.path.exists(out_path): os.makedirs(out_path) res_file = os.path.join(out_path, 'val_det.txt') model = CSPNet_p3p4p5() load_keras_weights(model, weights_path) model.to(device).eval() f = open('data/citypersons/val.txt', 'r') files = f.readlines(); num_imgs = len(files) res_all = [] for i in range(0, num_imgs): l = files[i] print(l) img = cv2.imread('data/citypersons/leftImg8bit/val/' + l.strip()) x = format_img(img) with torch.no_grad(): x = torch.from_numpy(x).to(device) x = x.permute(0, 3, 1, 2) x_cls, x_reg, x_off = model(x) Y = [x_cls.detach().cpu().numpy(), x_reg.detach().cpu().numpy(), x_off.detach().cpu().numpy()] boxes = parse_det_offset(Y, input_dim, score=0.1, down=4) if len(boxes)>0: f_res = np.repeat(i + 1, len(boxes), axis=0).reshape((-1, 1)) boxes[:, [2, 3]] -= boxes[:, [0, 1]] res_all += np.concatenate((f_res, boxes), axis=-1).tolist() np.savetxt(res_file, np.array(res_all), fmt='%6f') f.close() exit(0)
29.215686
102
0.599329
import torch import cv2 import numpy as np import os from models.cspnet import CSPNet_p3p4p5 from utils.keras_weights_loader import load_keras_weights from utils.utils import * if __name__ == '__main__': device = 'cuda:0' weights_path = 'net_e121_l0.hdf5' out_path = 'output/valresults/city/h/off/121' input_dim = [1024, 2048] if not os.path.exists(out_path): os.makedirs(out_path) res_file = os.path.join(out_path, 'val_det.txt') model = CSPNet_p3p4p5() load_keras_weights(model, weights_path) model.to(device).eval() f = open('data/citypersons/val.txt', 'r') files = f.readlines(); num_imgs = len(files) res_all = [] for i in range(0, num_imgs): l = files[i] print(l) img = cv2.imread('data/citypersons/leftImg8bit/val/' + l.strip()) x = format_img(img) with torch.no_grad(): x = torch.from_numpy(x).to(device) x = x.permute(0, 3, 1, 2) x_cls, x_reg, x_off = model(x) Y = [x_cls.detach().cpu().numpy(), x_reg.detach().cpu().numpy(), x_off.detach().cpu().numpy()] boxes = parse_det_offset(Y, input_dim, score=0.1, down=4) if len(boxes)>0: f_res = np.repeat(i + 1, len(boxes), axis=0).reshape((-1, 1)) boxes[:, [2, 3]] -= boxes[:, [0, 1]] res_all += np.concatenate((f_res, boxes), axis=-1).tolist() np.savetxt(res_file, np.array(res_all), fmt='%6f') f.close() exit(0)
0
0
0
0
0
0
0
4
22
ba2439d9eddd4585f46a35effe33046144c873b1
18
py
Python
blockhash/constants.py
dsoprea/blockhash-python
bc322658d55c62b96255edc63ae05dbac7cf5ab7
[ "MIT" ]
3
2017-11-26T18:33:23.000Z
2020-08-03T16:11:02.000Z
blockhash/constants.py
dsoprea/blockhash-python
bc322658d55c62b96255edc63ae05dbac7cf5ab7
[ "MIT" ]
null
null
null
blockhash/constants.py
dsoprea/blockhash-python
bc322658d55c62b96255edc63ae05dbac7cf5ab7
[ "MIT" ]
null
null
null
DEFAULT_BITS = 16
9
17
0.777778
DEFAULT_BITS = 16
0
0
0
0
0
0
0
0
0
818414fc073b5bab726dc3956d8e5e9d22029c67
580
py
Python
config/zuul/zuul_functions.py
javierpena/SF-DLRN-poc
8b71e1b4a07caee0e3f079ce446d5bb84302e6a1
[ "Apache-2.0" ]
null
null
null
config/zuul/zuul_functions.py
javierpena/SF-DLRN-poc
8b71e1b4a07caee0e3f079ce446d5bb84302e6a1
[ "Apache-2.0" ]
null
null
null
config/zuul/zuul_functions.py
javierpena/SF-DLRN-poc
8b71e1b4a07caee0e3f079ce446d5bb84302e6a1
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python
32.222222
63
0.624138
#!/usr/bin/python def set_node_reuse(item, job, params): print "zuul_functions: set_node_reuse(", item, job, "): " params['OFFLINE_NODE_WHEN_COMPLETE'] = '0' def set_node_options(item, job, params): if job.name in ('config-check', 'config-update', 'sf-mirror-update', 'pages-render', 'pages-update'): # Prevent putting master node offline params['OFFLINE_NODE_WHEN_COMPLETE'] = '0' return print "zuul_functions: set_node_options(", item, job, "): " params['OFFLINE_NODE_WHEN_COMPLETE'] = '1'
0
0
0
0
0
514
0
0
46
116cd4ba8597e8948b72678be0c30f5b943dca3f
611
py
Python
Desafio015.py
sidneyalex/Desafios-do-Curso
11605caf59fb8b456adaca78a41eae2f7469ab7b
[ "MIT" ]
null
null
null
Desafio015.py
sidneyalex/Desafios-do-Curso
11605caf59fb8b456adaca78a41eae2f7469ab7b
[ "MIT" ]
null
null
null
Desafio015.py
sidneyalex/Desafios-do-Curso
11605caf59fb8b456adaca78a41eae2f7469ab7b
[ "MIT" ]
null
null
null
#Escreva um programa que pergunte a quantidade de Km percorridos por um carro alugado e a quantidade de dias pelos quais ele foi alugado. Calcule o preo a pagar, sabendo que o carro custa R$60 por dia e R$0,15 por Km rodado. dias = int(input('Por quantos dias o carro foi alugado? ')) km = float(input('Quantos quilometros voc andou com ele? ')) total = km * 0.15 + dias * 60 print('=' * 80) print('A diaria do carro de R$60 e temos um adicional de R$0.15 por km.') print('=' * 80) print('Voc tem uma divida de R${:.2f}\nDiarias R${}\nKm R${:.2f}'.format(total, dias * 60, km * 0.15)) print('=' * 80)
61.1
225
0.682488
#Escreva um programa que pergunte a quantidade de Km percorridos por um carro alugado e a quantidade de dias pelos quais ele foi alugado. Calcule o preço a pagar, sabendo que o carro custa R$60 por dia e R$0,15 por Km rodado. dias = int(input('Por quantos dias o carro foi alugado? ')) km = float(input('Quantos quilometros você andou com ele? ')) total = km * 0.15 + dias * 60 print('=' * 80) print('A diaria do carro é de R$60 e temos um adicional de R$0.15 por km.') print('=' * 80) print('Você tem uma divida de R${:.2f}\nDiarias R${}\nKm R${:.2f}'.format(total, dias * 60, km * 0.15)) print('=' * 80)
8
0
0
0
0
0
0
0
0
d96aa39beae0b4f6ee0866534b868f4a600e92a9
63
py
Python
98_tools/training_ram/day2/ex14.py
tlananthu/python-learning
cfda5bfa6c613bcbe8bfe00567cd058ce5afc4a2
[ "Apache-2.0" ]
1
2020-05-11T18:39:54.000Z
2020-05-11T18:39:54.000Z
98_tools/training_ram/day2/ex14.py
tlananthu/python-learning
cfda5bfa6c613bcbe8bfe00567cd058ce5afc4a2
[ "Apache-2.0" ]
null
null
null
98_tools/training_ram/day2/ex14.py
tlananthu/python-learning
cfda5bfa6c613bcbe8bfe00567cd058ce5afc4a2
[ "Apache-2.0" ]
null
null
null
s='Some text with spaces' x=s.split() {i:x.count(i) for i in x}
21
25
0.650794
s='Some text with spaces' x=s.split() {i:x.count(i) for i in x}
0
0
0
0
0
0
0
0
0
09163ecf781ce0d1e17ae2ffc234afc93fa21d10
518
py
Python
examples/weather_data_extraction.py
spelap/sport-activities-features
c9d99b94509d8f0dd988b41be6ef45eec291ef7d
[ "MIT" ]
null
null
null
examples/weather_data_extraction.py
spelap/sport-activities-features
c9d99b94509d8f0dd988b41be6ef45eec291ef7d
[ "MIT" ]
null
null
null
examples/weather_data_extraction.py
spelap/sport-activities-features
c9d99b94509d8f0dd988b41be6ef45eec291ef7d
[ "MIT" ]
null
null
null
from sport_activities_features.weather_identification import WeatherIdentification from sport_activities_features.tcx_manipulation import TCXFile #read TCX file tcx_file = TCXFile() tcx_data = tcx_file.read_one_file("path_to_the_file") #configure visual crossing api key visual_crossing_api_key = "API_KEY" # https://www.visualcrossing.com/weather-api #return weather objects weather = WeatherIdentification(tcx_data['positions'], tcx_data['timestamps'], visual_crossing_api_key) weatherlist = weather.get_weather()
39.846154
103
0.841699
from sport_activities_features.weather_identification import WeatherIdentification from sport_activities_features.tcx_manipulation import TCXFile #read TCX file tcx_file = TCXFile() tcx_data = tcx_file.read_one_file("path_to_the_file") #configure visual crossing api key visual_crossing_api_key = "API_KEY" # https://www.visualcrossing.com/weather-api #return weather objects weather = WeatherIdentification(tcx_data['positions'], tcx_data['timestamps'], visual_crossing_api_key) weatherlist = weather.get_weather()
0
0
0
0
0
0
0
0
0
c768407e58ef331f29e4cf8bf8152406b9d9f5b4
27,330
py
Python
teslakit/numerical_models/swan/io.py
teslakit/teslak
3f3dda08c5c5998cb2a7debbf22f2be675a4ff8b
[ "MIT" ]
12
2019-11-14T22:19:12.000Z
2022-03-04T01:25:33.000Z
teslakit/numerical_models/swan/io.py
anderdyl/teslaCoSMoS
1495bfa2364ddbacb802d145b456a35213abfb7c
[ "MIT" ]
5
2020-03-24T18:21:41.000Z
2021-08-23T20:39:43.000Z
teslakit/numerical_models/swan/io.py
anderdyl/teslaCoSMoS
1495bfa2364ddbacb802d145b456a35213abfb7c
[ "MIT" ]
2
2021-03-06T07:54:41.000Z
2021-06-30T14:33:22.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np from .geo import gc_distance #AUX. FUNCTIONs def geo_distance_azimuth(lat_matrix, lon_matrix, lat_point, lon_point): ''' Returns geodesic distance and azimuth between lat,lon matrix and lat,lon point in degrees ''' arcl = np.zeros(lat_matrix.shape) * np.nan azi = np.zeros(lat_matrix.shape) * np.nan sh1, sh2 = lat_matrix.shape for i in range(sh1): for j in range(sh2): arcl[i,j], azi[i,j] = gc_distance( lat_point, lon_point, lat_matrix[i][j], lon_matrix[i][j] ) return arcl, azi # SWAN INPUT/OUTPUT STAT LIBRARY
33.248175
149
0.530809
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import os.path as op import shutil as su from datetime import datetime import numpy as np import pandas as pd import xarray as xr from scipy.io import loadmat from .geo import gc_distance # AUX. FUNCTIONs def geo_distance_azimuth(lat_matrix, lon_matrix, lat_point, lon_point): ''' Returns geodesic distance and azimuth between lat,lon matrix and lat,lon point in degrees ''' arcl = np.zeros(lat_matrix.shape) * np.nan azi = np.zeros(lat_matrix.shape) * np.nan sh1, sh2 = lat_matrix.shape for i in range(sh1): for j in range(sh2): arcl[i,j], azi[i,j] = gc_distance( lat_point, lon_point, lat_matrix[i][j], lon_matrix[i][j] ) return arcl, azi # SWAN INPUT/OUTPUT STAT LIBRARY class SwanIO(object): 'SWAN numerical model input/output' def __init__(self, swan_proj): # needs SwanProject self.proj = swan_proj def make_project(self): 'makes swan project folder and subfolders' if not op.isdir(self.proj.p_main): os.makedirs(self.proj.p_main) if not op.isdir(self.proj.p_cases): os.makedirs(self.proj.p_cases) class SwanIO_STAT(SwanIO): 'SWAN numerical model input/output - STATIONARY cases' def make_input(self, p_file, id_run, ws, bnd): ''' Writes input.swn file from waves sea state for stationary execution p_file - input.swn file path ws - wave sea state (hs, per, dr, spr) bnd - wave sea state active boundaries more info: http://swanmodel.sourceforge.net/online_doc/swanuse/node23.html ''' # TODO: check readinp idla # .swn file parameters sea_level = self.proj.params['sea_level'] jonswap_gamma = self.proj.params['jonswap_gamma'] coords_spherical = self.proj.params['coords_spherical'] waves_period = self.proj.params['waves_period'] # main mesh mm = self.proj.mesh_main # .swn text file t = "PROJ '{0}' '{1}'\n$\n".format(self.proj.name, id_run) t += 'MODE STAT\n' # spherical coordinates (mercator) switch if coords_spherical != None: t += 'COORDINATES SPHER {0}\n'.format(coords_spherical) # sea level t += 'SET level={0} NAUTICAL\n$\n'.format(sea_level) # computational grid t += 'CGRID REGULAR {0} {1} {2} {3} {4} {5} {6} CIRCLE 72 0.0345 1.00 34\n$\n'.format( mm.cg['xpc'], mm.cg['ypc'], mm.cg['alpc'], mm.cg['xlenc'], mm.cg['ylenc'], mm.cg['mxc']-1, mm.cg['myc']-1) # bathymetry t += 'INPGRID BOTTOM REGULAR {0} {1} {2} {3} {4} {5} {6}\n'.format( mm.dg['xpc'], mm.dg['ypc'], mm.dg['alpc'], mm.dg['mxc'], mm.dg['myc'], mm.dg['dxinp'], mm.dg['dyinp']) t += "READINP BOTTOM 1 '{0}' {1} 0 FREE\n$\n".format( mm.depth_fn, mm.dg_idla) # waves boundary conditions t += 'BOUND SHAPespec JONswap {0} {1} DSPR DEGR\n'.format( jonswap_gamma, waves_period) for ic in bnd: t += "BOUN SIDE {0} CONstant PAR {1:.3f} {2:.3f} {3:.3f} {4:.3f}\n".format( ic, ws.hs, ws.per, ws.dir, ws.spr) t += "$\n" # numerics t += 'OFF QUAD\n' # t += 'PROP BSBT\n' # t += 'WCAP\n' t += 'BREA\n' t += 'FRICTION JONSWAP\n$\n' # optional nested mesh r_ns = [self.proj.run_nest1, self.proj.run_nest2, self.proj.run_nest3] m_ns = [self.proj.mesh_nest1, self.proj.mesh_nest2, self.proj.mesh_nest3] nout_0 = ['nest1', 'nest2', 'nest3'] nout_1 = ['bounds_nest1.dat', 'bounds_nest2.dat', 'bounds_nest3.dat'] for r_n, m_n, n0, n1 in zip(r_ns, m_ns, nout_0, nout_1): if r_n: t += "NGRID '{0}' {1} {2} {3} {4} {5} {6} {7}\n".format( n0, m_n.cg['xpc'], m_n.cg['ypc'], m_n.cg['alpc'], m_n.cg['xlenc'], m_n.cg['ylenc'], np.int32(m_n.cg['xlenc']/mm.cg['dxinp']), np.int32(m_n.cg['ylenc']/mm.cg['dyinp']) ) t += "NESTOUT '{0}' '{1}'\n".format(n0, n1) # output t += "BLOCK 'COMPGRID' NOHEAD '{0}' LAY 3 HSIGN TM02 DIR TPS DSPR\n$\n".format( mm.output_fn, ) # compute t += 'TEST 1,0\n' t += 'COMPUTE \n' t += 'STOP\n$\n' # write file: with open(p_file, 'w') as f: f.write(t) # log fmt2 = ' 7.2f' print( 'SWAN CASE: {1} ---> hs {2:{0}}, per {3:{0}}, dir {4:{0}}, spr {5:{0}}'.format( fmt2, id_run, ws.hs, ws.per, ws.dir, ws.spr ) ) def make_input_nested(self, p_file, id_run): ''' Writes input_nested.swn file from waves sea state for stationary execution p_file - input_nestedN.swn file path ''' # TODO check myc-1, mxc -1 # .swn file parameters sea_level = self.proj.params['sea_level'] coords_spherical = self.proj.params['coords_spherical'] nested_bounds = self.proj.params['nested_bounds'] # SWAN nested Computacional grid mn1 = self.proj.mesh_nest1 # .swn text file t = "PROJ '{0}' '{1}'\n$\n".format(self.proj.name, id_run) t += 'MODE STAT\n' # spherical coordinates (mercator) switch if coords_spherical != None: t += 'COORDINATES SPHER {0}\n'.format(coords_spherical) t += 'SET level={0} NAUTICAL\n$\n'.format(sea_level) # computational grid t += 'CGRID REGULAR {0} {1} {2} {3} {4} {5} {6} CIRCLE 72 0.03558410 1.00 35\n$\n'.format( mn1.cg['xpc'], mn1.cg['ypc'], mn1.cg['alpc'], mn1.cg['xlenc'], mn1.cg['ylenc'], mn1.cg['mxc']-1, mn1.cg['myc']-1) # bathymetry t += 'INPGRID BOTTOM REGULAR {0} {1} {2} {3} {4} {5} {6}\n'.format( mn1.dg['xpc'], mn1.dg['ypc'], mn1.dg['alpc'], mn1.dg['mxc']-1, mn1.dg['myc']-1, mn1.dg['dxinp'], mn1.dg['dyinp']) t += "READINP BOTTOM 1 '{0}' {1} 0 FREE\n$\n".format( mn1.depth_fn, mn1.dg_idla) # Boundary Conditions t += "BOUN NEST '{0}' {1}\n".format('bounds_nest1.dat', nested_bounds) # wind file t += "$\n" # numerics t += 'OFF QUAD\n' # t += 'GEN1\n' # t += 'PROP BSBT\n' # t += 'WCAP\n' t += 'BREA\n' t += 'FRICTION JONSWAP\n$\n' # output t += "BLOCK 'COMPGRID' NOHEAD '{0}' LAY 3 HSIGN TM02 DIR TPS DSPR\n$\n".format( mn1.output_fn, ) # compute t += 'TEST 1,0\n' t += 'COMPUTE \n' t += 'STOP\n$\n' # write file: with open(p_file, 'w') as f: f.write(t) def build_case(self, case_id, waves_ss, bnd=['N', 'E', 'W', 'S']): ''' Build SWAN STAT case input files for given wave sea state (hs, per, dir, spr) ix_case - SWAN case index (int) waves_ss - wave sea state (hs, per, dir, spr) bnd - wave sea state active boundaries ''' # SWAN case path p_case = op.join(self.proj.p_cases, case_id) # make execution dir if not op.isdir(p_case): os.makedirs(p_case) # make depth file for main mesh self.proj.mesh_main.export_dat(p_case) # make input.swn file self.make_input(op.join(p_case, 'input.swn'), case_id, waves_ss, bnd) # optional nested mesh depth and input files r_ns = [self.proj.run_nest1, self.proj.run_nest2, self.proj.run_nest3] m_ns = [self.proj.mesh_nest1, self.proj.mesh_nest2, self.proj.mesh_nest3] i_ns = ['input_nest1.swn', 'input_nest2.swn', 'input_nest3.swn'] for r_n, m_n, i_n in zip(r_ns, m_ns, i_ns): if r_n: m_n.export_dat(p_case) self.make_input_nested(op.join(p_case, i_n), case_id) def outmat2xr(self, p_mat): # matlab dictionary dmat = loadmat(p_mat) # return dataset xds_out = xr.Dataset( { 'Hsig': (('X','Y',), dmat['Hsig'].T, {'units':'m'}), 'Tm02': (('X','Y',), dmat['Tm02'].T, {'units':'s'}), 'Dir': (('X','Y',), dmat['Dir'].T, {'units':'º'}), 'Dspr': (('X','Y',), dmat['Dspr'].T, {'units':'º'}), 'TPsmoo': (('X','Y',), dmat['TPsmoo'].T, {'units':'s'}), } ) return xds_out def output_case(self, p_case, mesh): 'read .mat output file from stationary and returns xarray.Dataset' # extract output from selected mesh p_mat = op.join(p_case, mesh.output_fn) xds_out = self.outmat2xr(p_mat) # set X and Y values X, Y = mesh.get_XY() xds_out = xds_out.assign_coords(X=X) xds_out = xds_out.assign_coords(Y=Y) # rename to longitude latitude in spherical coords cases coords_spherical = self.proj.params['coords_spherical'] if coords_spherical != None: xds_out = xds_out.rename({'X':'lon', 'Y':'lat'}) return xds_out class SwanIO_NONSTAT(SwanIO): 'SWAN numerical model input/output - NON STATIONARY cases' def make_out_points(self, p_file): 'Generates desired output-points coordinates file' # define and save output points x_out = self.proj.x_out y_out = self.proj.y_out if not x_out or not y_out: return else: points = np.vstack((x_out,y_out)).T np.savetxt(p_file, points, fmt='%.2f') def make_wave_files(self, p_case, waves_event, time, bnd): 'Generate event wave files (swan compatible)' # wave variables hs = waves_event.hs.values[:] per = waves_event.per.values[:] direc = waves_event.dir.values[:] spr = waves_event.spr.values[:] # csv file num_data = len(time) data = np.zeros((num_data, 5)) data[:, 0] = time data[:, 1] = hs data[:, 2] = per data[:, 3] = direc data[:, 4] = spr # Copy file for all boundaries save = op.join(p_case, 'series_waves.dat') np.savetxt(save, data, header='TPAR', comments='', fmt='%8.4f %2.3f %2.3f %3.2f %3.1f') for i in bnd: su.copyfile(save, op.join(p_case, 'series_waves_{0}.dat'.format(i))) def make_wind_files(self, p_case, waves_event): ''' Generate event wind mesh files (swan compatible) uses wave_event U10 and V10 values at the entire SWAN comp. grid ''' # wind variables u10 = waves_event.U10.values[:] v10 = waves_event.V10.values[:] # main mesh mm = self.proj.mesh_main # each time needs 2D (mesh) wind files (U,V) mxc = mm.cg['mxc'] # number mesh x myc = mm.cg['myc'] # number mesh y txt = '' for c, (u, v) in enumerate(zip(u10,v10)): # single point wind -> entire SWAN comp.grid wind aux = np.ones((mxc, myc)) # TODO: wind has to be rotated if alpc != 0 # csv file u_2d = aux * u v_2d = aux * v u_v_stack = np.vstack((u_2d, v_2d)) save = op.join(p_case, 'wind_{0:06}.dat'.format(c)) np.savetxt(save, u_v_stack, fmt='%.2f') # wind list file txt += 'wind_{0:06}.dat\n'.format(c) # winds file path save = op.join(p_case, 'series_wind.dat') with open(save, 'w') as f: f.write(txt) def make_vortex_files(self, p_case, storm_track): ''' Generate event wind mesh files (swan compatible) uses wave_event storm path data over SWAN computational grid needs SPHERICAL COORDINATES ''' # parameters RE = 6378.135 # Earth radius # wind variables storm_move = storm_track.move.values[:] storm_vf = storm_track.vf.values[:] storm_lon = storm_track.lon.values[:] storm_lat = storm_track.lat.values[:] storm_pn = storm_track.pn.values[:] storm_p0 = storm_track.p0.values[:] times = storm_track.index[:] # main mesh mm = self.proj.mesh_main # comp. grid for generating vortex wind files mxc = mm.cg['mxc'] # number mesh x myc = mm.cg['myc'] # number mesh y # comp. grid lat, lon limits lon0 = mm.cg['xpc'] lat0 = mm.cg['ypc'] lon1 = mm.cg['xpc'] + mm.cg['xlenc'] lat1 = mm.cg['ypc'] + mm.cg['ylenc'] cg_lon = np.linspace(lon0, lon1, mxc) cg_lat = np.linspace(lat0, lat1, myc) mg_lon, mg_lat = np.meshgrid(cg_lon, cg_lat) # wind output holder hld_W = np.zeros((len(cg_lat), len(cg_lon), len(storm_move))) hld_D = np.zeros((len(cg_lat), len(cg_lon), len(storm_move))) # each time needs 2D (mesh) wind files (U,V) txt = '' for c, (lo, la, p0, pn, move, vf) in enumerate(zip( storm_lon, storm_lat, storm_p0, storm_pn, storm_move, storm_vf)): # get distance and angle between points arcl, beta = geo_distance_azimuth(mg_lat, mg_lon, la, lo) r = arcl * np.pi / 180.0 * RE if p0 < 900: p0 = 900 # fix p0 # Silva et al. 2010 RC = 0.4785 * p0 - 413.01 # TODO usar otro radio ciclostrofico? # Hydromet Rankin-Vortex model (eq. 76) pr = p0 + (pn - p0) * np.exp(-2*RC/r) py, px = np.gradient(pr) ang = np.arctan2(py, px) + np.sign(la) * np.pi/2.0 # Wind model w = 0.2618 # velocidad angular Earth (rad/h) f = 2 * w * np.sin(la*np.pi/180) # coriolis ur = 21.8 * np.sqrt(pn-p0) - 0.5 * f * RC # wind max grad (km/h) fv = np.zeros(mg_lon.shape) s1 = r/RC < 1 # eq. (9) Rodo (2009) fv[s1] = 1 - 0.971 * np.exp(-6.826 * np.power(r[s1]/RC, 4.798)) s2 = r/RC >=1 # eq. (10) Rodo (2009) nc = (f*RC)/ur A = -0.99 * (1.066-np.exp(-1.936*nc)) B = -0.357 * (1.4456-np.exp(-5.2388*nc)) fv[s2] = np.exp(A*np.power(np.log(r[s2]/RC),3) * \ np.exp(B*np.log(r[s2]/RC))) abnaut = move + beta ab = np.remainder(-abnaut+270, 360) *np.pi/180 # nautical to cartesian W = 0.986 * (fv*ur + 0.5*vf * np.cos(ab-np.pi/2)) W[W<0] = 0 # TODO: wind has to be rotated if alpc != 0 # csv file u_2d = W * np.cos(ang) / 3.6 # km/h --> m/s v_2d = W * np.sin(ang) / 3.6 # km/h --> m/s u_v_stack = np.vstack((u_2d, v_2d)) save = op.join(p_case, 'wind_{0:06}.dat'.format(c)) np.savetxt(save, u_v_stack, fmt='%.2f') # wind list file txt += 'wind_{0:06}.dat\n'.format(c) # hold wind data (m/s) hld_W[:,:,c] = W / 3.6 # km/h --> m/s hld_D[:,:,c] = 270 - np.rad2deg(ang) # direction (º clock. rel. north) # winds file path save = op.join(p_case, 'series_wind.dat') with open(save, 'w') as f: f.write(txt) # aux. save vortex wind fields p_vortex = op.join(p_case, 'vortex_wind.nc') xds_vortex = xr.Dataset( { 'W': (('lat','lon','time'), hld_W, {'units':'m/s'}), 'Dir': (('lat','lon','time'), hld_D, {'units':'º'}) }, coords={ 'Y' : cg_lat, 'X' : cg_lon, 'time' : times, } ) xds_vortex.attrs['xlabel'] = 'Longitude (º)' xds_vortex.attrs['ylabel'] = 'Latitude (º)' xds_vortex.to_netcdf(p_vortex) def make_level_files(self, p_case, wave_event): 'Generate event level mesh files (swan compatible)' # parse pandas time index to swan iso format swan_iso_fmt = '%Y%m%d.%H%M' time = pd.to_datetime(wave_event.index).strftime(swan_iso_fmt).values[:] # level variables zeta = wave_event.level.values[:] tide = wave_event.tide.values[:] # main mesh mm = self.proj.mesh_main # each time needs 2D (mesh) level mxc = mm.cg['mxc'] # number mesh x myc = mm.cg['myc'] # number mesh y txt = '' for c, (z, t) in enumerate(zip(zeta, tide)): # single point level -> entire SWAN comp.grid level aux = np.ones((mxc, myc)).T # csv file l = z + t # total level l_2d = aux * l save = op.join(p_case, 'level_{0:06}.dat'.format(c)) np.savetxt(save, l_2d, fmt='%.2f') # level list file txt += 'level_{0:06}.dat\n'.format(c) # waves file path save = op.join(p_case, 'series_level.dat') with open(save, 'w') as f: f.write(txt) def make_input(self, p_file, id_run, time, make_waves=True, make_winds=True, wvs_bnd=['N', 'E', 'W', 'S']): ''' Writes input.swn file from waves event for non-stationary execution p_file - input.swn file path time - event time at swan iso format make_waves - activates waves input files generation (at waves_bnd) make_winds - activates wind input files generation more info: http://swanmodel.sourceforge.net/online_doc/swanuse/node23.html ''' # event time (swan iso format) t0_iso = time[0] t1_iso = time[-1] # .swn file parameters sea_level = self.proj.params['sea_level'] jonswap_gamma = self.proj.params['jonswap_gamma'] cdcap = self.proj.params['cdcap'] maxerr = self.proj.params['maxerr'] coords_spherical = self.proj.params['coords_spherical'] waves_period = self.proj.params['waves_period'] # main mesh mm = self.proj.mesh_main # output points x_out = self.proj.x_out y_out = self.proj.y_out # computational data dt_comp = 5 # time step (minutes) # .swn text file t = "PROJ '{0}' '{1}'\n$\n".format(self.proj.name, id_run) t += 'MODE NONSTAT\n' # spherical coordinates (mercator) swich if coords_spherical: t += 'COORDINATES SPHER CCM\n' # cdcap cdcap_str = '' if cdcap: cdcap_str = 'cdcap={0}'.format(cdcap) # max error (caution) maxerr_str = '' if maxerr: maxerr_str = 'maxerr={0}'.format(maxerr) # set level and cdcap (if available) t += 'SET level={0} {1} {2} NAUTICAL\n$\n'.format( sea_level, cdcap_str, maxerr_str ) # computational grid t += 'CGRID REGULAR {0} {1} {2} {3} {4} {5} {6} CIRCLE 72 0.0345 1.00 34\n$\n'.format( mm.cg['xpc'], mm.cg['ypc'], mm.cg['alpc'], mm.cg['xlenc'], mm.cg['ylenc'], mm.cg['mxc']-1, mm.cg['myc']-1) # bathymetry t += 'INPGRID BOTTOM REGULAR {0} {1} {2} {3} {4} {5} {6}\n'.format( mm.dg['xpc'], mm.dg['ypc'], mm.dg['alpc'], mm.dg['mxc'], mm.dg['myc'], mm.dg['dxinp'], mm.dg['dyinp']) t += "READINP BOTTOM 1 '{0}' {1} 0 FREE\n$\n".format( mm.depth_fn, mm.dg_idla) # wind t += 'INPGRID WIND REGULAR {0} {1} {2} {3} {4} {5} {6} NONSTAT {7} 1 HR {8}\n'.format( mm.cg['xpc'], mm.cg['ypc'], mm.cg['alpc'], mm.cg['mxc']-1, mm.cg['myc']-1, mm.cg['dxinp'], mm.cg['dyinp'], t0_iso, t1_iso) t += "READINP WIND 1. SERIES '{0}' 3 0 FREE\n$\n".format('series_wind.dat') # level t += 'INPGRID WLEV REGULAR {0} {1} {2} {3} {4} {5} {6} NONSTAT {7} 1 HR {8}\n'.format( mm.cg['xpc'], mm.cg['ypc'], mm.cg['alpc'], mm.cg['mxc']-1, mm.cg['myc']-1, mm.cg['dxinp'], mm.cg['dyinp'], t0_iso, t1_iso) t += "READINP WLEV 1. SERIES '{0}' 3 0 FREE\n$\n".format('series_level.dat') # waves boundary conditions if make_waves: t += 'BOUND SHAPespec JONswap {0} {1} DSPR DEGR\n'.format( jonswap_gamma, waves_period) for ic in wvs_bnd: t += "BOUN SIDE {0} CONstant FILE 'series_waves_{0}.dat'\n".format(ic) # numerics & physics t += 'WIND DRAG WU\n' t += 'GEN3 ST6 5.7E-7 8.0E-6 4.0 4.0 UP HWANG VECTAU TRUE10\n' t += 'SSWELL\n' t += 'QUAD iquad=8\n' t += 'WCAP\n' t += 'PROP BSBT\n' if not coords_spherical: t += 'SETUP\n' # not compatible with spherical t += 'BREA\n' t += 'FRICTION JONSWAP\n$\n' t += 'TRIADS\n' t += 'DIFFRAC\n' # output t += "BLOCK 'COMPGRID' NOHEAD '{0}' LAY 3 HSIGN TM02 DIR TPS DSPR OUT {1} 1.0 HR\n$\n".format( mm.output_fn, t0_iso) # output points if not x_out or not y_out: pass else: t += "POINTS 'outpts' FILE 'points_out.dat'\n" t += "TABLE 'outpts' NOHEAD 'table_outpts.dat' DEP HS HSWELL DIR RTP TM02 DSPR WIND WATLEV OUT {0} {1} MIN\n$\n".format(t0_iso, dt_comp) # compute t += 'TEST 1,0\n' t += 'COMPUTE NONSTAT {0} {1} MIN {2}\n'.format(t0_iso, dt_comp, t1_iso) t += 'STOP\n$\n' # write file: with open(p_file, 'w') as f: f.write(t) def build_case(self, case_id, waves_event, storm_track=None, make_waves=True, make_winds=True, waves_bnd=['N', 'E', 'W', 'S']): ''' Build SWAN NONSTAT case input files for given wave dataset case_id - SWAN case index (int) waves_event - waves event time series (pandas.Dataframe) also contains level, tide and wind (not storm track) variables [n x 8] (hs, per, dir, spr, U10, V10, level, tide) storm_track - None / storm track time series (pandas.Dataframe) storm_track generated winds have priority over waves_event winds [n x 6] (move, vf, lon, lat, pn, p0) ''' # SWAN case path p_case = op.join(self.proj.p_cases, case_id) # make execution dir if not op.isdir(p_case): os.makedirs(p_case) # make depth file for main mesh self.proj.mesh_main.export_dat(p_case) # make output points file self.make_out_points(op.join(p_case, 'points_out.dat')) # parse pandas time index to swan iso format swan_iso_fmt = '%Y%m%d.%H%M' time_swan = pd.to_datetime(waves_event.index).strftime(swan_iso_fmt).values[:] # make wave files if make_waves: self.make_wave_files(p_case, waves_event, time_swan, waves_bnd) # make wind files # TODO: vortex model, if active, will override wind files if make_winds: self.make_wind_files(p_case, waves_event) # vortex model for storm tracks if isinstance(storm_track, pd.DataFrame): self.make_vortex_files(p_case, storm_track) # make water level files self.make_level_files(p_case, waves_event) # make input.swn file self.make_input( op.join(p_case, 'input.swn'), case_id, time_swan, make_waves = make_waves, make_winds = make_winds, ) # TODO: add optional nested mesh depth and input files def outmat2xr(self, p_mat): # matlab dictionary dmat = loadmat(p_mat) # get dates from one key hsfs = sorted([x for x in dmat.keys() if 'Hsig' in x]) dates_str = ['_'.join(x.split('_')[1:]) for x in hsfs] dates = [datetime.strptime(s,'%Y%m%d_%H%M%S') for s in dates_str] # read times l_times = [] for ds in dates_str: xds_t = xr.Dataset( { 'Hsig': (('X','Y',), dmat['Hsig_{0}'.format(ds)].T, {'units':'m'}), 'Tm02': (('X','Y',), dmat['Tm02_{0}'.format(ds)].T, {'units':'s'}), 'Dir': (('X','Y',), dmat['Dir_{0}'.format(ds)].T, {'units':'º'}), 'Dspr': (('X','Y',), dmat['Dspr_{0}'.format(ds)].T, {'units':'º'}), 'TPsmoo': (('X','Y',), dmat['TPsmoo_{0}'.format(ds)].T, {'units':'s'}), } ) l_times.append(xds_t) # join at times dim xds_out = xr.concat(l_times, dim='time') xds_out = xds_out.assign_coords(time=dates) return xds_out def output_case(self, p_case, mesh): 'read .mat output file from non-stationary and returns xarray.Dataset' # extract output from selected mesh p_mat = op.join(p_case, mesh.output_fn) xds_out = self.outmat2xr(p_mat) # set X and Y values X, Y = mesh.get_XY() xds_out = xds_out.assign_coords(X=X) xds_out = xds_out.assign_coords(Y=Y) # rename to longitude latitude in spherical coords cases coords_spherical = self.proj.params['coords_spherical'] if coords_spherical != None: xds_out = xds_out.rename({'X':'lon', 'Y':'lat'}) return xds_out def get_t0_dt(self, p_input): 'gets output points time_ini and delta_time (min) from SWAN input.swn file' # read input.swn and file data with open(p_input, 'r') as fR: ls = fR.readlines() lx = [x for x in ls if x.startswith('TABLE')][0].split(' ') t0_str = lx[-3] # start date dt_min = lx[-2] # dt (minutes) swan_iso_fmt = '%Y%m%d.%H%M' t0 = datetime.strptime(t0_str, swan_iso_fmt) return t0, dt_min def output_points(self, p_case): 'read table_outpts.dat output file and returns xarray.Dataset' p_dat = op.join(p_case, 'table_outpts.dat') # variable names names = ['DEP', 'HS', 'HSWELL', 'DIR', 'RTP', 'TM02', 'DSPR', 'WIND', 'WATLEV', 'OUT' ] x_out = self.proj.x_out y_out = self.proj.y_out # points are mixed at output file np_pts = np.genfromtxt(p_dat) n_rows = np_pts.shape[0] # number of points n_pts = len(x_out) l_xds_pts = [] for i in range(n_pts): ix_p = np.arange(i, n_rows, n_pts) np_pti = np_pts[ix_p, :] xds_pti = xr.Dataset({}) #, coords='time') for c, n in enumerate(names): xds_pti[n] = (('time'), np_pti[:,c]) l_xds_pts.append(xds_pti) xds_out = xr.concat(l_xds_pts, dim='point') # add point x and y xds_out['x_point'] = (('point'), x_out) xds_out['y_point'] = (('point'), y_out) # add times dim values t0, dt_min = self.get_t0_dt(op.join(p_case, 'input.swn')) time_out = pd.date_range(t0, periods=len(xds_out.time), freq='{0}min'.format(dt_min)) xds_out = xds_out.assign_coords(time=time_out) return xds_out
36
0
0
26,416
0
0
0
-4
224
ed273aa6cd016beba627f472a2c9db37c8bc9752
5,588
py
Python
RL_testing_ground.py
sonic597/rl-testing-ground
c875ae640adb0de0dbe06aa152432aa0d49faed2
[ "MIT" ]
null
null
null
RL_testing_ground.py
sonic597/rl-testing-ground
c875ae640adb0de0dbe06aa152432aa0d49faed2
[ "MIT" ]
null
null
null
RL_testing_ground.py
sonic597/rl-testing-ground
c875ae640adb0de0dbe06aa152432aa0d49faed2
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt k = 100 iters = 1000 episodes = 50 eps_01_rewards = np.zeros(iters) eps_1_rewards = np.zeros(iters) eps_decay_rewards = np.zeros(iters) ucb_rewards = np.zeros(iters) for i in range(episodes): random_test_list = [x for x in np.random.normal(0, 1, k)] eps_01 = greedy_bandit(k, 0.01, iters, random_test_list) eps_1 = greedy_bandit(k, 0.1, iters, random_test_list) eps_decay = e_decay_bandit(k, 0.3, 0.1, iters, random_test_list) ucb = ucb_bandit(k, 2, iters, random_test_list) eps_01.iterate() eps_1.iterate() eps_decay.decay_iterate() ucb.ucb_iterate() eps_01_rewards += (eps_01.reward - eps_01_rewards) / (i + 1) eps_1_rewards += (eps_1.reward - eps_1_rewards) / (i + 1) eps_decay_rewards += (eps_decay.reward - eps_decay_rewards) / (i + 1) ucb_rewards += (ucb.reward - ucb_rewards) / (i + 1) plt.figure(figsize=(12, 8)) plt.plot(eps_01_rewards, label="epsilon=0.01") plt.plot(eps_1_rewards, label="epsilon=0.1") plt.plot(eps_decay_rewards, label="e_decay") plt.plot(ucb_rewards, label="upper confidence bound") plt.legend() plt.xlabel("Iterations") plt.ylabel("Average Reward") plt.title("Avg Rewards after " + str(episodes) + " Episodes") plt.show()
38.013605
115
0.65247
import numpy as np import matplotlib.pyplot as plt k = 100 iters = 1000 episodes = 50 class greedy_bandit: def __init__(self, arms, elipson, iterations, avg_arm_rewards): self.arms = arms self.elipson = elipson self.iterations = iterations self.steps = 0 self.step_per_arm = np.zeros(arms) self.mean_reward = 0 self.reward = np.zeros(iterations) self.mean_reward_per_arm = np.zeros(arms) # predicted value, self.arm_rewards is true value if type(avg_arm_rewards) == list: self.arm_rewards = avg_arm_rewards elif avg_arm_rewards == "random": # ** samples taken from normal dist. ** np.random.normal (mean, standard dev., no. samples) self.arm_rewards = np.random.normal(0, 1, arms) elif avg_arm_rewards == "linspace": # **evenly spaced rewards, used for testing, higher arm no. higher reward ** self.arm_rewards = np.linspace(0, arms - 1, arms) def pull(self): # make rand number to compare with elipson compare_probablity = np.random.rand() if self.elipson == 0 and self.steps == 0: # random action to start off action = np.random.choice(self.arms) elif compare_probablity < self.elipson: # explore action = np.random.choice(self.arms) else: # exploit action = np.argmax(self.mean_reward_per_arm) reward = np.random.normal(self.arm_rewards[action], 1) self.steps += 1 self.step_per_arm[action] += 1 # based on analytical formula, saves indexing of all prev. values self.mean_reward = self.mean_reward + (reward - self.mean_reward) / self.steps # same thing below except updating the individual arm reward self.mean_reward_per_arm[action] += (reward - self.mean_reward_per_arm[action]) / self.step_per_arm[action] def iterate(self): for iteration in range(self.iterations): self.pull() self.reward[iteration] = self.mean_reward class e_decay_bandit(greedy_bandit): def __init__(self, arms, decay_rate, elipson, iterations, avg_arm_rewards): greedy_bandit.__init__(self, arms, elipson, iterations, avg_arm_rewards) self.decay_rate = decay_rate def decay_pull(self): compare_probablity = np.random.rand() if self.elipson == 0 and self.steps == 0: # random action to start off action = np.random.choice(self.arms) elif compare_probablity < self.elipson: # explore action = np.random.choice(self.arms) else: # exploit action = np.argmax(self.mean_reward_per_arm) reward = np.random.normal(self.arm_rewards[action], 1) self.steps += 1 self.step_per_arm[action] += 1 # based on analytical formula, saves indexing of all prev. values self.mean_reward += (reward - self.mean_reward) / self.steps # same thing below except updating the individual arm reward self.mean_reward_per_arm[action] += self.decay_rate * (reward - self.mean_reward_per_arm[action]) def decay_iterate(self): for iteration in range(self.iterations): self.decay_pull() self.reward[iteration] = self.mean_reward class ucb_bandit(greedy_bandit): def __init__(self, arms, c, iteras, avg_arm_rewards): greedy_bandit.__init__(self, arms, None, iteras, avg_arm_rewards) self.confidence_level = c self.t = np.zeros(arms) def ucb_pull(self): if self.steps == 0: # random action to start off action = np.random.choice(self.arms) else: action = np.argmax( self.mean_reward_per_arm + (self.confidence_level * (np.sqrt(np.log(self.t) / self.step_per_arm)))) reward = np.random.normal(self.arm_rewards[action], 1) self.steps += 1 self.step_per_arm[action] += 1 for index, arm in enumerate(self.t): if arm != action: self.t[index] += 1 self.mean_reward += (reward - self.mean_reward) / self.steps self.mean_reward_per_arm[action] += (reward - self.mean_reward_per_arm[action]) / self.step_per_arm[action] def ucb_iterate(self): for iteration in range(self.iterations): self.ucb_pull() self.reward[iteration] = self.mean_reward eps_01_rewards = np.zeros(iters) eps_1_rewards = np.zeros(iters) eps_decay_rewards = np.zeros(iters) ucb_rewards = np.zeros(iters) for i in range(episodes): random_test_list = [x for x in np.random.normal(0, 1, k)] eps_01 = greedy_bandit(k, 0.01, iters, random_test_list) eps_1 = greedy_bandit(k, 0.1, iters, random_test_list) eps_decay = e_decay_bandit(k, 0.3, 0.1, iters, random_test_list) ucb = ucb_bandit(k, 2, iters, random_test_list) eps_01.iterate() eps_1.iterate() eps_decay.decay_iterate() ucb.ucb_iterate() eps_01_rewards += (eps_01.reward - eps_01_rewards) / (i + 1) eps_1_rewards += (eps_1.reward - eps_1_rewards) / (i + 1) eps_decay_rewards += (eps_decay.reward - eps_decay_rewards) / (i + 1) ucb_rewards += (ucb.reward - ucb_rewards) / (i + 1) plt.figure(figsize=(12, 8)) plt.plot(eps_01_rewards, label="epsilon=0.01") plt.plot(eps_1_rewards, label="epsilon=0.1") plt.plot(eps_decay_rewards, label="e_decay") plt.plot(ucb_rewards, label="upper confidence bound") plt.legend() plt.xlabel("Iterations") plt.ylabel("Average Reward") plt.title("Avg Rewards after " + str(episodes) + " Episodes") plt.show()
0
0
0
4,255
0
0
0
0
69
7c27aeb1bb208e81c2c11b9d2d0a8d3764e5179a
68,168
py
Python
nemo/collections/nlp/models/machine_translation/mt_enc_dec_model.py
jubick1337/NeMo
9d50733ba0e698b98d0019e9e697686e0a24b90e
[ "Apache-2.0" ]
null
null
null
nemo/collections/nlp/models/machine_translation/mt_enc_dec_model.py
jubick1337/NeMo
9d50733ba0e698b98d0019e9e697686e0a24b90e
[ "Apache-2.0" ]
1
2022-03-06T14:09:02.000Z
2022-03-06T14:09:02.000Z
nemo/collections/nlp/models/machine_translation/mt_enc_dec_model.py
jubick1337/NeMo
9d50733ba0e698b98d0019e9e697686e0a24b90e
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = ['MTEncDecModel']
49.147801
254
0.640594
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import json import os import random from pathlib import Path from typing import Dict, List, Optional, Union import numpy as np import torch import torch.distributed as dist import torch.utils.data as pt_data import webdataset as wd from omegaconf import DictConfig, ListConfig, OmegaConf from pytorch_lightning import Trainer from pytorch_lightning.utilities import rank_zero_only from sacrebleu import corpus_bleu from nemo.collections.common.data import ConcatDataset from nemo.collections.common.losses import NLLLoss, SmoothedCrossEntropyLoss from nemo.collections.common.metrics import GlobalAverageLossMetric from nemo.collections.common.parts import transformer_weights_init from nemo.collections.common.tokenizers.bytelevel_tokenizers import ByteLevelProcessor from nemo.collections.common.tokenizers.chinese_tokenizers import ChineseProcessor from nemo.collections.common.tokenizers.en_ja_tokenizers import EnJaProcessor, JaMecabProcessor from nemo.collections.common.tokenizers.indic_tokenizers import IndicProcessor from nemo.collections.common.tokenizers.moses_tokenizers import MosesProcessor from nemo.collections.nlp.data import TarredTranslationDataset, TranslationDataset from nemo.collections.nlp.models.enc_dec_nlp_model import EncDecNLPModel from nemo.collections.nlp.models.machine_translation.mt_enc_dec_config import MTEncDecModelConfig from nemo.collections.nlp.modules.common import TokenClassifier from nemo.collections.nlp.modules.common.lm_utils import get_transformer from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer from nemo.collections.nlp.modules.common.transformer import BeamSearchSequenceGenerator, TopKSequenceGenerator from nemo.core.classes import Exportable from nemo.core.classes.common import PretrainedModelInfo, typecheck from nemo.utils import logging, model_utils, timers __all__ = ['MTEncDecModel'] class MTEncDecModel(EncDecNLPModel, Exportable): """ Encoder-decoder machine translation model. """ def __init__(self, cfg: MTEncDecModelConfig, trainer: Trainer = None): cfg = model_utils.convert_model_config_to_dict_config(cfg) # Get global rank and total number of GPU workers for IterableDataset partitioning, if applicable # Global_rank and local_rank is set by LightningModule in Lightning 1.2.0 self.world_size = 1 if trainer is not None: self.world_size = trainer.num_nodes * trainer.num_devices cfg = model_utils.maybe_update_config_version(cfg) self.src_language = cfg.get("src_language", None) self.tgt_language = cfg.get("tgt_language", None) self.multilingual = cfg.get("multilingual", False) self.multilingual_ids = [] self.special_tokens = {} self.encoder_tokenizer_library = cfg.encoder_tokenizer.get('library', 'yttm') self.decoder_tokenizer_library = cfg.decoder_tokenizer.get('library', 'yttm') self.validate_input_ids = cfg.get("validate_input_ids", True) if self.multilingual: if isinstance(self.src_language, ListConfig) and isinstance(self.tgt_language, ListConfig): raise ValueError( "cfg.src_language and cfg.tgt_language cannot both be lists. We only support many-to-one or one-to-many multilingual models." ) elif isinstance(self.src_language, ListConfig): pass elif isinstance(self.tgt_language, ListConfig): for lng in self.tgt_language: self.special_tokens["<" + lng + ">"] = "<" + lng + ">" else: raise ValueError( "Expect either cfg.src_language or cfg.tgt_language to be a list when multilingual=True." ) self.shared_embeddings = cfg.get("shared_embeddings", False) # Instantiates tokenizers and register to be saved with NeMo Model archive # After this call, ther will be self.encoder_tokenizer and self.decoder_tokenizer # Which can convert between tokens and token_ids for SRC and TGT languages correspondingly. encoder_tokenizer_model, decoder_tokenizer_model, encoder_vocab_file = None, None, None if cfg.encoder_tokenizer.get('tokenizer_model') is not None: encoder_tokenizer_model = self.register_artifact( "encoder_tokenizer.tokenizer_model", cfg.encoder_tokenizer.get('tokenizer_model') ) if cfg.decoder_tokenizer.get('tokenizer_model') is not None: decoder_tokenizer_model = self.register_artifact( "decoder_tokenizer.tokenizer_model", cfg.decoder_tokenizer.get('tokenizer_model') ) if cfg.encoder_tokenizer.get('vocab_file') is not None: encoder_vocab_file = ( self.register_artifact("encoder_tokenizer.vocab_file", cfg.encoder_tokenizer.get('vocab_file')), ) encoder_tokenizer, decoder_tokenizer = MTEncDecModel.setup_enc_dec_tokenizers( encoder_tokenizer_library=self.encoder_tokenizer_library, encoder_tokenizer_model=encoder_tokenizer_model, encoder_bpe_dropout=cfg.encoder_tokenizer.get('bpe_dropout', 0.0) if cfg.encoder_tokenizer.get('bpe_dropout', 0.0) is not None else 0.0, encoder_model_name=cfg.encoder.get('model_name') if hasattr(cfg.encoder, 'model_name') else None, encoder_r2l=cfg.encoder_tokenizer.get('r2l', False), decoder_tokenizer_library=self.decoder_tokenizer_library, encoder_tokenizer_vocab_file=encoder_vocab_file, decoder_tokenizer_model=decoder_tokenizer_model, decoder_bpe_dropout=cfg.decoder_tokenizer.get('bpe_dropout', 0.0) if cfg.decoder_tokenizer.get('bpe_dropout', 0.0) is not None else 0.0, decoder_model_name=cfg.decoder.get('model_name') if hasattr(cfg.decoder, 'model_name') else None, decoder_r2l=cfg.decoder_tokenizer.get('r2l', False), special_tokens=self.special_tokens, encoder_sentencepiece_legacy=cfg.encoder_tokenizer.get('sentencepiece_legacy', False), decoder_sentencepiece_legacy=cfg.encoder_tokenizer.get('sentencepiece_legacy', False), ) self.encoder_tokenizer, self.decoder_tokenizer = encoder_tokenizer, decoder_tokenizer if self.multilingual: ( self.source_processor_list, self.target_processor_list, self.multilingual_ids, ) = MTEncDecModel.setup_multilingual_ids_and_processors( self.src_language, self.tgt_language, self.encoder_tokenizer, self.encoder_tokenizer_library, self.decoder_tokenizer_library, ) else: # After this call, the model will have self.source_processor and self.target_processor objects self.source_processor, self.target_processor = MTEncDecModel.setup_pre_and_post_processing_utils( self.src_language, self.tgt_language, self.encoder_tokenizer_library, self.decoder_tokenizer_library ) self.multilingual_ids = [None] # TODO: Why is this base constructor call so late in the game? super().__init__(cfg=cfg, trainer=trainer) # encoder from NeMo, Megatron-LM, or HuggingFace encoder_cfg_dict = OmegaConf.to_container(cfg.get('encoder')) encoder_cfg_dict['vocab_size'] = self.encoder_vocab_size library = encoder_cfg_dict.pop('library', 'nemo') model_name = encoder_cfg_dict.pop('model_name', None) pretrained = encoder_cfg_dict.pop('pretrained', False) checkpoint_file = encoder_cfg_dict.pop('checkpoint_file', None) self.encoder = get_transformer( library=library, model_name=model_name, pretrained=pretrained, config_dict=encoder_cfg_dict, encoder=True, pre_ln_final_layer_norm=encoder_cfg_dict.get('pre_ln_final_layer_norm', False), checkpoint_file=checkpoint_file, ) # decoder from NeMo, Megatron-LM, or HuggingFace decoder_cfg_dict = OmegaConf.to_container(cfg.get('decoder')) decoder_cfg_dict['vocab_size'] = self.decoder_vocab_size library = decoder_cfg_dict.pop('library', 'nemo') model_name = decoder_cfg_dict.pop('model_name', None) pretrained = decoder_cfg_dict.pop('pretrained', False) self.decoder = get_transformer( library=library, model_name=model_name, pretrained=pretrained, config_dict=decoder_cfg_dict, encoder=False, pre_ln_final_layer_norm=decoder_cfg_dict.get('pre_ln_final_layer_norm', False), ) # validate hidden_size of encoder and decoder self._validate_encoder_decoder_hidden_size() self.log_softmax = TokenClassifier( hidden_size=self.decoder.hidden_size, num_classes=self.decoder_vocab_size, activation=cfg.head.activation, log_softmax=cfg.head.log_softmax, dropout=cfg.head.dropout, use_transformer_init=cfg.head.use_transformer_init, ) self.beam_search = BeamSearchSequenceGenerator( embedding=self.decoder.embedding, decoder=self.decoder.decoder, log_softmax=self.log_softmax, max_sequence_length=self.decoder.max_sequence_length, beam_size=cfg.beam_size, bos=self.decoder_tokenizer.bos_id, pad=self.decoder_tokenizer.pad_id, eos=self.decoder_tokenizer.eos_id, len_pen=cfg.len_pen, max_delta_length=cfg.max_generation_delta, ) # tie embedding weights if self.shared_embeddings: if not cfg.get("shared_tokenizer", True): raise ValueError("shared_tokenizer cannot be False when shared_embeddings is True") # validate vocabulary size and embedding dimension if ( self.encoder.embedding.token_embedding.weight.shape != self.decoder.embedding.token_embedding.weight.shape ): raise ValueError( f"Cannot tie encoder and decoder embeddings due to mismatch in embedding sizes " f"(num_embeddings, embedding_dim): {self.encoder.embedding.token_embedding.weight.shape} (encoder) " f"{self.decoder.embedding.token_embedding.weight.shape} (decoder)" ) self.encoder.embedding.token_embedding.weight = self.decoder.embedding.token_embedding.weight # tie weights of embedding and softmax matrices self.log_softmax.mlp.layer0.weight = self.decoder.embedding.token_embedding.weight # TODO: encoder and decoder with different hidden size? std_init_range = 1 / self.encoder.hidden_size ** 0.5 # initialize weights if not using pretrained encoder/decoder if not self._cfg.encoder.get('pretrained', False): self.encoder.apply(lambda module: transformer_weights_init(module, std_init_range)) if not self._cfg.decoder.get('pretrained', False): self.decoder.apply(lambda module: transformer_weights_init(module, std_init_range)) self.log_softmax.apply(lambda module: transformer_weights_init(module, std_init_range)) self.loss_fn = SmoothedCrossEntropyLoss( pad_id=self.decoder_tokenizer.pad_id, label_smoothing=cfg.label_smoothing ) self.eval_loss_fn = NLLLoss(ignore_index=self.decoder_tokenizer.pad_id) @classmethod def setup_multilingual_ids_and_processors( cls, src_language, tgt_language, encoder_tokenizer, encoder_tokenizer_library, decoder_tokenizer_library ): multilingual_ids = [] if isinstance(src_language, ListConfig): for lng in src_language: multilingual_ids.append(None) else: for lng in tgt_language: if f"<{lng}>" not in encoder_tokenizer.vocab: encoder_tokenizer.add_special_tokens({f"<{lng}>": f"<{lng}>"}) multilingual_ids.append(encoder_tokenizer.token_to_id(f"<{lng}>")) if isinstance(src_language, ListConfig): tgt_language = [tgt_language] * len(src_language) else: src_language = [src_language] * len(tgt_language) source_processor_list = [] target_processor_list = [] for src_lng, tgt_lng in zip(src_language, tgt_language): src_prcsr, tgt_prscr = MTEncDecModel.setup_pre_and_post_processing_utils( src_lng, tgt_lng, encoder_tokenizer_library, decoder_tokenizer_library ) source_processor_list.append(src_prcsr) target_processor_list.append(tgt_prscr) return source_processor_list, target_processor_list, multilingual_ids def _validate_encoder_decoder_hidden_size(self): """ Validate encoder and decoder hidden sizes, and enforce same size. Can be overridden by child classes to support encoder/decoder different hidden_size. """ if self.encoder.hidden_size != self.decoder.hidden_size: raise ValueError( f"Class does not support encoder.hidden_size ({self.encoder.hidden_size}) != decoder.hidden_size ({self.decoder.hidden_size}). Please use bottleneck architecture instead (i.e., model.encoder.arch = 'seq2seq' in conf/aayn_bottleneck.yaml)" ) @classmethod def filter_predicted_ids(cls, ids, decoder_tokenizer): ids[ids >= decoder_tokenizer.vocab_size] = decoder_tokenizer.unk_id return ids def test_encoder_ids(self, ids, raise_error=False): invalid_ids = torch.logical_or((ids >= self.encoder_tokenizer.vocab_size).any(), (ids < 0).any(),) if raise_error and invalid_ids: raise ValueError("Encoder ids are out of range (tip: check encoder tokenizer)") return not invalid_ids def test_decoder_ids(self, ids, raise_error=False): invalid_ids = torch.logical_or((ids >= self.decoder_tokenizer.vocab_size).any(), (ids < 0).any(),) if raise_error and invalid_ids: raise ValueError("Decoder ids are out of range (tip: check decoder tokenizer)") return not invalid_ids @typecheck() def forward(self, src, src_mask, tgt, tgt_mask): if self.validate_input_ids: # test src/tgt for id range (i.e., hellp in catching wrong tokenizer) self.test_encoder_ids(src, raise_error=True) self.test_decoder_ids(tgt, raise_error=True) src_hiddens = self.encoder(input_ids=src, encoder_mask=src_mask) tgt_hiddens = self.decoder( input_ids=tgt, decoder_mask=tgt_mask, encoder_embeddings=src_hiddens, encoder_mask=src_mask ) log_probs = self.log_softmax(hidden_states=tgt_hiddens) return log_probs def training_step(self, batch, batch_idx): """ Lightning calls this inside the training loop with the data from the training dataloader passed in as `batch`. """ # forward pass for i in range(len(batch)): if batch[i].ndim == 3: # Dataset returns already batched data and the first dimension of size 1 added by DataLoader # is excess. batch[i] = batch[i].squeeze(dim=0) src_ids, src_mask, tgt_ids, tgt_mask, labels = batch log_probs = self(src_ids, src_mask, tgt_ids, tgt_mask) train_loss = self.loss_fn(log_probs=log_probs, labels=labels) tensorboard_logs = { 'train_loss': train_loss, 'lr': self._optimizer.param_groups[0]['lr'], } return {'loss': train_loss, 'log': tensorboard_logs} def eval_step(self, batch, batch_idx, mode, dataloader_idx=0): for i in range(len(batch)): if batch[i].ndim == 3: # Dataset returns already batched data and the first dimension of size 1 added by DataLoader # is excess. batch[i] = batch[i].squeeze(dim=0) if self.multilingual: self.source_processor = self.source_processor_list[dataloader_idx] self.target_processor = self.target_processor_list[dataloader_idx] src_ids, src_mask, tgt_ids, tgt_mask, labels = batch log_probs = self(src_ids, src_mask, tgt_ids, tgt_mask) eval_loss = self.eval_loss_fn(log_probs=log_probs, labels=labels) # this will run encoder twice -- TODO: potentially fix inputs, translations = self.batch_translate(src=src_ids, src_mask=src_mask) if dataloader_idx == 0: getattr(self, f'{mode}_loss')(loss=eval_loss, num_measurements=log_probs.shape[0] * log_probs.shape[1]) else: getattr(self, f'{mode}_loss_{dataloader_idx}')( loss=eval_loss, num_measurements=log_probs.shape[0] * log_probs.shape[1] ) np_tgt = tgt_ids.detach().cpu().numpy() ground_truths = [self.decoder_tokenizer.ids_to_text(tgt) for tgt in np_tgt] ground_truths = [self.target_processor.detokenize(tgt.split(' ')) for tgt in ground_truths] num_non_pad_tokens = np.not_equal(np_tgt, self.decoder_tokenizer.pad_id).sum().item() return { 'inputs': inputs, 'translations': translations, 'ground_truths': ground_truths, 'num_non_pad_tokens': num_non_pad_tokens, } def test_step(self, batch, batch_idx, dataloader_idx=0): return self.eval_step(batch, batch_idx, 'test', dataloader_idx) @rank_zero_only def log_param_stats(self): for name, p in self.named_parameters(): if p.requires_grad: self.trainer.logger.experiment.add_histogram(name + '_hist', p, global_step=self.global_step) self.trainer.logger.experiment.add_scalars( name, {'mean': p.mean(), 'stddev': p.std(), 'max': p.max(), 'min': p.min()}, global_step=self.global_step, ) def validation_step(self, batch, batch_idx, dataloader_idx=0): """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. """ return self.eval_step(batch, batch_idx, 'val', dataloader_idx) def eval_epoch_end(self, outputs, mode, global_rank): # if user specifies one validation dataloader, then PTL reverts to giving a list of dictionary instead of a list of list of dictionary if not outputs: return if isinstance(outputs[0], dict): outputs = [outputs] loss_list = [] sb_score_list = [] for dataloader_idx, output in enumerate(outputs): if dataloader_idx == 0: eval_loss = getattr(self, f'{mode}_loss').compute() else: eval_loss = getattr(self, f'{mode}_loss_{dataloader_idx}').compute() inputs = list(itertools.chain(*[x['inputs'] for x in output])) translations = list(itertools.chain(*[x['translations'] for x in output])) ground_truths = list(itertools.chain(*[x['ground_truths'] for x in output])) assert len(translations) == len(inputs) assert len(translations) == len(ground_truths) # Gather translations and ground truths from all workers tr_and_gt = [None for _ in range(self.world_size)] # we also need to drop pairs where ground truth is an empty string dist.all_gather_object( tr_and_gt, [(t, g) for (t, g) in zip(translations, ground_truths) if g.strip() != ''] ) if global_rank == 0: _translations = [] _ground_truths = [] for rank in range(0, self.world_size): _translations += [t for (t, g) in tr_and_gt[rank]] _ground_truths += [g for (t, g) in tr_and_gt[rank]] if self.multilingual and isinstance(self.tgt_language, ListConfig): tgt_language = self.tgt_language[dataloader_idx] else: tgt_language = self.tgt_language if tgt_language in ['ja', 'ja-mecab']: sacre_bleu = corpus_bleu(_translations, [_ground_truths], tokenize="ja-mecab") elif tgt_language in ['zh']: sacre_bleu = corpus_bleu(_translations, [_ground_truths], tokenize="zh") else: sacre_bleu = corpus_bleu(_translations, [_ground_truths], tokenize="13a") # because the reduction op later is average (over word_size) sb_score = sacre_bleu.score * self.world_size dataset_name = "Validation" if mode == 'val' else "Test" logging.info( f"Dataset name: {dataset_name}, Dataloader index: {dataloader_idx}, Set size: {len(translations)}" ) logging.info( f"Dataset name: {dataset_name}, Dataloader index: {dataloader_idx}, Val Loss = {eval_loss}" ) logging.info( f"Dataset name: {dataset_name}, Dataloader index: {dataloader_idx}, Sacre BLEU = {sb_score / self.world_size}" ) logging.info( f"Dataset name: {dataset_name}, Dataloader index: {dataloader_idx}, Translation Examples:" ) for i in range(0, 3): ind = random.randint(0, len(translations) - 1) logging.info(" " + '\u0332'.join(f"Example {i}:")) logging.info(f" Input: {inputs[ind]}") logging.info(f" Prediction: {translations[ind]}") logging.info(f" Ground Truth: {ground_truths[ind]}") else: sb_score = 0.0 loss_list.append(eval_loss.cpu().numpy()) sb_score_list.append(sb_score) if dataloader_idx == 0: self.log(f"{mode}_loss", eval_loss, sync_dist=True) self.log(f"{mode}_sacreBLEU", sb_score, sync_dist=True) getattr(self, f'{mode}_loss').reset() else: self.log(f"{mode}_loss_dl_index_{dataloader_idx}", eval_loss, sync_dist=True) self.log(f"{mode}_sacreBLEU_dl_index_{dataloader_idx}", sb_score, sync_dist=True) getattr(self, f'{mode}_loss_{dataloader_idx}').reset() if len(loss_list) > 1: self.log(f"{mode}_loss_avg", np.mean(loss_list), sync_dist=True) self.log(f"{mode}_sacreBLEU_avg", np.mean(sb_score_list), sync_dist=True) def validation_epoch_end(self, outputs): """ Called at the end of validation to aggregate outputs. :param outputs: list of individual outputs of each validation step. """ self.eval_epoch_end(outputs, 'val', self.global_rank) def test_epoch_end(self, outputs): self.eval_epoch_end(outputs, 'test', self.global_rank) @classmethod def setup_enc_dec_tokenizers( cls, encoder_tokenizer_library=None, encoder_tokenizer_model=None, encoder_bpe_dropout=0.0, encoder_model_name=None, encoder_r2l=False, encoder_tokenizer_vocab_file=None, decoder_tokenizer_library=None, decoder_tokenizer_model=None, decoder_bpe_dropout=0.0, decoder_model_name=None, decoder_r2l=False, encoder_sentencepiece_legacy=False, decoder_sentencepiece_legacy=False, special_tokens={}, ): supported_tokenizers = ['yttm', 'huggingface', 'sentencepiece', 'megatron', 'byte-level'] if ( encoder_tokenizer_library not in supported_tokenizers or decoder_tokenizer_library not in supported_tokenizers ): raise NotImplementedError(f"Currently we only support tokenizers in {supported_tokenizers}.") encoder_tokenizer = get_nmt_tokenizer( library=encoder_tokenizer_library, tokenizer_model=encoder_tokenizer_model, bpe_dropout=encoder_bpe_dropout, model_name=encoder_model_name, vocab_file=encoder_tokenizer_vocab_file, special_tokens=special_tokens, use_fast=False, r2l=encoder_r2l, legacy=encoder_sentencepiece_legacy, ) decoder_tokenizer = get_nmt_tokenizer( library=decoder_tokenizer_library, tokenizer_model=decoder_tokenizer_model, bpe_dropout=decoder_bpe_dropout, model_name=decoder_model_name, vocab_file=None, special_tokens=special_tokens, use_fast=False, r2l=decoder_r2l, legacy=decoder_sentencepiece_legacy, ) # validate no token is negative for sentencepiece tokenizers for tok_name, tok_library, tok_model, legacy in [ ("encoder_tokenizer", encoder_tokenizer_library, encoder_tokenizer, encoder_sentencepiece_legacy), ("decoder_tokenizer", decoder_tokenizer_library, decoder_tokenizer, decoder_sentencepiece_legacy), ]: if tok_library == 'sentencepiece': negative_tokens = [] for n in ["eos_id", "bos_id", "unk_id", "pad_id"]: v = getattr(tok_model.tokenizer, n)() if v < 0: negative_tokens.append(f"{n}={v}") if negative_tokens and not legacy: raise ValueError( f"{tok_name}=sentencepiece has invalid negative special tokens = {negative_tokens}" ) # If using the legacy sentencepiece tokenizer, we can add the missing tokens as "special" tokens. else: # If using sentencepiece legacy, eos, bos and pad need to be set/added differently. if legacy: # bos, eos, pad and unk may be present in the provided spm .model file, if they are, use it. if not hasattr(tok_model, 'pad_token'): if hasattr(tok_model.tokenizer, 'pad_id') and tok_model.tokenizer.pad_id() > 0: tok_model.pad_token = tok_model.tokenizer.id_to_piece(tok_model.tokenizer.pad_id()) else: tok_model.add_special_tokens({'pad_token': '<pad>'}) else: tok_model.add_special_tokens({'pad_token': '<pad>'}) if not hasattr(tok_model, 'bos_token'): if hasattr(tok_model.tokenizer, 'bos_id') and tok_model.tokenizer.bos_id() > 0: tok_model.bos_token = tok_model.tokenizer.id_to_piece(tok_model.tokenizer.bos_id()) else: tok_model.add_special_tokens({'bos_token': '<bos>'}) else: tok_model.add_special_tokens({'bos_token': '<s>'}) if not hasattr(tok_model, 'eos_token'): if hasattr(tok_model.tokenizer, 'eos_id') and tok_model.tokenizer.eos_id() > 0: tok_model.eos_token = tok_model.tokenizer.id_to_piece(tok_model.tokenizer.eos_id()) else: tok_model.add_special_tokens({'eos_token': '<eos>'}) else: tok_model.add_special_tokens({'eos_token': '</s>'}) return encoder_tokenizer, decoder_tokenizer def setup_training_data(self, train_data_config: Optional[DictConfig]): self._train_ds = MTEncDecModel._setup_dataset_from_config( cfg=train_data_config, encoder_tokenizer=self.encoder_tokenizer, decoder_tokenizer=self.decoder_tokenizer, global_rank=self.global_rank, world_size=self.world_size, multilingual=self.multilingual, multilingual_ids=self.multilingual_ids, ) self._train_dl = MTEncDecModel._setup_dataloader_from_config(cfg=train_data_config, dataset=self._train_ds,) def setup_multiple_validation_data(self, val_data_config: Union[DictConfig, Dict]): self.setup_validation_data(val_data_config) def setup_multiple_test_data(self, test_data_config: Union[DictConfig, Dict]): self.setup_test_data(test_data_config) def setup_validation_data(self, val_data_config: Optional[DictConfig]): self._validation_ds = MTEncDecModel._setup_eval_dataset_from_config( cfg=val_data_config, multilingual=self.multilingual, multilingual_ids=self.multilingual_ids, encoder_tokenizer=self.encoder_tokenizer, decoder_tokenizer=self.decoder_tokenizer, ) self._validation_dl = MTEncDecModel._setup_eval_dataloader_from_config( cfg=val_data_config, datasets=self._validation_ds ) # instantiate Torchmetric for each val dataloader if self._validation_dl is not None: for dataloader_idx in range(len(self._validation_dl)): if dataloader_idx == 0: setattr( self, f'val_loss', GlobalAverageLossMetric(dist_sync_on_step=False, take_avg_loss=True), ) else: setattr( self, f'val_loss_{dataloader_idx}', GlobalAverageLossMetric(dist_sync_on_step=False, take_avg_loss=True), ) def setup_test_data(self, test_data_config: Optional[DictConfig]): self._test_ds = MTEncDecModel._setup_eval_dataset_from_config( cfg=test_data_config, multilingual=self.multilingual, multilingual_ids=self.multilingual_ids, encoder_tokenizer=self.encoder_tokenizer, decoder_tokenizer=self.decoder_tokenizer, ) self._test_dl = MTEncDecModel._setup_eval_dataloader_from_config(cfg=test_data_config, datasets=self._test_ds) # instantiate Torchmetric for each test dataloader if self._test_dl is not None: for dataloader_idx in range(len(self._test_dl)): if dataloader_idx == 0: setattr( self, f'test_loss', GlobalAverageLossMetric(dist_sync_on_step=False, take_avg_loss=True), ) else: setattr( self, f'test_loss_{dataloader_idx}', GlobalAverageLossMetric(dist_sync_on_step=False, take_avg_loss=True), ) @classmethod def _setup_dataset_from_config( cls, cfg: DictConfig, encoder_tokenizer, decoder_tokenizer, global_rank, world_size, multilingual, multilingual_ids, ): if cfg.get("use_tarred_dataset", False) or cfg.get("dataset_type", "") == "tarred": if cfg.get("metadata_file") is None: raise FileNotFoundError("Trying to use tarred data set but could not find metadata path in config.") metadata_file_list = cfg.get('metadata_file') tar_files_list = cfg.get('tar_files', None) if isinstance(metadata_file_list, str): metadata_file_list = [metadata_file_list] if tar_files_list is not None and isinstance(tar_files_list, str): tar_files_list = [tar_files_list] if tar_files_list is not None and len(tar_files_list) != len(metadata_file_list): raise ValueError('The config must have the same number of tarfile paths and metadata file paths.') datasets = [] for idx, metadata_file in enumerate(metadata_file_list): with open(metadata_file) as metadata_reader: metadata = json.load(metadata_reader) if tar_files_list is None: tar_files = metadata.get('tar_files') if tar_files is not None: # update absolute path of tar files based on metadata_file path valid_tar_files = [] metadata_basedir = os.path.abspath(os.path.dirname(metadata_file)) updated_fn = 0 for fn in tar_files: # if a file does not exist, look in metadata file directory if os.path.exists(fn): valid_fn = fn else: updated_fn += 1 valid_fn = os.path.join(metadata_basedir, os.path.basename(fn)) if not os.path.exists(valid_fn): raise RuntimeError( f"File in tarred dataset is missing from absolute and relative paths {fn}" ) valid_tar_files.append(valid_fn) tar_files = valid_tar_files logging.info(f'Updated the path of {updated_fn} tarred files') logging.info(f'Loading from tarred dataset {tar_files}') else: tar_files = tar_files_list[idx] if metadata.get('tar_files') is not None: logging.info( f'Tar file paths found in both cfg and metadata using one in cfg by default - {tar_files}' ) dataset = TarredTranslationDataset( text_tar_filepaths=tar_files, metadata_path=metadata_file, encoder_tokenizer=encoder_tokenizer, decoder_tokenizer=decoder_tokenizer, shuffle_n=cfg.get("tar_shuffle_n", 100), shard_strategy=cfg.get("shard_strategy", "scatter"), global_rank=global_rank, world_size=world_size, reverse_lang_direction=cfg.get("reverse_lang_direction", False), prepend_id=multilingual_ids[idx] if multilingual else None, ) datasets.append(dataset) if len(datasets) > 1: dataset = ConcatDataset( datasets=datasets, sampling_technique=cfg.get('concat_sampling_technique'), sampling_temperature=cfg.get('concat_sampling_temperature'), sampling_probabilities=cfg.get('concat_sampling_probabilities'), global_rank=global_rank, world_size=world_size, ) else: dataset = datasets[0] else: src_file_list = cfg.src_file_name tgt_file_list = cfg.tgt_file_name if isinstance(src_file_list, str): src_file_list = [src_file_list] if isinstance(tgt_file_list, str): tgt_file_list = [tgt_file_list] if len(src_file_list) != len(tgt_file_list): raise ValueError('The same number of filepaths must be passed in for source and target.') datasets = [] for idx, src_file in enumerate(src_file_list): dataset = TranslationDataset( dataset_src=str(Path(src_file).expanduser()), dataset_tgt=str(Path(tgt_file_list[idx]).expanduser()), tokens_in_batch=cfg.tokens_in_batch, clean=cfg.get("clean", False), max_seq_length=cfg.get("max_seq_length", 512), min_seq_length=cfg.get("min_seq_length", 1), max_seq_length_diff=cfg.get("max_seq_length_diff", 512), max_seq_length_ratio=cfg.get("max_seq_length_ratio", 512), cache_ids=cfg.get("cache_ids", False), cache_data_per_node=cfg.get("cache_data_per_node", False), use_cache=cfg.get("use_cache", False), reverse_lang_direction=cfg.get("reverse_lang_direction", False), prepend_id=multilingual_ids[idx] if multilingual else None, ) dataset.batchify(encoder_tokenizer, decoder_tokenizer) datasets.append(dataset) if len(datasets) > 1: dataset = ConcatDataset( datasets=datasets, shuffle=cfg.get('shuffle'), sampling_technique=cfg.get('concat_sampling_technique'), sampling_temperature=cfg.get('concat_sampling_temperature'), sampling_probabilities=cfg.get('concat_sampling_probabilities'), global_rank=global_rank, world_size=world_size, ) else: dataset = datasets[0] return dataset @classmethod def _setup_dataloader_from_config(cls, cfg, dataset): if cfg.shuffle: sampler = pt_data.RandomSampler(dataset) else: sampler = pt_data.SequentialSampler(dataset) return torch.utils.data.DataLoader( dataset=dataset, batch_size=1, sampler=None if ( cfg.get("use_tarred_dataset", False) or cfg.get("dataset_type", "") == "tarred" or isinstance(dataset, ConcatDataset) ) else sampler, num_workers=cfg.get("num_workers", 2), pin_memory=cfg.get("pin_memory", False), drop_last=cfg.get("drop_last", False), ) def replace_beam_with_sampling(self, topk=500): self.beam_search = TopKSequenceGenerator( embedding=self.decoder.embedding, decoder=self.decoder.decoder, log_softmax=self.log_softmax, max_sequence_length=self.beam_search.max_seq_length, beam_size=topk, bos=self.decoder_tokenizer.bos_id, pad=self.decoder_tokenizer.pad_id, eos=self.decoder_tokenizer.eos_id, ) @classmethod def _setup_eval_dataset_from_config( cls, cfg: DictConfig, multilingual: bool, multilingual_ids, encoder_tokenizer, decoder_tokenizer ): src_file_name = cfg.get('src_file_name') tgt_file_name = cfg.get('tgt_file_name') if src_file_name is None or tgt_file_name is None: raise ValueError( 'Validation dataloader needs both cfg.src_file_name and cfg.tgt_file_name to not be None.' ) else: # convert src_file_name and tgt_file_name to list of strings if isinstance(src_file_name, str): src_file_list = [src_file_name] elif isinstance(src_file_name, ListConfig): src_file_list = src_file_name else: raise ValueError("cfg.src_file_name must be string or list of strings") if isinstance(tgt_file_name, str): tgt_file_list = [tgt_file_name] elif isinstance(tgt_file_name, ListConfig): tgt_file_list = tgt_file_name else: raise ValueError("cfg.tgt_file_name must be string or list of strings") if len(src_file_list) != len(tgt_file_list): raise ValueError('The same number of filepaths must be passed in for source and target validation.') datasets = [] prepend_idx = 0 for idx, src_file in enumerate(src_file_list): if multilingual: prepend_idx = idx dataset = TranslationDataset( dataset_src=str(Path(src_file).expanduser()), dataset_tgt=str(Path(tgt_file_list[idx]).expanduser()), tokens_in_batch=cfg.tokens_in_batch, clean=cfg.get("clean", False), max_seq_length=cfg.get("max_seq_length", 512), min_seq_length=cfg.get("min_seq_length", 1), max_seq_length_diff=cfg.get("max_seq_length_diff", 512), max_seq_length_ratio=cfg.get("max_seq_length_ratio", 512), cache_ids=cfg.get("cache_ids", False), cache_data_per_node=cfg.get("cache_data_per_node", False), use_cache=cfg.get("use_cache", False), reverse_lang_direction=cfg.get("reverse_lang_direction", False), prepend_id=multilingual_ids[prepend_idx] if multilingual else None, ) dataset.batchify(encoder_tokenizer, decoder_tokenizer) datasets.append(dataset) return datasets @classmethod def _setup_eval_dataloader_from_config(cls, cfg, datasets): if cfg.shuffle: sampler = pt_data.RandomSampler(datasets[0]) else: sampler = pt_data.SequentialSampler(datasets[0]) dataloaders = [] for dataset in datasets: dataloaders.append( torch.utils.data.DataLoader( dataset=dataset, batch_size=1, sampler=None if (cfg.get("use_tarred_dataset", False) or isinstance(datasets[0], ConcatDataset)) else sampler, num_workers=cfg.get("num_workers", 2), pin_memory=cfg.get("pin_memory", False), drop_last=cfg.get("drop_last", False), ) ) return dataloaders @classmethod def setup_pre_and_post_processing_utils( cls, source_lang, target_lang, encoder_tokenizer_library, decoder_tokenizer_library ): """ Creates source and target processor objects for input and output pre/post-processing. """ source_processor, target_processor = None, None if encoder_tokenizer_library == 'byte-level': source_processor = ByteLevelProcessor() elif (source_lang == 'en' and target_lang == 'ja') or (source_lang == 'ja' and target_lang == 'en'): source_processor = EnJaProcessor(source_lang) elif source_lang == 'ja-mecab': source_processor = JaMecabProcessor() elif source_lang == 'zh': source_processor = ChineseProcessor() elif source_lang == 'hi': source_processor = IndicProcessor(source_lang) elif source_lang == 'ignore': source_processor = None elif source_lang is not None and source_lang not in ['ja', 'zh', 'hi']: source_processor = MosesProcessor(source_lang) if decoder_tokenizer_library == 'byte-level': target_processor = ByteLevelProcessor() elif (source_lang == 'en' and target_lang == 'ja') or (source_lang == 'ja' and target_lang == 'en'): target_processor = EnJaProcessor(target_lang) elif target_lang == 'ja-mecab': target_processor = JaMecabProcessor() elif target_lang == 'zh': target_processor = ChineseProcessor() elif target_lang == 'hi': target_processor = IndicProcessor(target_lang) elif target_lang == 'ignore': target_processor = None elif target_lang is not None and target_lang not in ['ja', 'zh', 'hi']: target_processor = MosesProcessor(target_lang) return source_processor, target_processor @classmethod def ids_to_postprocessed_text(cls, beam_ids, tokenizer, processor, filter_beam_ids=True): if filter_beam_ids: beam_ids = MTEncDecModel.filter_predicted_ids(beam_ids, decoder_tokenizer=tokenizer) translations = [tokenizer.ids_to_text(tr) for tr in beam_ids.cpu().numpy()] if processor is not None: translations = [processor.detokenize(translation.split(' ')) for translation in translations] return translations @torch.no_grad() def batch_translate( self, src: torch.LongTensor, src_mask: torch.LongTensor, return_beam_scores: bool = False, cache={} ): """ Translates a minibatch of inputs from source language to target language. Args: src: minibatch of inputs in the src language (batch x seq_len) src_mask: mask tensor indicating elements to be ignored (batch x seq_len) Returns: translations: a list strings containing detokenized translations inputs: a list of string containing detokenized inputs """ mode = self.training timer = cache.get("timer", None) try: self.eval() if timer is not None: timer.start("encoder") src_hiddens = self.encoder(input_ids=src, encoder_mask=src_mask) if timer is not None: timer.stop("encoder") timer.start("sampler") best_translations = self.beam_search( encoder_hidden_states=src_hiddens, encoder_input_mask=src_mask, return_beam_scores=return_beam_scores ) if timer is not None: timer.stop("sampler") if return_beam_scores: all_translations, scores, best_translations = best_translations scores = scores.view(-1) all_translations = MTEncDecModel.ids_to_postprocessed_text( all_translations, self.decoder_tokenizer, self.target_processor, filter_beam_ids=True ) best_translations = MTEncDecModel.ids_to_postprocessed_text( best_translations, self.decoder_tokenizer, self.target_processor, filter_beam_ids=True ) inputs = MTEncDecModel.ids_to_postprocessed_text( src, self.encoder_tokenizer, self.source_processor, filter_beam_ids=False ) finally: self.train(mode=mode) if return_beam_scores: return inputs, all_translations, scores.data.cpu().numpy().tolist(), best_translations return inputs, best_translations @classmethod def prepare_inference_batch( cls, text, prepend_ids=[], target=False, source_processor=None, target_processor=None, encoder_tokenizer=None, decoder_tokenizer=None, device=None, ): inputs = [] processor = source_processor if not target else target_processor tokenizer = encoder_tokenizer if not target else decoder_tokenizer for txt in text: if processor is not None: txt = processor.normalize(txt) txt = processor.tokenize(txt) ids = tokenizer.text_to_ids(txt) ids = prepend_ids + [tokenizer.bos_id] + ids + [tokenizer.eos_id] inputs.append(ids) max_len = max(len(txt) for txt in inputs) src_ids_ = np.ones((len(inputs), max_len)) * tokenizer.pad_id for i, txt in enumerate(inputs): src_ids_[i][: len(txt)] = txt src_mask = torch.FloatTensor((src_ids_ != tokenizer.pad_id)).to(device) src = torch.LongTensor(src_ids_).to(device) return src, src_mask @torch.no_grad() def translate( self, text: List[str], source_lang: str = None, target_lang: str = None, return_beam_scores: bool = False, log_timing: bool = False, ) -> List[str]: """ Translates list of sentences from source language to target language. Should be regular text, this method performs its own tokenization/de-tokenization Args: text: list of strings to translate source_lang: if not "ignore", corresponding MosesTokenizer and MosesPunctNormalizer will be run target_lang: if not "ignore", corresponding MosesDecokenizer will be run return_beam_scores: if True, returns a list of translations and their corresponding beam scores. log_timing: if True, prints timing information. Returns: list of translated strings """ # __TODO__: This will reset both source and target processors even if you want to reset just one. if source_lang is not None or target_lang is not None: self.source_processor, self.target_processor = MTEncDecModel.setup_pre_and_post_processing_utils( source_lang, target_lang, self.encoder_tokenizer_library, self.decoder_tokenizer_library ) mode = self.training prepend_ids = [] if self.multilingual: if source_lang is None or target_lang is None: raise ValueError("Expect source_lang and target_lang to infer for multilingual model.") src_symbol = self.encoder_tokenizer.token_to_id('<' + source_lang + '>') tgt_symbol = self.encoder_tokenizer.token_to_id('<' + target_lang + '>') if src_symbol in self.multilingual_ids: prepend_ids = [src_symbol] elif tgt_symbol in self.multilingual_ids: prepend_ids = [tgt_symbol] if log_timing: timer = timers.NamedTimer() else: timer = None cache = { "timer": timer, } try: self.eval() src, src_mask = MTEncDecModel.prepare_inference_batch( text=text, prepend_ids=prepend_ids, target=False, source_processor=self.source_processor, target_processor=self.target_processor, encoder_tokenizer=self.encoder_tokenizer, decoder_tokenizer=self.decoder_tokenizer, device=self.device, ) if return_beam_scores: _, all_translations, scores, best_translations = self.batch_translate( src, src_mask, return_beam_scores=True, cache=cache, ) return_val = all_translations, scores, best_translations else: _, best_translations = self.batch_translate(src, src_mask, return_beam_scores=False, cache=cache) return_val = best_translations finally: self.train(mode=mode) if log_timing: timing = timer.export() timing["mean_src_length"] = src_mask.sum().cpu().item() / src_mask.shape[0] tgt, tgt_mask = self.prepare_inference_batch( text=best_translations, prepend_ids=prepend_ids, target=True, source_processor=self.source_processor, target_processor=self.target_processor, encoder_tokenizer=self.encoder_tokenizer, decoder_tokenizer=self.decoder_tokenizer, device=self.device, ) timing["mean_tgt_length"] = tgt_mask.sum().cpu().item() / tgt_mask.shape[0] if type(return_val) is tuple: return_val = return_val + (timing,) else: return_val = (return_val, timing) return return_val def itn_translate_tn( self, text: List[str], source_lang: str = None, target_lang: str = None, return_beam_scores: bool = False, log_timing: bool = False, inverse_normalizer=None, normalizer=None, ) -> List[str]: """ Calls the translate() method with the option of running ITN (inverse text-normalization) on the input adn TN (text-normalization) on the output. Pipeline : ITN -> translate -> TN NOTE: ITN and TN objects must be initialized with the right languages. Args: text: list of strings to translate source_lang: if not "ignore", corresponding MosesTokenizer and MosesPunctNormalizer will be run target_lang: if not "ignore", corresponding MosesDecokenizer will be run return_beam_scores: if True, returns a list of translations and their corresponding beam scores. log_timing: if True, prints timing information. inverse_normalizer: instance of nemo_text_processing.inverse_text_normalization.inverse_normalize.InverseNormalizer normalizer: instance of nemo_text_processing.text_normalization.normalize.Normalizer Returns: list of translated strings """ if inverse_normalizer is not None: text = [inverse_normalizer.normalize(example) for example in text] translations = self.translate(text, source_lang, target_lang, return_beam_scores, log_timing) if normalizer is not None: translations = [normalizer.normalize(example) for example in translations] return translations # EncDecRNNTModel is exported in 2 parts def list_export_subnets(self): return ['encoder', 'decoder'] @classmethod def list_available_models(cls) -> Optional[Dict[str, str]]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] model = PretrainedModelInfo( pretrained_model_name="nmt_en_de_transformer12x2", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_de_transformer12x2/versions/1.0.0rc1/files/nmt_en_de_transformer12x2.nemo", description="En->De translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_de_transformer12x2", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_de_en_transformer12x2", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_de_en_transformer12x2/versions/1.0.0rc1/files/nmt_de_en_transformer12x2.nemo", description="De->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_de_en_transformer12x2", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_en_es_transformer12x2", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_es_transformer12x2/versions/1.0.0rc1/files/nmt_en_es_transformer12x2.nemo", description="En->Es translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_es_transformer12x2", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_es_en_transformer12x2", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_es_en_transformer12x2/versions/1.0.0rc1/files/nmt_es_en_transformer12x2.nemo", description="Es->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_es_en_transformer12x2", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_en_fr_transformer12x2", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_fr_transformer12x2/versions/1.0.0rc1/files/nmt_en_fr_transformer12x2.nemo", description="En->Fr translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_fr_transformer12x2", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_fr_en_transformer12x2", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_fr_en_transformer12x2/versions/1.0.0rc1/files/nmt_fr_en_transformer12x2.nemo", description="Fr->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_fr_en_transformer12x2", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_en_ru_transformer6x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_ru_transformer6x6/versions/1.0.0rc1/files/nmt_en_ru_transformer6x6.nemo", description="En->Ru translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_ru_transformer6x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_ru_en_transformer6x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_ru_en_transformer6x6/versions/1.0.0rc1/files/nmt_ru_en_transformer6x6.nemo", description="Ru->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_ru_en_transformer6x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_zh_en_transformer6x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_zh_en_transformer6x6/versions/1.0.0rc1/files/nmt_zh_en_transformer6x6.nemo", description="Zh->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_zh_en_transformer6x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_en_zh_transformer6x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_zh_transformer6x6/versions/1.0.0rc1/files/nmt_en_zh_transformer6x6.nemo", description="En->Zh translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_zh_transformer6x6", ) result.append(model) # English <-> Hindi models model = PretrainedModelInfo( pretrained_model_name="nmt_hi_en_transformer12x2", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_hi_en_transformer12x2/versions/v1.0.0/files/nmt_hi_en_transformer12x2.nemo", description="Hi->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_hi_en_transformer12x2", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_en_hi_transformer12x2", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_hi_transformer12x2/versions/v1.0.0/files/nmt_en_hi_transformer12x2.nemo", description="En->Hi translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_hi_transformer12x2", ) result.append(model) # De/Fr/Es -> English models model = PretrainedModelInfo( pretrained_model_name="mnmt_deesfr_en_transformer12x2", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/mnmt_deesfr_en_transformer12x2/versions/1.2.0/files/mnmt_deesfr_en_transformer12x2.nemo", description="De/Es/Fr->En multilingual many-one translation model. The model has 12 encoder and 2 decoder layers with hidden dim 1,024. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:mnmt_deesfr_en_transformer12x2", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="mnmt_deesfr_en_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/mnmt_deesfr_en_transformer24x6/versions/1.2.0/files/mnmt_deesfr_en_transformer24x6.nemo", description="De/Es/Fr->En multilingual many-one translation model. The model has 24 encoder and 6 decoder layers with hidden dim 1,024. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:mnmt_deesfr_en_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="mnmt_deesfr_en_transformer6x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/mnmt_deesfr_en_transformer6x6/versions/1.2.0/files/mnmt_deesfr_en_transformer6x6.nemo", description="De/Es/Fr->En multilingual many-one translation model. The model has 6 encoder and 6 decoder layers with hidden dim 1,024. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:mnmt_deesfr_en_transformer6x6", ) result.append(model) # English -> De/Fr/Es models model = PretrainedModelInfo( pretrained_model_name="mnmt_en_deesfr_transformer12x2", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/mnmt_en_deesfr_transformer12x2/versions/1.2.0/files/mnmt_en_deesfr_transformer12x2.nemo", description="En->De/Es/Fr multilingual one-many translation model. The model has 12 encoder and 2 decoder layers with hidden dim 1,024. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:mnmt_en_deesfr_transformer12x2", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="mnmt_en_deesfr_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/mnmt_en_deesfr_transformer24x6/versions/1.2.0/files/mnmt_en_deesfr_transformer24x6.nemo", description="En->De/Es/Fr multilingual one-many translation model. The model has 24 encoder and 6 decoder layers with hidden dim 1,024. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:mnmt_en_deesfr_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="mnmt_en_deesfr_transformer6x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/mnmt_en_deesfr_transformer6x6/versions/1.2.0/files/mnmt_en_deesfr_transformer6x6.nemo", description="En->De/Es/Fr multilingual one-many translation model. The model has 6 encoder and 6 decoder layers with hidden dim 1,024. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:mnmt_en_deesfr_transformer6x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="mnmt_en_deesfr_transformerbase", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/mnmt_en_deesfr_transformerbase/versions/1.2.0/files/mnmt_en_deesfr_transformerbase.nemo", description="En->De/Es/Fr multilingual one-many translation model. The model has 6 encoder and 6 decoder layers with hidden dim 512. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:mnmt_en_deesfr_transformerbase", ) result.append(model) # 24x6 models model = PretrainedModelInfo( pretrained_model_name="nmt_en_de_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_de_transformer24x6/versions/1.5/files/en_de_24x6.nemo", description="En->De translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_de_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_de_en_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_de_en_transformer24x6/versions/1.5/files/de_en_24x6.nemo", description="De->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_de_en_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_en_es_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_es_transformer24x6/versions/1.5/files/en_es_24x6.nemo", description="En->Es translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_es_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_es_en_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_es_en_transformer24x6/versions/1.5/files/es_en_24x6.nemo", description="Es->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_es_en_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_en_fr_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_fr_transformer24x6/versions/1.5/files/en_fr_24x6.nemo", description="En->Fr translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_fr_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_fr_en_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_fr_en_transformer24x6/versions/1.5/files/fr_en_24x6.nemo", description="Fr->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_fr_en_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_en_ru_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_ru_transformer24x6/versions/1.5/files/en_ru_24x6.nemo", description="En->Ru translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_ru_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_ru_en_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_ru_en_transformer24x6/versions/1.5/files/ru_en_24x6.nemo", description="Ru->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_ru_en_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_en_zh_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_zh_transformer24x6/versions/1.5/files/en_zh_24x6.nemo", description="En->Zh translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_zh_transformer24x6", ) result.append(model) model = PretrainedModelInfo( pretrained_model_name="nmt_zh_en_transformer24x6", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_zh_en_transformer24x6/versions/1.5/files/zh_en_24x6.nemo", description="Zh->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_zh_en_transformer24x6", ) result.append(model) return result
0
40,864
0
24,770
0
0
0
1,120
774
ef3cd10a2068b30a9a75bed4bcdf212132ef1fe0
2,429
py
Python
tests/xoto3/utils/oncall_default_test.py
xoeye/xoto3
ef91cde3cce81e1ded311389358271d5c8eba02b
[ "MIT" ]
16
2020-05-23T15:23:38.000Z
2022-03-18T19:28:37.000Z
tests/xoto3/utils/oncall_default_test.py
xoeye/xoto3
ef91cde3cce81e1ded311389358271d5c8eba02b
[ "MIT" ]
9
2020-08-19T23:08:36.000Z
2021-10-06T17:16:35.000Z
tests/xoto3/utils/oncall_default_test.py
xoeye/xoto3
ef91cde3cce81e1ded311389358271d5c8eba02b
[ "MIT" ]
2
2020-12-12T08:23:53.000Z
2021-09-03T20:25:54.000Z
# pylint: disable=unused-argument,unused-variable from datetime import datetime import pytest from xoto3.utils.oncall_default import NotSafeToDefaultError, OnCallDefault utcnow = OnCallDefault(datetime.utcnow) def test_disallow_positional_without_default(): """A positional-possible argument without a default could have a positional argument provided after it and then we'd be unable to tell for sure whether it had been provided intentionally. """ with pytest.raises(NotSafeToDefaultError): GeorgeKwargs = OnCallDefault(lambda: dict(b=2, c=3))
26.692308
75
0.650473
# pylint: disable=unused-argument,unused-variable from datetime import datetime import pytest from xoto3.utils.oncall_default import NotSafeToDefaultError, OnCallDefault utcnow = OnCallDefault(datetime.utcnow) def test_oncall_default_works_with_pos_or_kw(): @utcnow.apply_to("when") def final(a: str, when: datetime = utcnow(), f: float = 1.2): return when assert final("a") <= utcnow() val = datetime(1888, 8, 8, 8, 8, 8) assert val == final("a", when=val) assert val == final("c", f=4.2, when=val) def test_oncall_default_works_with_kw_only(): @utcnow.apply_to("when") def f(a: str, *, when: datetime = utcnow()): return when val = datetime(1900, 1, 1, 11, 11, 11) assert val == f("3", when=val) def test_deco_works_with_var_kwargs(): @utcnow.apply_to("when") def f(**kwargs): return kwargs["when"] assert datetime.utcnow() <= f() assert f() <= datetime.utcnow() direct = datetime(2012, 12, 12, 12, 12, 12) assert direct == f(when=direct) def test_disallow_positional_without_default(): """A positional-possible argument without a default could have a positional argument provided after it and then we'd be unable to tell for sure whether it had been provided intentionally. """ with pytest.raises(NotSafeToDefaultError): @utcnow.apply_to("when") def nope(when: datetime, a: int): pass def test_disallow_not_found_without_var_kwargs(): with pytest.raises(NotSafeToDefaultError): @utcnow.apply_to("notthere") def steve(a: str, *args, b=1, c=2): pass def test_disallow_var_args_name_matches(): with pytest.raises(NotSafeToDefaultError): # *args itself has the default value 'new empty tuple', and if # you want to provide a positional default you should give it # a real name. @utcnow.apply_to("args") def felicity(a: str, *args): pass GeorgeKwargs = OnCallDefault(lambda: dict(b=2, c=3)) def test_allow_var_kwargs_merge(): # kwargs itself is a dict, # and we will perform top-level merging # for you if that's what you want @GeorgeKwargs.apply_to("kwargs") def george(a: str, **kwargs): return kwargs assert george("1") == dict(b=2, c=3) assert george("2", b=3) == dict(b=3, c=3) assert george("3", c=5, d=78) == dict(b=2, c=5, d=78)
0
469
0
0
0
1,211
0
0
169
9359e5c4e3e3bd39554fe97f058252575fbac126
4,385
py
Python
pointcloud/sample_points.py
ziyedy/category-priornet
5aa080eeff936ce3939f0d5458a2936677c15726
[ "MIT" ]
72
2020-06-11T13:06:56.000Z
2021-12-07T02:57:51.000Z
pointcloud/sample_points.py
ziyedy/category-priornet
5aa080eeff936ce3939f0d5458a2936677c15726
[ "MIT" ]
8
2020-07-24T09:13:14.000Z
2021-07-02T06:55:25.000Z
pointcloud/sample_points.py
ziyedy/category-priornet
5aa080eeff936ce3939f0d5458a2936677c15726
[ "MIT" ]
11
2020-03-13T12:44:44.000Z
2021-05-12T05:13:26.000Z
if __name__ == '__main__': main()
40.981308
122
0.618472
import os import sys import argparse import numpy as np import pandas as pd from pyntcloud.io import write_ply def get_skip_vertice_face_num(path): with open(path) as file: for i, line in enumerate(file): if i == 0 and len(line) > 4: # not just "OFF\n" digits = line[3:].split(" ") vertices_num = int(digits[0]) faces_num = int(digits[1]) return 1, vertices_num, faces_num if i == 1: digits = line.split(' ') vertices_num = int(digits[0]) faces_num = int(digits[1]) return 2, vertices_num, faces_num def get_vertices_faces_from_off_file(path): skip, vertices_num, faces_num = get_skip_vertice_face_num(path) vertices = np.genfromtxt(path, delimiter= ' ', skip_header= skip, skip_footer= faces_num) faces_data = np.genfromtxt(path, dtype= int, delimiter= ' ', skip_header= skip + vertices_num) faces = faces_data[:, 1:] return vertices, faces def get_faces_area(v0, v1, v2): # v0, v1, v2 are list of vectors [x, y, z] => shape: [length, 3] return (0.5) * np.linalg.norm(np.cross((v1 - v0), (v2 - v0)), axis= 1) def mesh2pointcloud(vertices, faces, points_num= 2048, normalize= False): v0 = vertices[faces[:, 0]] v1 = vertices[faces[:, 1]] v2 = vertices[faces[:, 2]] faces_area = get_faces_area(v0, v1, v2) faces_prob = faces_area / faces_area.sum() face_num = faces.shape[0] faces_sample_id = np.random.choice(face_num, size= points_num, p= faces_prob) # (points_num, ) faces_sample = faces[faces_sample_id] # (points_num, 3) # set barycentric coordinates u, v, w => shape: (points_num, ) u = np.random.rand(points_num, 1) v = np.random.rand(points_num, 1) exceed_one = (u + v) > 1 u[exceed_one] = 1 - u[exceed_one] v[exceed_one] = 1 - v[exceed_one] w = 1 - (u + v) # sampling v0_sample = vertices[faces_sample[:, 0]] v1_sample = vertices[faces_sample[:, 1]] v2_sample = vertices[faces_sample[:, 2]] pointcloud = (v0_sample * u) + (v1_sample * v) + (v2_sample * w) if normalize: center = pointcloud.mean(axis= 0) pointcloud -= center distance = np.linalg.norm(pointcloud, axis= 1) pointcloud /= distance.max() pointcloud = pointcloud.astype(np.float32) return pointcloud def main(): parser = argparse.ArgumentParser() parser.add_argument('-source', help= "path to ModelNet dataset(e.g. ModelNet40/)", default= None) parser.add_argument('-target', help= "path to folder of output points(e.g. ModelNet40_1024_points/)", default= None) parser.add_argument('-point_num', type= int, default= 1024, help= "How many points are sampled from each mesh object") parser.add_argument('-normal', dest= 'normal', action= 'store_true', help= "Normalize point clouds while sampling") parser.set_defaults(normal= False) args = parser.parse_args() source_dir = args.source categories_all = [name for name in os.listdir(source_dir) if name not in ['.DS_Store', 'README.txt']] target_dir = args.target os.mkdir(target_dir) for category in categories_all: os.mkdir(os.path.join(target_dir, category)) for mode in ['train', 'test']: source_folder = os.path.join(source_dir, category, mode) target_folder = os.path.join(target_dir, category, mode) os.mkdir(target_folder) mesh_names = [os.path.join(source_folder, name) for name in os.listdir(source_folder) if name != '.DS_Store'] for name in mesh_names: vertices, faces = get_vertices_faces_from_off_file(name) pointcloud = mesh2pointcloud(vertices, faces, args.point_num, normalize= args.normal) # save model model = pd.DataFrame() model['x'] = pointcloud[:, 0] model['y'] = pointcloud[:, 1] model['z'] = pointcloud[:, 2] name = name.split('/')[-1] target_name = os.path.join(target_folder, name[:-4] + '.ply') write_ply(target_name, points= model) print('finished category: {}'.format(category)) print('Finish generating dataset: {}'.format(target_dir)) if __name__ == '__main__': main()
0
0
0
0
0
4,120
0
-21
247
c762f4be6db752ec413c9782ce94a363b079178f
3,915
py
Python
xquotient/test/test_signup.py
twisted/quotient
95f2515219da99a77905852bc01deeb27e93466e
[ "MIT" ]
6
2016-02-15T07:33:39.000Z
2018-12-03T17:20:58.000Z
xquotient/test/test_signup.py
DalavanCloud/quotient
95f2515219da99a77905852bc01deeb27e93466e
[ "MIT" ]
1
2021-02-18T20:01:02.000Z
2021-02-18T20:01:02.000Z
xquotient/test/test_signup.py
DalavanCloud/quotient
95f2515219da99a77905852bc01deeb27e93466e
[ "MIT" ]
4
2015-11-15T17:28:20.000Z
2018-12-03T17:20:48.000Z
""" Test installation of the Quotient offering, as well as testing signup with different combinations of selected benefactor factories """
32.625
92
0.662835
""" Test installation of the Quotient offering, as well as testing signup with different combinations of selected benefactor factories """ from time import time from twisted.trial.unittest import TestCase from twisted.python.reflect import qual from axiom.scripts import axiomatic from axiom.store import Store from axiom import userbase from axiom.test.util import getPristineStore from xmantissa import offering, signup from xmantissa.plugins.free_signup import freeTicket from xmantissa.product import Product from xquotient import exmess from xquotient.compose import Composer from xquotient.inbox import Inbox def createStore(testCase): dbpath = testCase.mktemp() axiomatic.main(['-d', dbpath, 'mantissa', '--admin-password', 'password']) store = Store(dbpath) _userbase = store.findUnique(userbase.LoginSystem) adminAccount = _userbase.accountByAddress(u'admin', u'localhost') adminStore = adminAccount.avatars.open() conf = adminStore.findUnique(offering.OfferingConfiguration) conf.installOffering(getQuotientOffering(), None) return store def getQuotientOffering(): for off in offering.getOfferings(): if off.name == 'Quotient': return off def getFactories(*names): factories = [] for factory in getQuotientOffering().benefactorFactories: name = factory.benefactorClass.__name__.lower() if name.endswith('benefactor'): name = name[:-len('benefactor')] if name in names: factories.append(factory) return factories class InstallationTestCase(TestCase): """ Tests to ensure we can at least get as far as installing the application and signing up. We don't really care whether the right stuff was installed. """ def setUp(self): self.store = getPristineStore(self, createStore) self.loginSystem = self.store.findUnique(userbase.LoginSystem) adminAvatar = self.loginSystem.accountByAddress(u'admin', u'localhost') adminStore = adminAvatar.avatars.open() self.signupConfig = adminStore.findUnique(signup.SignupConfiguration) def createSignupAndSignup(self, powerups): """ Signup via a newly-created signup, using a unique email address. @return: substore, which will be endowed with C{product} """ product = Product(store=self.store, types=[qual(p) for (name, desc, p) in powerups]) qsignup = self.signupConfig.createSignup( u'admin@localhost', freeTicket.itemClass, {'prefixURL': u'signup'}, product, u'', u'') booth = qsignup.booth localpart = unicode(str(time()), 'ascii') ticket = booth.createTicket( booth, localpart + '@localhost', product) ticket.claim() return self.loginSystem.accountByAddress( localpart, u'localhost').avatars.open() def testBasic(self): """ Test signup with the top-most Quotient powerup """ self.createSignupAndSignup([(None, None, Inbox)]) def testCompose(self): """ Test signup with the compose benefactor (which depends on the top-most Quotient benefactor) """ self.createSignupAndSignup([(None, None, Composer)]) def testAll(self): """ Test signup with all benefactors """ self.createSignupAndSignup( getQuotientOffering().installablePowerups) def testDefaultMessageDisplayPrefs(self): """ On signup, users' preferred message format should be HTML. """ ss = self.createSignupAndSignup( getQuotientOffering().installablePowerups) self.assertEqual(ss.findUnique( exmess.MessageDisplayPreferenceCollection).preferredFormat, u"text/html")
0
0
0
2,339
0
864
0
190
383
b26bad7359609958551c3b742dcd0172c900dc22
138,774
py
Python
blackfynn/models.py
Blackfynn/blackfynn-python
ab982e63f2cfe68d41ae269a59da629fec90bf68
[ "Apache-2.0" ]
6
2018-01-05T16:38:11.000Z
2020-06-03T00:28:04.000Z
blackfynn/models.py
Blackfynn/blackfynn-python
ab982e63f2cfe68d41ae269a59da629fec90bf68
[ "Apache-2.0" ]
119
2018-03-07T18:32:58.000Z
2021-02-03T16:10:55.000Z
blackfynn/models.py
Blackfynn/blackfynn-python
ab982e63f2cfe68d41ae269a59da629fec90bf68
[ "Apache-2.0" ]
6
2018-01-19T17:09:31.000Z
2021-03-10T21:46:59.000Z
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function from future.utils import PY2, string_types import datetime try: # Python 3 from inspect import getfullargspec except ImportError: # Python 2 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Helpers # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def get_package_class(data): """ Determines package type and returns appropriate class. """ content = data.get("content", data) if "packageType" not in content: p = Dataset else: ptype = content["packageType"].lower() if ptype == "collection": p = Collection elif ptype == "timeseries": p = TimeSeries elif ptype == "dataset": p = Dataset else: p = DataPackage return p def _flatten_file_args(files): """ Flatten file arguments so that upload methods can be called either as dataset.upload(file1, file2) or as dataset.upload([file1, file2]) """ if len(files) == 1 and not isinstance(files[0], string_types): # single argument - is it iterable and not a string? try: files = list(files[0]) except Exception: pass return files # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Basics # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Files # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Time series # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # User # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Organizations # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Datasets # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Collections # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # PublishInfo # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # UserStubDTO # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # DatasetStatusStub # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # StatusLogEntry # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # StatusLogResponse # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Collaborators # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Models & Relationships # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model Helpers # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Python 2 if PY2: python_to_blackfynn_type_map = { str: "string", unicode: "string", int: "long", long: "long", float: "double", bool: "boolean", datetime.date: "date", datetime.datetime: "date", } blackfynn_to_python_type_map = { "string": unicode, "long": int, "double": float, "boolean": bool, "date": datetime.datetime, } # Python 3 else: python_to_blackfynn_type_map = { str: "string", int: "long", float: "double", bool: "boolean", datetime.date: "date", datetime.datetime: "date", } blackfynn_to_python_type_map = { "string": str, "long": int, "double": float, "boolean": bool, "date": datetime.datetime, } valid_python_types = tuple(python_to_blackfynn_type_map.keys()) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Models # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Query Result # # Returned per "row" result of a query # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Relationships # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Proxies # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model/Relation Instance Sets # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
30.14205
133
0.557893
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function from builtins import object, zip from future.utils import PY2, as_native_str, string_types import datetime import io import os import re import sys from uuid import uuid4 import dateutil import pytz import requests from dateutil.parser import parse from blackfynn import log from blackfynn.extensions import numpy as np from blackfynn.extensions import pandas as pd from blackfynn.extensions import require_extension from blackfynn.utils import get_data_type, infer_epoch, usecs_to_datetime, value_as_type try: # Python 3 from inspect import getfullargspec except ImportError: # Python 2 from inspect import getargspec as getfullargspec # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Helpers # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def get_package_class(data): """ Determines package type and returns appropriate class. """ content = data.get("content", data) if "packageType" not in content: p = Dataset else: ptype = content["packageType"].lower() if ptype == "collection": p = Collection elif ptype == "timeseries": p = TimeSeries elif ptype == "dataset": p = Dataset else: p = DataPackage return p def _update_self(self, updated): if self.id != updated.id: raise Exception("cannot update {} with {}".format(self, updated)) self.__dict__.update(updated.__dict__) return self def _flatten_file_args(files): """ Flatten file arguments so that upload methods can be called either as dataset.upload(file1, file2) or as dataset.upload([file1, file2]) """ if len(files) == 1 and not isinstance(files[0], string_types): # single argument - is it iterable and not a string? try: files = list(files[0]) except Exception: pass return files # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Basics # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class Property(object): """ Property of a blackfynn object. Args: key (str): the key of the property value (str,number): the value of the property fixed (bool): if true, the value cannot be changed after the property is created hidden (bool): if true, the value is hidden on the platform category (str): the category of the property, default: "Blackfynn" data_type (str): one of 'string', 'integer', 'double', 'date', 'user' """ _data_types = ["string", "integer", "double", "date", "user", "boolean"] def __init__( self, key, value, fixed=False, hidden=False, category="Blackfynn", data_type=None, ): self.key = key self.fixed = fixed self.hidden = hidden self.category = category if data_type is None or (data_type.lower() not in self._data_types): dt, v = get_data_type(value) self.data_type = dt self.value = v else: self.data_type = data_type self.value = value_as_type(value, data_type.lower()) def as_dict(self): """ Representation of instance as dictionary, used when calling API. """ return { "key": self.key, "value": str(self.value), # value needs to be string :-( "dataType": self.data_type, "fixed": self.fixed, "hidden": self.hidden, "category": self.category, } @classmethod def from_dict(cls, data, category="Blackfynn"): """ Create an instance from dictionary, used when handling API response. """ return cls( key=data["key"], value=data["value"], category=category, fixed=data["fixed"], hidden=data["hidden"], data_type=data["dataType"], ) def __str__(self): return self.__repr__() @as_native_str() def __repr__(self): return u"<Property key='{}' value='{}' type='{}' category='{}'>".format( self.key, self.value, self.data_type, self.category ) def _get_all_class_args(cls): # possible class arguments if cls == object: return set() class_args = set() for base in cls.__bases__: # get all base class argument variables class_args.update(_get_all_class_args(base)) # get args from this class spec = getfullargspec(cls.__init__) class_args.update(spec[0]) # arguments if spec[1] is not None: class_args.add(spec[1]) # variable arguments if spec[2] is not None: class_args.add(spec[2]) # variable keyword arguments return class_args class BaseNode(object): """ Base class to serve all objects """ _api = None _object_key = "content" def __init__(self, id=None, int_id=None, *args, **kargs): self.id = id self.int_id = int_id @classmethod def from_dict(cls, data, api=None, object_key=None): # which object_key are we going to use? if object_key is not None: obj_key = object_key else: obj_key = cls._object_key # validate obj_key if obj_key == "" or obj_key is None: content = data else: content = data[obj_key] class_args = _get_all_class_args(cls) # find overlapping keys kwargs = {} thing_id = content.pop("id", None) thing_int_id = content.pop("intId", None) for k, v in content.items(): # check lower case var names k_lower = k.lower() # check camelCase --> camel_case k_camel = re.sub(r"[A-Z]", lambda x: "_" + x.group(0).lower(), k) # check s3case --> s3_case k_camel_num = re.sub(r"[0-9]", lambda x: x.group(0) + "_", k) # match with existing args if k_lower in class_args: key = k_lower elif k_camel in class_args: key = k_camel elif k_camel_num in class_args: key = k_camel_num else: key = k # assign kwargs[key] = v # init class with args item = cls.__new__(cls) cls.__init__(item, **kwargs) if thing_id is not None: item.id = thing_id if thing_int_id is not None: item.int_id = thing_int_id if api is not None: item._api = api item._api.core.set_local(item) return item def __eq__(self, item): if not isinstance(item, BaseNode): return False elif self.exists and item.exists: return self.id == item.id else: return self is item @property def exists(self): """ Whether or not the instance of this object exists on the platform. """ return self.id is not None def _check_exists(self): if not self.exists: raise Exception( "Object must be created on the platform before method is called." ) def __str__(self): return self.__repr__() class BaseDataNode(BaseNode): """ Base class to serve all "data" node-types on platform, e.g. Packages and Collections. """ _type_name = "packageType" def __init__( self, name, type, parent=None, owner_id=None, dataset_id=None, id=None, provenance_id=None, **kwargs ): super(BaseDataNode, self).__init__(id=id) self.name = name self._properties = {} if isinstance(parent, string_types) or parent is None: self.parent = parent elif isinstance(parent, Collection): self.parent = parent.id else: raise Exception("Invalid parent {}".format(parent)) self.type = type self.dataset = dataset_id self.owner_id = owner_id self.provenance_id = provenance_id self.state = kwargs.pop("state", None) self.created_at = kwargs.pop("createdAt", None) self.updated_at = kwargs.pop("updatedAt", None) def update_properties(self): self._api.data.update_properties(self) def _set_properties(self, *entries): # Note: Property is stored as dict of key:properties-entry to enable # over-write of properties values based on key for entry in entries: assert type(entry) is Property, "Properties wrong type" if entry.category not in self._properties: self._properties[entry.category] = {} self._properties[entry.category].update({entry.key: entry}) def add_properties(self, *entries): """ Add properties to object. Args: entries (list): list of Property objects to add to this object """ self._set_properties(*entries) # update on platform if self.exists: self.update_properties() def insert_property( self, key, value, fixed=False, hidden=False, category="Blackfynn", data_type=None, ): """ Add property to object using simplified interface. Args: key (str): the key of the property value (str,number): the value of the property fixed (bool): if true, the value cannot be changed after the property is created hidden (bool): if true, the value is hidden on the platform category (str): the category of the property, default: "Blackfynn" data_type (str): one of 'string', 'integer', 'double', 'date', 'user' Note: This method is being depreciated in favor of ``set_property()`` method (see below). """ return self.set_property( key=key, value=value, fixed=fixed, hidden=hidden, category=category, data_type=data_type, ) def set_property( self, key, value, fixed=False, hidden=False, category="Blackfynn", data_type=None, ): """ Add property to object using simplified interface. Args: key (str): the key of the property value (str,number): the value of the property fixed (bool): if true, the value cannot be changed after the property is created hidden (bool): if true, the value is hidden on the platform category (str): the category of the property, default: "Blackfynn" data_type (str): one of 'string', 'integer', 'double', 'date', 'user' """ self._set_properties( Property( key=key, value=value, fixed=fixed, hidden=hidden, category=category, data_type=data_type, ) ) # update on platform, if possible if self.exists: self.update_properties() @property def properties(self): """ Returns a list of properties attached to object. """ props = [] for category in self._properties.values(): props.extend(category.values()) return props def get_property(self, key, category="Blackfynn"): """ Returns a single property for the provided key, if available Args: key (str): key of the desired property category (str, optional): category of property Returns: object of type ``Property`` Example:: pkg.set_property('quality', 85.0) pkg.get_property('quality') """ return self._properties[category].get(key, None) def remove_property(self, key, category="Blackfynn"): """ Removes property of key ``key`` and category ``category`` from the object. Args: key (str): key of property to remove category (str, optional): category of property to remove """ if key in self._properties[category]: # remove by setting blank self._properties[category][key].value = "" # update remotely self.update_properties() # get rid of it locally self._properties[category].pop(key) def update(self, **kwargs): """ Updates object on the platform (with any local changes) and syncs local instance with API response object. Exmple:: pkg = bf.get('N:package:1234-1234-1234-1234') pkg.name = "New name" pkg.update() """ self._check_exists() r = self._api.core.update(self, **kwargs) _update_self(self, r) def delete(self): """ Delete object from platform. """ self._check_exists() r = self._api.core.delete(self) self.id = None def as_dict(self): d = { "name": self.name, self._type_name: self.type, "properties": [m.as_dict() for m in self.properties], } for k in ["parent", "state", "dataset"]: kval = self.__dict__.get(k, None) if hasattr(self, k) and kval is not None: d[k] = kval if self.provenance_id is not None: d["provenanceId"] = self.provenance_id return d @classmethod def from_dict(cls, data, *args, **kwargs): item = super(BaseDataNode, cls).from_dict(data, *args, **kwargs) try: item.state = data["content"]["state"] except: pass item.owner_id = ( data.get("owner") or data.get( "ownerId", ) or data.get("content", {}).get("ownerId") # For packages ) # parse, store parent (ID only) parent = data.get("parent", None) if parent is not None: if isinstance(parent, string_types): item.parent = parent else: pkg_cls = get_package_class(parent) p = pkg_cls.from_dict(parent, *args, **kwargs) item.parent = p.id def cls_add_property(prop): cat = prop.category if cat not in item._properties: item._properties[cat] = {} item._properties[cat].update({prop.key: prop}) # parse properties if "properties" in data: for entry in data["properties"]: if "properties" not in entry: # flat list of properties: [entry] prop = Property.from_dict(entry, category=entry["category"]) cls_add_property(prop) else: # nested properties list [ {category,entry} ] category = entry["category"] for prop_entry in entry["properties"]: prop = Property.from_dict(prop_entry, category=category) cls_add_property(prop) return item class BaseCollection(BaseDataNode): """ Base class used for both ``Dataset`` and ``Collection``. """ def __init__(self, name, package_type, **kwargs): self.storage = kwargs.pop("storage", None) super(BaseCollection, self).__init__(name, package_type, **kwargs) # items is None until an API response provides the item objects # to be parsed, which then updates this instance. self._items = None def add(self, *items): """ Add items to the Collection/Dataset. """ self._check_exists() for item in items: # initialize if need be if self._items is None: self._items = [] if isinstance(self, Dataset): item.parent = None item.dataset = self.id elif hasattr(self, "dataset"): item.parent = self.id item.dataset = self.dataset # create, if not already created new_item = self._api.core.create(item) item.__dict__.update(new_item.__dict__) # add item self._items.append(item) def remove(self, *items): """ Removes items, where items can be an object or the object's ID (string). """ self._check_exists() for item in items: if item not in self._items: raise Exception("Cannot remove item, not in collection:{}".format(item)) self._api.data.delete(*items) # remove locally for item in items: self._items.remove(item) @property def items(self): """ Get all items inside Dataset/Collection (i.e. non-nested items). Note: You can also iterate over items inside a Dataset/Colleciton without using ``.items``:: for item in my_dataset: print("item name = ", item.name) """ self._check_exists() if self._items is None: new_self = self._get_method(self) new_items = new_self._items self._items = new_items if new_items is not None else [] return self._items @property def _get_method(self): pass def print_tree(self, indent=0): """ Prints a tree of **all** items inside object. """ self._check_exists() print(u"{}{}".format(" " * indent, self)) for item in self.items: if isinstance(item, BaseCollection): item.print_tree(indent=indent + 2) else: print(u"{}{}".format(" " * (indent + 2), item)) def get_items_by_name(self, name): """ Get an item inside of object by name (if match is found). Args: name (str): the name of the item Returns: list of matches Note: This only works for **first-level** items, meaning it must exist directly inside the current object; nested items will not be returned. """ self._check_exists() # note: non-hierarchical return [x for x in self.items if x.name == name] def get_items_names(self): self._check_exists() return [x.name for x in self.items] def upload(self, *files, **kwargs): """ Upload files into current object. Args: files: list of local files to upload. If the Blackfynn CLI Agent is installed you can also upload a directory. See :ref:`agent` for more information. Keyword Args: display_progress (boolean): If ``True``, a progress bar will be shown to track upload progress. Defaults to ``False``. use_agent (boolean): If ``True``, and a compatible version of the Agent is installed, uploads will be performed by the Blackfynn CLI Agent. This allows large file upload in excess of 1 hour. Defaults to ``True``. recursive (boolean): If ``True``, the nested folder structure of the uploaded directory will be preversed. This can only be used with the Blackfynn CLI Agent. Defaults to ``False``. Example:: my_collection.upload('/path/to/file1.nii.gz', '/path/to/file2.pdf') """ self._check_exists() files = _flatten_file_args(files) return self._api.io.upload_files(self, files, append=False, **kwargs) def create_collection(self, name): """ Create a new collection within the current object. Collections can be created within datasets and within other collections. Args: name (str): The name of the to-be-created collection Returns: The created ``Collection`` object. Example:: from blackfynn import Blackfynn() bf = Blackfynn() ds = bf.get_dataset('my_dataset') # create collection in dataset col1 = ds.create_collection('my_collection') # create collection in collection col2 = col1.create_collection('another_collection') """ c = Collection(name) self.add(c) return c # sequence-like method def __getitem__(self, i): self._check_exists() return self.items[i] # sequence-like method def __len__(self): self._check_exists() return len(self.items) # sequence-like method def __delitem__(self, key): self._check_exists() self.remove(key) def __iter__(self): self._check_exists() for item in self.items: yield item # sequence-like method def __contains__(self, item): """ Tests if item is in the collection, where item can be either an object's ID (string) or an object's instance. """ self._check_exists() if isinstance(item, string_types): some_id = self._api.data._get_id(item) item_ids = [x.id for x in self.items] contains = some_id in item_ids elif self._items is None: return False else: return item in self._items return contains def as_dict(self): d = super(BaseCollection, self).as_dict() if self.owner_id is not None: d["owner"] = self.owner_id return d @classmethod def from_dict(cls, data, *args, **kwargs): item = super(BaseCollection, cls).from_dict(data, *args, **kwargs) item.storage = data.get("storage", None) children = [] if "children" in data: for child in data["children"]: pkg_cls = get_package_class(child) kwargs["api"] = item._api pkg = pkg_cls.from_dict(child, *args, **kwargs) children.append(pkg) item.add(*children) return item @as_native_str() def __repr__(self): return u"<BaseCollection name='{}' id='{}'>".format(self.name, self.id) class DataPackage(BaseDataNode): """ DataPackage is the core data object representation on the platform. Args: name (str): The name of the data package package_type (str): The package type, e.g. 'TimeSeries', 'MRI', etc. Note: ``package_type`` must be a supported package type. See our data type registry for supported values. """ def __init__(self, name, package_type, **kwargs): self.storage = kwargs.pop("storage", None) super(DataPackage, self).__init__(name=name, type=package_type, **kwargs) # local-only attribute self.session = None @property def sources(self): """ Returns the sources of a DataPackage. Sources are the raw, unmodified files (if they exist) that contains the package's data. """ self._check_exists() return self._api.packages.get_sources(self) @property def files(self): """ Returns the files of a DataPackage. Files are the possibly modified source files (e.g. converted to a different format), but they could also be the source files themselves. """ self._check_exists() return self._api.packages.get_files(self) @property def view(self): """ Returns the object(s) used to view the package. This is typically a set of file objects, that may be the DataPackage's sources or files, but could also be a unique object specific for the viewer. """ self._check_exists() return self._api.packages.get_view(self) def process(self): """ Process a data package that has successfully uploaded it's source files but has not yet been processed by the Blackfynn ETL. """ self._check_exists() return self._api.packages.process(self) def relate_to(self, *records): """ Relate current ``DataPackage`` to one or more ``Record`` objects. Args: records (list of Records): Records to relate to data package Returns: ``Relationship`` that defines the link Example: Relate package to a single record:: eeg.relate_to(participant_123) Relate package to multiple records:: # relate to explicit list of records eeg.relate_to( participant_001 participant_002, participant_003, ) # relate to all participants eeg.relate_to(participants.get_all()) Note: The created relationship will be of the form ``DataPackage`` --(``belongs_to``)--> ``Record``. """ self._check_exists() if isinstance(records, Record): records = [records] assert all( [isinstance(r, Record) for r in records] ), "all records must be object of type Record" # auto-create relationship type relationships = self._api.concepts.relationships.get_all(self.dataset) if "belongs_to" not in relationships: r = RelationshipType( dataset_id=self.dataset, name="belongs_to", description="belongs_to" ) self._api.concepts.relationships.create(self.dataset, r) return [ self._api.concepts.proxies.create( self.dataset, self.id, "belongs_to", r, {} ) for r in records ] def as_dict(self): d = super(DataPackage, self).as_dict() if self.owner_id is not None: d["owner"] = self.owner_id return d @classmethod def from_dict(cls, data, *args, **kwargs): data["content"]["id"] = data["content"]["nodeId"] item = super(DataPackage, cls).from_dict(data, *args, **kwargs) # parse objects objects = data.get("objects", None) if objects is not None: for otype in ["sources", "files", "view"]: if otype not in data["objects"]: continue odata = data["objects"][otype] item.__dict__[otype] = [File.from_dict(x) for x in odata] return item @classmethod def from_id(cls, id): return self._api.packages.get(id) @as_native_str() def __repr__(self): return u"<DataPackage name='{}' id='{}'>".format(self.name, self.id) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Files # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class File(BaseDataNode): """ File node on the Blackfynn platform. Points to some S3 location. Args: name (str): Name of the file (without extension) s3_key (str): S3 key of file s3_bucket (str): S3 bucket of file file_type (str): Type of file, e.g. 'MPEG', 'PDF' size (long): Size of file Note: ``file_type`` must be a supported file type. See our file type registry for a list of supported file types. """ _type_name = "fileType" def __init__(self, name, s3_key, s3_bucket, file_type, size, pkg_id=None, **kwargs): super(File, self).__init__(name, type=file_type, **kwargs) # data self.s3_key = s3_key self.s3_bucket = s3_bucket self.size = size self.pkg_id = pkg_id self.local_path = None def as_dict(self): d = super(File, self).as_dict() d.update({"s3bucket": self.s3_bucket, "s3key": self.s3_key, "size": self.size}) d.pop("parent", None) props = d.pop("properties") return {"objectType": "file", "content": d, "properties": props} @property def url(self): """ The presigned-URL of the file. """ self._check_exists() return self._api.packages.get_presigned_url_for_file(self.pkg_id, self.id) def download(self, destination): """ Download the file. Args: destination (str): path for downloading; can be absolute file path, prefix or destination directory. """ if self.type == "DirectoryViewerData": raise NotImplementedError( "Downloading S3 directories is currently not supported" ) if os.path.isdir(destination): # destination dir f_local = os.path.join(destination, os.path.basename(self.s3_key)) if "." not in os.path.basename(destination): # destination dir + prefix f_local = destination + "_" + os.path.basename(self.s3_key) else: # exact location f_local = destination r = requests.get(self.url, stream=True) with io.open(f_local, "wb") as f: for chunk in r.iter_content(chunk_size=1024): if chunk: f.write(chunk) # set local path self.local_path = f_local return f_local @as_native_str() def __repr__(self): return ( u"<File name='{}' type='{}' key='{}' bucket='{}' size='{}' id='{}'>".format( self.name, self.type, self.s3_key, self.s3_bucket, self.size, self.id ) ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Time series # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class TimeSeries(DataPackage): """ Represents a timeseries package on the platform. TimeSeries packages contain channels, which contain time-dependent data sampled at some frequency. Args: name: The name of the timeseries package """ def __init__(self, name, **kwargs): kwargs.pop("package_type", None) super(TimeSeries, self).__init__(name=name, package_type="TimeSeries", **kwargs) @property def start(self): """ The start time of time series data (over all channels) """ self._check_exists() return sorted([x.start for x in self.channels])[0] @property def end(self): """ The end time (in usecs) of time series data (over all channels) """ self._check_exists() return sorted([x.end for x in self.channels])[-1] def limits(self): """ Returns time limit tuple (start, end) of package. """ channels = self.channels start = sorted([x.start for x in channels])[0] end = sorted([x.end for x in channels])[-1] return start, end def segments(self, start=None, stop=None, gap_factor=2): """ Returns list of contiguous data segments available for package. Segments are assesssed for all channels, and the union of segments is returned. Args: start (int, datetime, optional): Return segments starting after this time (default earliest start of any channel) stop (int, datetime, optional): Return segments starting before this time (default latest end time of any channel) gap_factor (int, optional): Gaps are computed by ``sampling_rate * gap_factor`` (default 2) Returns: List of tuples, where each tuple represents the (start, stop) of contiguous data. """ # flattenened list of segments across all channels channel_segments = [ segment for channel in self.channels for segment in channel.segments( start=start, stop=stop, gap_factor=gap_factor ) ] # union all segments union_segments = [] for begin, end in sorted(channel_segments): if union_segments and union_segments[-1][1] >= begin - 1: new_segment = (union_segments[-1][0], max(union_segments[-1][1], end)) union_segments.pop() union_segments.append(new_segment) else: union_segments.append((begin, end)) return union_segments @property def channels(self): """ Returns list of Channel objects associated with package. Note: This is a dynamically generated property, so every call will make an API request. Suggested usage:: channels = ts.channels for ch in channels: print(ch) This will be much slower, as the API request is being made each time.:: for ch in ts.channels: print(ch) """ self._check_exists() # always dynamically return channel list return self._api.timeseries.get_channels(self) def get_channel(self, channel): """ Get channel by ID. Args: channel (str): ID of channel """ self._check_exists() return self._api.timeseries.get_channel(self, channel) def add_channels(self, *channels): """ Add channels to TimeSeries package. Args: channels: list of Channel objects. """ self._check_exists() for channel in channels: ch = self._api.timeseries.create_channel(self, channel) channel.__dict__.update(ch.__dict__) def remove_channels(self, *channels): """ Remove channels from TimeSeries package. Args: channels: list of Channel objects or IDs """ self._check_exists() for channel in channels: if isinstance(channel, TimeSeriesChannel): self._api.timeseries.delete_channel(channel) channel.id = None channel._pkg = None else: self._api.timeseries.delete_channel_by_id(self.id, channel) # ~~~~~~~~~~~~~~~~~~ # Data # ~~~~~~~~~~~~~~~~~~ def get_data( self, start=None, end=None, length=None, channels=None, use_cache=True ): """ Get timeseries data between ``start`` and ``end`` or ``start`` and ``start + length`` on specified channels (default all channels). Args: start (optional): start time of data (usecs or datetime object) end (optional): end time of data (usecs or datetime object) length (optional): length of data to retrieve, e.g. '1s', '5s', '10m', '1h' channels (optional): list of channel objects or IDs, default all channels. Note: Data requests will be automatically chunked and combined into a single Pandas DataFrame. However, you must be sure you request only a span of data that will properly fit in memory. See ``get_data_iter`` for an iterator approach to timeseries data retrieval. Example: Get 5 seconds of data from start over all channels:: data = ts.get_data(length='5s') Get data betwen 12345 and 56789 (representing usecs since Epoch):: data = ts.get_data(start=12345, end=56789) Get first 10 seconds for the first two channels:: data = ts.get_data(length='10s', channels=ts.channels[:2]) """ self._check_exists() return self._api.timeseries.get_ts_data( self, start=start, end=end, length=length, channels=channels, use_cache=use_cache, ) def get_data_iter( self, channels=None, start=None, end=None, length=None, chunk_size=None, use_cache=True, ): """ Returns iterator over the data. Must specify **either ``end`` OR ``length``**, not both. Args: channels (optional): channels to retrieve data for (default: all) start: start time of data (default: earliest time available). end: end time of data (default: latest time avialable). length: some time length, e.g. '1s', '5m', '1h' or number of usecs chunk: some time length, e.g. '1s', '5m', '1h' or number of usecs Returns: iterator of Pandas Series, each the size of ``chunk_size``. """ self._check_exists() return self._api.timeseries.get_ts_data_iter( self, channels=channels, start=start, end=end, length=length, chunk_size=chunk_size, use_cache=use_cache, ) def write_annotation_file(self, file, layer_names=None): """ Writes all layers to a csv .bfannot file Args: file : path to .bfannot output file. Appends extension if necessary layer_names (optional): List of layer names to write """ return self._api.timeseries.write_annotation_file(self, file, layer_names) def append_annotation_file(self, file): """ Processes .bfannot file and adds to timeseries package. Args: file : path to .bfannot file """ self._check_exists() return self._api.timeseries.process_annotation_file(self, file) def append_files(self, *files, **kwargs): """ Append files to this timeseries package. Args: files: list of local files to upload. Keyword Args: display_progress (boolean): If ``True``, a progress bar will be shown to track upload progress. Defaults to ``False``. use_agent (boolean): If ``True``, and a compatible version of the Agent is installed, uploads will be performed by the Blackfynn CLI Agent. This allows large file upload in excess of 1 hour. Defaults to ``True``. """ self._check_exists() files = _flatten_file_args(files) return self._api.io.upload_files(self, files, append=True, **kwargs) def stream_data(self, data): self._check_exists() return self._api.timeseries.stream_data(self, data) # ~~~~~~~~~~~~~~~~~~ # Annotations # ~~~~~~~~~~~~~~~~~~ @property def layers(self): """ List of annotation layers attached to TimeSeries package. """ self._check_exists() # always dynamically return annotation layers return self._api.timeseries.get_annotation_layers(self) def get_layer(self, id_or_name): """ Get annotation layer by ID or name. Args: id_or_name: layer ID or name """ self._check_exists() layers = self.layers matches = [x for x in layers if x.id == id_or_name] if len(matches) == 0: matches = [x for x in layers if x.name == id_or_name] if len(matches) == 0: raise Exception("No layers match criteria.") if len(matches) > 1: raise Exception("More than one layer matched criteria") return matches[0] def add_layer(self, layer, description=None): """ Args: layer: TimeSeriesAnnotationLayer object or name of annotation layer description (str, optional): description of layer """ self._check_exists() return self._api.timeseries.create_annotation_layer( self, layer=layer, description=description ) def add_annotations(self, layer, annotations): """ Args: layer: either TimeSeriesAnnotationLayer object or name of annotation layer. Note that non existing layers will be created. annotations: TimeSeriesAnnotation object(s) Returns: list of TimeSeriesAnnotation objects """ self._check_exists() cur_layer = self._api.timeseries.create_annotation_layer( self, layer=layer, description=None ) return self._api.timeseries.create_annotations( layer=cur_layer, annotations=annotations ) def insert_annotation( self, layer, annotation, start=None, end=None, channel_ids=None, annotation_description=None, ): """ Insert annotations using a more direct interface, without the need for layer/annotation objects. Args: layer: str of new/existing layer or annotation layer object annotation: str of annotation event start (optional): start of annotation end (optional): end of annotation channels_ids (optional): list of channel IDs to apply annotation annotation_description (optional): description of annotation Example: To add annotation on layer "my-events" across all channels:: ts.insert_annotation('my-events', 'my annotation event') To add annotation to first channel:: ts.insert_annotation('my-events', 'first channel event', channel_ids=ts.channels[0]) """ self._check_exists() cur_layer = self._api.timeseries.create_annotation_layer( self, layer=layer, description=None ) return self._api.timeseries.create_annotation( layer=cur_layer, annotation=annotation, start=start, end=end, channel_ids=channel_ids, description=annotation_description, ) def delete_layer(self, layer): """ Delete annotation layer. Args: layer: annotation layer object """ self._check_exists() return self._api.timeseries.delete_annotation_layer(layer) def annotation_counts(self, start, end, layers, period, channels=None): """ Get annotation counts between ``start`` and ``end``. Args: start (datetime or microseconds) : The starting time of the range to query end (datetime or microseconds) : The ending time of the the range to query layers ([TimeSeriesLayer]) : List of layers for which to count annotations period (string) : The length of time to group the counts. Formatted as a string - e.g. '1s', '5m', '3h' channels ([TimeSeriesChannel]) : List of channel (if omitted, all channels will be used) """ self._check_exists() return self._api.timeseries.query_annotation_counts( ts=self, layers=layers, channels=channels, start=start, end=end, period=period, ) @as_native_str() def __repr__(self): return u"<TimeSeries name='{}' id='{}'>".format(self.name, self.id) class TimeSeriesChannel(BaseDataNode): """ TimeSeriesChannel represents a single source of time series data. (e.g. electrode) Args: name (str): Name of channel rate (float): Rate of the channel (Hz) start (optional): Absolute start time of all data (datetime obj) end (optional): Absolute end time of all data (datetime obj) unit (str, optional): Unit of measurement channel_type (str, optional): One of 'continuous' or 'event' source_type (str, optional): The source of data, e.g. "EEG" group (str, optional): The channel group, default: "default" """ def __init__( self, name, rate, start=0, end=0, unit="V", channel_type="continuous", source_type="unspecified", group="default", last_annot=0, spike_duration=None, **kwargs ): self.channel_type = channel_type.upper() super(TimeSeriesChannel, self).__init__( name=name, type=self.channel_type, **kwargs ) self.rate = rate self.unit = unit self.last_annot = last_annot self.group = group self.start = start self.end = end self.spike_duration = spike_duration self.set_property( "Source Type", source_type.upper(), fixed=True, hidden=True, category="Blackfynn", ) ### local-only # parent package self._pkg = None # sample period (in usecs) self._sample_period = 1.0e6 / self.rate @property def start(self): """ The start time of channel data (microseconds since Epoch) """ return self._start @start.setter def start(self, start): self._start = infer_epoch(start) @property def start_datetime(self): return usecs_to_datetime(self._start) @property def end(self): """ The end time (in usecs) of channel data (microseconds since Epoch) """ return self._end @end.setter def end(self, end): self._end = infer_epoch(end) @property def end_datetime(self): return usecs_to_datetime(self._end) def _page_delta(self, page_size): return int((1.0e6 / self.rate) * page_size) def update(self): self._check_exists() r = self._api.timeseries.update_channel(self) self.__dict__.update(r.__dict__) def segments(self, start=None, stop=None, gap_factor=2): """ Return list of contiguous segments of valid data for channel. Args: start (long, datetime, optional): Return segments starting after this time (default start of channel) stop (long, datetime, optional): Return segments starting before this time (default end of channel) gap_factor (int, optional): Gaps are computed by ``sampling_period * gap_factor`` (default 2) Returns: List of tuples, where each tuple represents the (start, stop) of contiguous data. """ start = self.start if start is None else start stop = self.end if stop is None else stop return self._api.timeseries.get_segments( self._pkg, self, start=start, stop=stop, gap_factor=gap_factor ) @property def gaps(self): # TODO: infer gaps from segments raise NotImplementedError def update_properties(self): self._api.timeseries.update_channel_properties(self) def get_data(self, start=None, end=None, length=None, use_cache=True): """ Get channel data between ``start`` and ``end`` or ``start`` and ``start + length`` Args: start (optional): start time of data (usecs or datetime object) end (optional): end time of data (usecs or datetime object) length (optional): length of data to retrieve, e.g. '1s', '5s', '10m', '1h' use_cache (optional): whether to use locally cached data Returns: Pandas Series containing requested data for channel. Note: Data requests will be automatically chunked and combined into a single Pandas Series. However, you must be sure you request only a span of data that will properly fit in memory. See ``get_data_iter`` for an iterator approach to timeseries data retrieval. Example: Get 5 seconds of data from start over all channels:: data = channel.get_data(length='5s') Get data betwen 12345 and 56789 (representing usecs since Epoch):: data = channel.get_data(start=12345, end=56789) """ return self._api.timeseries.get_ts_data( ts=self._pkg, start=start, end=end, length=length, channels=[self], use_cache=use_cache, ) def get_data_iter( self, start=None, end=None, length=None, chunk_size=None, use_cache=True ): """ Returns iterator over the data. Must specify **either ``end`` OR ``length``**, not both. Args: start (optional): start time of data (default: earliest time available). end (optional): end time of data (default: latest time avialable). length (optional): some time length, e.g. '1s', '5m', '1h' or number of usecs chunk_size (optional): some time length, e.g. '1s', '5m', '1h' or number of usecs use_cache (optional): whether to use locally cached data Returns: Iterator of Pandas Series, each the size of ``chunk_size``. """ return self._api.timeseries.get_ts_data_iter( ts=self._pkg, start=start, end=end, length=length, channels=[self], chunk_size=chunk_size, use_cache=use_cache, ) def as_dict(self): return { "name": self.name, "start": self.start, "end": self.end, "unit": self.unit, "rate": self.rate, "channelType": self.channel_type, "lastAnnotation": self.last_annot, "group": self.group, "spikeDuration": self.spike_duration, "properties": [x.as_dict() for x in self.properties], } @as_native_str() def __repr__(self): return u"<TimeSeriesChannel name='{}' id='{}'>".format(self.name, self.id) class TimeSeriesAnnotationLayer(BaseNode): """ Annotation layer containing one or more annotations. Layers are used to separate annotations into logically distinct groups when applied to the same data package. Args: name: Name of the layer time_series_id: The TimeSeries ID which the layer applies description: Description of the layer """ _object_key = None def __init__(self, name, time_series_id, description=None, **kwargs): super(TimeSeriesAnnotationLayer, self).__init__(**kwargs) self.name = name self.time_series_id = time_series_id self.description = description def iter_annotations(self, window_size=10, channels=None): """ Iterate over annotations according to some window size (seconds). Args: window_size (float): Number of seconds in window channels: List of channel objects or IDs Yields: List of annotations found in current window. """ self._check_exists() ts = self._api.core.get(self.time_series_id) return self._api.timeseries.iter_annotations( ts=ts, layer=self, channels=channels, window_size=window_size ) def add_annotations(self, annotations): """ Add annotations to layer. Args: annotations (str): List of annotation objects to add. """ self._check_exists() return self._api.timeseries.create_annotations( layer=self, annotations=annotations ) def insert_annotation( self, annotation, start=None, end=None, channel_ids=None, description=None ): """ Add annotations; proxy for ``add_annotations``. Args: annotation (str): Annotation string start: Start time (usecs or datetime) end: End time (usecs or datetime) channel_ids: list of channel IDs Returns: The created annotation object. """ self._check_exists() return self._api.timeseries.create_annotation( layer=self, annotation=annotation, start=start, end=end, channel_ids=channel_ids, description=description, ) def annotations(self, start=None, end=None, channels=None): """ Get annotations between ``start`` and ``end`` over ``channels`` (all channels by default). Args: start: Start time end: End time channels: List of channel objects or IDs """ self._check_exists() ts = self._api.core.get(self.time_series_id) return self._api.timeseries.get_annotations( ts=ts, layer=self, channels=channels, start=start, end=end ) def annotation_counts(self, start, end, period, channels=None): """ The number of annotations between ``start`` and ``end`` over selected channels (all by default). Args: start (datetime or microseconds) : The starting time of the range to query end (datetime or microseconds) : The ending time of the the range to query period (string) : The length of time to group the counts. Formatted as a string - e.g. '1s', '5m', '3h' channels ([TimeSeriesChannel]) : List of channel (if omitted, all channels will be used) """ self._check_exists() ts = self._api.core.get(self.time_series_id) return self._api.timeseries.query_annotation_counts( ts=ts, layers=[self], channels=channels, start=start, end=end, period=period ) def delete(self): """ Delete annotation layer. """ self._check_exists() return self._api.timeseries.delete_annotation_layer(self) def as_dict(self): return {"name": self.name, "description": self.description} @as_native_str() def __repr__(self): return u"<TimeSeriesAnnotationLayer name='{}' id='{}'>".format( self.name, self.id ) class TimeSeriesAnnotation(BaseNode): """ Annotation is an event on one or more channels in a dataset Args: label (str): The label for the annotation channel_ids: List of channel IDs that annotation applies start: Start time end: End time name: Name of annotation layer_id: Layer ID for annoation (all annotations exist on a layer) time_series_id: TimeSeries package ID description: Description of annotation """ _object_key = None def __init__( self, label, channel_ids, start, end, name="", layer_id=None, time_series_id=None, description=None, **kwargs ): self.user_id = kwargs.pop("userId", None) super(TimeSeriesAnnotation, self).__init__(**kwargs) self.name = "" self.label = label self.channel_ids = channel_ids self.start = start self.end = end self.description = description self.layer_id = layer_id self.time_series_id = time_series_id def delete(self): self._check_exists() return self._api.timeseries.delete_annotation(annot=self) def as_dict(self): channel_ids = self.channel_ids if not isinstance(channel_ids, list): channel_ids = [channel_ids] return { "name": self.name, "label": self.label, "channelIds": channel_ids, "start": self.start, "end": self.end, "description": self.description, "layer_id": self.layer_id, "time_series_id": self.time_series_id, } @as_native_str() def __repr__(self): date = datetime.datetime.fromtimestamp(self.start / 1e6) return u"<TimeSeriesAnnotation label='{}' layer='{}' start='{}'>".format( self.label, self.layer_id, date.isoformat() ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # User # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class User(BaseNode): _object_key = "" def __init__( self, email, first_name, last_name, credential="", photo_url="", url="", authy_id=0, accepted_terms="", color=None, is_super_admin=False, *args, **kwargs ): kwargs.pop("preferredOrganization", None) self.storage = kwargs.pop("storage", None) super(User, self).__init__(*args, **kwargs) self.email = email self.first_name = first_name self.last_name = last_name self.credential = credential self.photo_url = photo_url self.color = color self.url = url self.authy_id = authy_id self.accepted_terms = "" self.is_super_admin = is_super_admin @as_native_str() def __repr__(self): return u"<User email='{}' id='{}'>".format(self.email, self.id) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Organizations # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class Organization(BaseNode): _object_key = "organization" def __init__( self, name, encryption_key_id="", slug=None, terms=None, features=None, subscription_state=None, *args, **kwargs ): self.storage = kwargs.pop("storage", None) super(Organization, self).__init__(*args, **kwargs) self.name = name self.terms = terms self.features = features or [] self.subscription_state = subscription_state self.encryption_key_id = encryption_key_id self.slug = name.lower().replace(" ", "-") if slug is None else slug @property def datasets(self): """ Return all datasets for user for an organization (current context). """ self._check_exists() return self._api.datasets.get_all() @property def members(self): return self._api.organizations.get_members(self) @as_native_str() def __repr__(self): return u"<Organization name='{}' id='{}'>".format(self.name, self.id) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Datasets # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class Dataset(BaseCollection): def __init__( self, name, description=None, status=None, tags=None, automatically_process_packages=False, **kwargs ): kwargs.pop("package_type", None) kwargs.pop("type", None) super(Dataset, self).__init__(name, "DataSet", **kwargs) self.description = description or "" self._status = status self._tags = tags or [] self.automatically_process_packages = automatically_process_packages # remove things that do not apply (a bit hacky) for k in ( "parent", "type", "set_ready", "set_unavailable", "set_error", "state", "dataset", ): self.__dict__.pop(k, None) @as_native_str() def __repr__(self): return u"<Dataset name='{}' id='{}'>".format(self.name, self.id) @property def status(self): """Get the current status.""" return self._status @property def tags(self): """Get the current tags.""" return self._tags @status.setter def status(self, value): raise AttributeError("Dataset.status is read-only.") @tags.setter def tags(self, value): if isinstance(value, list) and all( isinstance(elem, string_types) for elem in value ): self._tags = value else: raise AttributeError("Dataset.tags should be a list of strings.") def get_topology(self): """Returns the set of Models and Relationships defined for the dataset Returns: dict: Keys are either ``models`` or ``relationships``. Values are the list of objects of that type """ return self._api.concepts.get_topology(self) def get_graph_summary(self): """ Returns summary metrics about the knowledge graph """ return self._api.concepts.get_summary(self) def published(self): return self._api.datasets.published(self.id) def status_log(self, limit=25, offset=0): return self._api.datasets.status_log(self.id, limit, offset) def package_count(self): return self._api.datasets.package_count(self.id) def team_collaborators(self): return self._api.datasets.team_collaborators(self.id) def user_collaborators(self): return self._api.datasets.user_collaborators(self.id) def get_packages_by_filename(self, filename): return self._api.datasets.get_packages_by_filename(self.id, filename) def owner(self): return self._api.datasets.owner(self.id) def models(self): """ Returns: List of models defined in Dataset """ return self._api.concepts.get_all(self.id) def relationships(self): """ Returns: List of relationships defined in Dataset """ return self._api.concepts.relationships.get_all(self.id) def get_model(self, name_or_id): """ Retrieve a ``Model`` by name or id Args: name_or_id (str or int): name or id of the model Returns: The requested ``Model`` in Dataset Example:: mouse = ds.get_model('mouse') """ return self._api.concepts.get(self.id, name_or_id) def get_relationship(self, name_or_id): """ Retrieve a ``RelationshipType`` by name or id Args: name_or_id (str or int): name or id of the relationship Returns: The requested ``RelationshipType`` Example:: belongsTo = ds.get_relationship('belongs-to') """ return self._api.concepts.relationships.get(self.id, name_or_id) def get_connected_models(self, name_or_id): """Retrieve all models connected to the given model Connected is defined as model that can be reached by following outgoing relationships starting at the current model Args: name_or_id: Name or id of the model Return: List of ``Model`` objects Example:: connected_models = ds.get_related_models('patient') """ return self._api.concepts.get_connected(self.id, name_or_id) def create_model( self, name, display_name=None, description=None, schema=None, **kwargs ): """ Defines a ``Model`` on the platform. Args: name (str): Name of the model description (str, optional): Description of the model schema (list, optional): Definition of the model's schema as list of ModelProperty objects. Returns: The newly created ``Model`` Note: It is required that a model includes at least _one_ property that serves as the "title". Example: Create a participant model, including schema:: from blackfynn import ModelProperty ds.create_model('participant', description = 'a human participant in a research study', schema = [ ModelProperty('name', data_type=str, title=True), ModelProperty('age', data_type=int) ] ) Or define schema using dictionary:: ds.create_model('participant', schema = [ { 'name': 'full_name', 'data_type': str, 'title': True }, { 'name': 'age', 'data_type': int, } ]) You can also create a model and define schema later:: # create model pt = ds.create_model('participant') # define schema pt.add_property('name', str, title=True) pt.add_property('age', int) """ c = Model( dataset_id=self.id, name=name, display_name=display_name if display_name else name, description=description, schema=schema, **kwargs ) return self._api.concepts.create(self.id, c) def create_relationship_type( self, name, description, schema=None, source=None, destination=None, **kwargs ): """ Defines a ``RelationshipType`` on the platform. Args: name (str): name of the relationship description (str): description of the relationship schema (dict, optional): definitation of the relationship's schema Returns: The newly created ``RelationshipType`` Example:: ds.create_relationship_type('belongs-to', 'this belongs to that') """ r = RelationshipType( dataset_id=self.id, name=name, description=description, source=source, destination=destination, schema=schema, **kwargs ) return self._api.concepts.relationships.create(self.id, r) def import_model(self, template): """ Imports a model based on the given template into the dataset Args: template (ModelTemplate): the ModelTemplate to import Returns: A list of ModelProperty objects that have been imported into the dataset """ return self._api.templates.apply(self, template) @property def _get_method(self): return self._api.datasets.get def as_dict(self): return dict( name=self.name, description=self.description, automaticallyProcessPackages=self.automatically_process_packages, properties=[p.as_dict() for p in self.properties], tags=self.tags, ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Collections # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class Collection(BaseCollection): def __init__(self, name, **kwargs): kwargs.pop("package_type", None) super(Collection, self).__init__(name, package_type="Collection", **kwargs) @property def _get_method(self): return self._api.packages.get @as_native_str() def __repr__(self): return u"<Collection name='{}' id='{}'>".format(self.name, self.id) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # PublishInfo # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class PublishInfo(BaseNode): def __init__(self, status, doi, dataset_id, version_count, last_published): self.status = status self.doi = doi self.dataset_id = dataset_id self.version_count = version_count self.last_published = last_published @classmethod def from_dict(cls, data): return cls( status=data.get("status"), doi=data.get("latest_doi"), dataset_id=data.get("publishedDatasetId"), version_count=data.get("publishedVersionCount"), last_published=data.get("lastPublishedDate"), ) @as_native_str() def __repr__(self): return u"<PublishInfo status='{}' dataset_id='{}' version_count='{}' last_published='{}' doi='{}'>".format( self.status, self.dataset_id, self.version_count, self.last_published, self.doi, ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # UserStubDTO # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class UserStubDTO(BaseNode): def __init__(self, node_id, first_name, last_name): self.node_id = node_id self.first_name = first_name self.last_name = last_name @classmethod def from_dict(cls, data): return cls( node_id=data.get("nodeId"), first_name=data.get("firstName"), last_name=data.get("lastName"), ) @as_native_str() def __repr__(self): return u"<User node_id='{}' first_name='{}' last_name='{}' >".format( self.node_id, self.first_name, self.last_name ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # DatasetStatusStub # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class DatasetStatusStub(BaseNode): def __init__(self, id, name, display_name): self.id = id self.name = name self.display_name = display_name @classmethod def from_dict(cls, data): return cls( id=data.get("id"), name=data.get("name"), display_name=data.get("displayName"), ) @as_native_str() def __repr__(self): return u"<DatasetStatus id='{}' name='{}' display_name='{}'>".format( self.id, self.name, self.display_name ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # StatusLogEntry # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class StatusLogEntry(BaseNode): def __init__(self, user, status, updated_at): self.user = user self.status = status self.updated_at = updated_at @classmethod def from_dict(cls, data): return cls( user=UserStubDTO.from_dict(data.get("user")), status=DatasetStatusStub.from_dict(data.get("status")), updated_at=parse(data.get("updatedAt")), ) @as_native_str() def __repr__(self): return u"<StatusLogEntry user='{}' status='{}' updated_at='{}' >".format( self.user, self.status, self.updated_at ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # StatusLogResponse # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class StatusLogResponse(BaseNode): def __init__(self, limit, offset, total_count, entries): self.limit = limit self.offset = offset self.total_count = total_count self.entries = entries @classmethod def from_dict(cls, data): return cls( limit=data.get("limit"), offset=data.get("offset"), total_count=data.get("totalCount"), entries=[StatusLogEntry.from_dict(e) for e in data.get("entries")], ) @as_native_str() def __repr__(self): return u"<StatusLogResponse limit='{}' offset='{}' total_count='{}' entries='{}' >".format( self.limit, self.offset, self.total_count, self.entries ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Collaborators # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class UserCollaborator(BaseNode): def __init__(self, id, first_name, last_name, email, role): self.id = id self.first_name = first_name self.last_name = last_name self.email = email self.role = role @classmethod def from_dict(cls, data): return cls( id=data["id"], first_name=data["firstName"], last_name=data["lastName"], email=data["email"], role=data["role"], ) @property def name(self): return "{} {}".format(self.first_name, self.last_name) @as_native_str() def __repr__(self): return u"<UserCollaborator name='{}' email='{}' role='{}' id='{}'>".format( self.name, self.email, self.role, self.id ) class TeamCollaborator(BaseNode): def __init__(self, id, name, role): self.id = id self.name = name self.role = role @classmethod def from_dict(cls, data): return cls(id=data["id"], name=data["name"], role=data["role"]) @as_native_str() def __repr__(self): return u"<TeamCollaborator name='{}' role='{}' id='{}'>".format( self.name, self.role, self.id ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Models & Relationships # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model Helpers # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Python 2 if PY2: python_to_blackfynn_type_map = { str: "string", unicode: "string", int: "long", long: "long", float: "double", bool: "boolean", datetime.date: "date", datetime.datetime: "date", } blackfynn_to_python_type_map = { "string": unicode, "long": int, "double": float, "boolean": bool, "date": datetime.datetime, } # Python 3 else: python_to_blackfynn_type_map = { str: "string", int: "long", float: "double", bool: "boolean", datetime.date: "date", datetime.datetime: "date", } blackfynn_to_python_type_map = { "string": str, "long": int, "double": float, "boolean": bool, "date": datetime.datetime, } valid_python_types = tuple(python_to_blackfynn_type_map.keys()) def target_type_string(target): if isinstance(target, Model): return target.type elif isinstance(target, str): return target else: raise Exception("target must be a string or model") class ModelPropertyType(object): """ Representation of model property types in the platform. """ def __init__(self, data_type, format=None, unit=None): # Is this a supported literal Python type? if isinstance(data_type, type) and data_type in python_to_blackfynn_type_map: self.data_type = data_type # Otherwise this must be a string representation of a Blackfynn type elif ( isinstance(data_type, string_types) and data_type.lower() in blackfynn_to_python_type_map ): self.data_type = blackfynn_to_python_type_map[data_type.lower()] else: raise Exception( "Cannot create ModelPropertyType with data_type={}".format(data_type) ) self.format = format self.unit = unit @property def _blackfynn_type(self): return python_to_blackfynn_type_map[self.data_type] @staticmethod def _build_from(data): """ Construct a ``ModelPropertyType`` from any data source. This is responsible for dispatching construction to subclasses for special cases such as enumerated and array types. """ if isinstance(data, ModelPropertyType): return data elif isinstance(data, dict) and ( data["type"].lower() == "array" or "items" in data ): return ModelPropertyEnumType.from_dict(data) return ModelPropertyType.from_dict(data) @classmethod def from_dict(cls, data): if isinstance(data, dict): return cls( data_type=data["type"], format=data.get("format"), unit=data.get("unit") ) # Single string return cls(data_type=data) def as_dict(self): if (self.format is None) and (self.unit is None): return self._blackfynn_type return dict(type=self._blackfynn_type, format=self.format, unit=self.unit) def _decode_value(self, value): """ Decode a model value received from the Blackfynn API into the Python representation mandated by this `ModelPropertyType`. """ if value is None: return None elif self.data_type == bool: if isinstance(value, bool): return value elif isinstance(value, str) or isinstance(value, unicode): if value.lower() == "false": return False elif value.lower() == "true": return True else: return bool(value) else: return bool(value) elif self.data_type in (datetime.date, datetime.datetime): if isinstance(value, (datetime.date, datetime.datetime)): return value else: return dateutil.parser.parse(value) return self.data_type(value) def _encode_value(self, value): """ Encode a Python value into something that can be sent to the Blackfynn API. """ if value is None: return None elif isinstance(value, (datetime.date, datetime.datetime)): if value.tzinfo is None or value.tzinfo.utcoffset(value) is None: value = pytz.utc.localize(value) v = value.isoformat() # isoformat() does not include microseconds if microseconds is # 0, but we always need microseconds in the formatted string if not value.microsecond: v = "{}.000000{}".format(v[:-6], v[-6:]) return v return self.data_type(value) @as_native_str() def __repr__(self): return u"<ModelPropertyType data_type='{}' format='{}' unit='{}'".format( self.data_type, self.format, self.unit ) class ModelPropertyEnumType(ModelPropertyType): """ A special case of a ``ModelPropertyType`` that contains enumerated values and arrays of values. This can take one of several forms: * If ``enum`` is a list of objects, then the values of this property may only be one of the given values. * If ``multi_select`` is ``True``, then values of this property may be lists of objects. * If ``enum`` is a list of objects *and* ``multi_select`` is ``True``, then values of this property must be lists of items in ``enum``. """ def __init__( self, data_type, format=None, unit=None, enum=None, multi_select=False ): super(ModelPropertyEnumType, self).__init__(data_type, format, unit) if enum is not None: enum = list(enum) self.enum = enum self.multi_select = multi_select self.selection_type = "array" if self.multi_select else "enum" def _decode_value(self, value): """ Decode a model value received from the Blackfynn API into the Python representation mandated by this ``ModelPropertyType``. """ if value is None: return None self._assert_value_in_enum(value) if self.multi_select: return [super(ModelPropertyEnumType, self)._decode_value(v) for v in value] return super(ModelPropertyEnumType, self)._decode_value(value) def _encode_value(self, value): """ Encode a Python value into something that can be sent to the Blackfynn API. """ if value is None: return None self._assert_value_in_enum(value) if self.multi_select: return [super(ModelPropertyEnumType, self)._encode_value(v) for v in value] return super(ModelPropertyEnumType, self)._encode_value(value) def _assert_value_in_enum(self, value): """Check that values are in the enumerated type.""" if self.enum and self.multi_select: for v in value: if v not in self.enum: raise Exception( "Value '{}' is not a member of {}".format(v, self.enum) ) elif self.enum and value not in self.enum: raise Exception("Value '{}' is not a member of {}".format(value, self.enum)) @classmethod def from_dict(cls, data): selection_type = data["type"].lower() multi_select = selection_type == "array" data_type = data["items"].get("type") format = data["items"].get("format") unit = data["items"].get("unit") enum = data["items"].get("enum") return cls( data_type=data_type, format=format, unit=unit, enum=enum, multi_select=multi_select, ) def as_dict(self): return dict( type=self.selection_type, items=dict( type=self._blackfynn_type, format=self.format, unit=self.unit, enum=self.enum, ), ) @as_native_str() def __repr__(self): return u"<ModelPropertyEnumType data_type='{}' format='{}' unit='{}' enum='{}'".format( self.data_type, self.format, self.unit, self.enum ) class BaseModelProperty(object): """ Fallback values for property fields are resolved as follows: (1) A property is `required` if it is the title of the model (2) A property is `default` if it is `required`. `default` is deprecated and `required` is now the source of truth. (3) If the `display_name` for a property is not provided use `name` instead The default values of both `required` and `default` can be on be overridden by passing in explicit """ def __init__( self, name, display_name=None, data_type=str, id=None, locked=False, default=None, title=False, description="", required=None, ): assert ( " " not in name ), "name cannot contain spaces, alternative names include {} and {}".format( name.replace(" ", "_"), name.replace(" ", "-") ) if required is None: required = title if default is None: default = required if display_name is None: display_name = name self.id = id self.name = name self.display_name = display_name self.type = data_type # passed through @type.setter self.locked = locked self.default = default self.title = title self.description = description self.required = required @classmethod def from_tuple(cls, data): name = data[0] data_type = data[1] try: display_name = data[2] except: display_name = name try: title = data[3] except: title = False try: required = data[4] except: required = False return cls( name=name, display_name=display_name, data_type=data_type, title=title, required=required, ) @classmethod def from_dict(cls, data): display_name = data.get("displayName", data.get("display_name")) data_type = data.get("data_type", data.get("dataType")) locked = data.get("locked", False) default = data.get("default") title = data.get("title", data.get("conceptTitle", False)) id = data.get("id", None) required = data.get("required") description = data.get("description", "") return cls( name=data["name"], display_name=display_name, data_type=data_type, id=id, locked=locked, default=default, title=title, required=required, description=description, ) def as_dict(self): return dict( id=self.id, name=self.name, displayName=self.display_name, dataType=self._type.as_dict(), locked=self.locked, default=self.default, conceptTitle=self.title, description=self.description, required=self.required, ) def as_tuple(self): return (self.name, self.type, self.display_name, self.title, self.required) @property def type(self): return self._type.data_type @type.setter def type(self, type): self._type = ModelPropertyType._build_from(type) @property def unit(self): return self._type.unit @property def format(self): return self._type.format @property def enum(self): return self._type.enum @property def multi_select(self): return self._type.multi_select @as_native_str() def __repr__(self): return u"<BaseModelProperty name='{}' {}>".format(self.name, self.type) class LinkedModelProperty(BaseNode): def __init__(self, name, target, display_name=None, id=None, position=None): assert ( " " not in name ), "name cannot contain spaces, alternative names include {} and {}".format( name.replace(" ", "_"), name.replace(" ", "-") ) self._object_key = "" self.name = name self.id = id self.position = position if display_name is None: self.display_name = name else: self.display_name = display_name if isinstance(target, Model): self.target = target.id elif isinstance(target, string_types): self.target = target else: raise Exception("'target' must be an id or a Model object") def as_dict(self): dct = {"name": self.name, "displayName": self.display_name, "to": self.target} if self.position is not None: dct["position"] = self.position return dct @classmethod def from_dict(cls, data): if "link" in data: # data came from a GET request link = data["link"] else: # data came from a POST or PUT link = data name = link["name"] display_name = link.get("displayName", link.get("display_name", name)) target = link["to"] id = link.get("id") position = link.get("position") return cls( name=name, target=target, display_name=display_name, id=id, position=position, ) @as_native_str() def __repr__(self): return "<LinkedModelProperty name='{}' id='{}'>".format(self.name, self.id) class BaseModelValue(object): def __init__(self, name, value, data_type=None): assert ( " " not in name ), "name cannot contain spaces, alternative names include {} and {}".format( name.replace(" ", "_"), name.replace(" ", "-") ) self.name = name self.data_type = ModelPropertyType._build_from(data_type) self.value = value # Decoded in @value.setter @property def value(self): return self._value @value.setter def value(self, value): self._value = self.data_type._decode_value(value) @property def type(self): return self.data_type.data_type @classmethod def from_tuple(cls, data): return cls(name=data[0], value=value[1]) @classmethod def from_dict(cls, data): return cls( name=data["name"], value=data["value"], data_type=data.get("data_type", data.get("dataType")), ) def as_dict(self): return dict( name=self.name, value=self.data_type._encode_value(self.value), dataType=self.data_type._blackfynn_type, ) def as_tuple(self): return (self.name, self.value) @as_native_str() def __repr__(self): return u"<BaseModelValue name='{}' value='{}' {}>".format( self.name, self.value, self.type ) class LinkedModelValue(BaseNode): def __init__( self, source_model, target_model, source_record, target_record, link_type, id=None, ): self.source_model = source_model self.target_model = target_model self.source_record_id = source_record self.target_record_id = target_record self.type = link_type self.id = id @classmethod def from_dict(cls, data, source_model, target_model, link_type): return cls( source_model=source_model, target_model=target_model, source_record=data["from"], target_record=data["to"], link_type=link_type, id=data["id"], ) def as_dict(self): return dict(schemaLinkedPropertyId=self.type.id, to=self.target_record_id) @property def source_record(self): return self.source_model.get(self.source_record_id) @property def target_record(self): return self.target_model.get(self.target_record_id) return self.model.get(self.target_id) @as_native_str() def __repr__(self): return "<LinkedModelValue type={} id={}>".format(self.type, self.id) class BaseModelNode(BaseNode): _object_key = "" _property_cls = BaseModelProperty def __init__( self, dataset_id, name, display_name=None, description=None, locked=False, default=True, *args, **kwargs ): assert ( " " not in name ), "type cannot contain spaces, alternative types include {} and {}".format( name.replace(" ", "_"), name.replace(" ", "-") ) self.type = name self.dataset_id = dataset_id self.display_name = display_name or name self.description = description or "" self.locked = locked self.created_at = kwargs.pop("createdAt", None) self.updated_at = kwargs.pop("updatedAt", None) schema = kwargs.pop("schema", None) self.linked = kwargs.pop("linked", {}) super(BaseModelNode, self).__init__(*args, **kwargs) self.schema = dict() if schema is None: return self._add_properties(schema) def _add_property( self, name, display_name=None, data_type=str, title=False, description="" ): prop = self._property_cls( name=name, display_name=display_name, data_type=data_type, title=title, description=description, ) self.schema[prop.name] = prop return prop def _add_properties(self, properties): if isinstance(properties, list): for p in properties: if isinstance(p, dict): prop = self._property_cls.from_dict(p) elif isinstance(p, tuple): prop = self._property_cls.from_tuple(p) elif isinstance(p, string_types): prop = self._property_cls(name=p) elif isinstance(p, self._property_cls): prop = p else: raise Exception("unsupported property value: {}".format(type(p))) self.schema[prop.name] = prop elif isinstance(properties, dict): for k, v in properties.items(): self._add_property(name=k, data_type=v) else: raise Exception( "invalid type {}; properties must either be a dict or list".format( type(properties) ) ) def _validate_values_against_schema(self, values): data_keys = set(values.keys()) schema_keys = set(self.schema.keys()) assert ( data_keys <= schema_keys ), "Invalid properties: {}.\n\nAn instance of {} should only include values for properties defined in its schema: {}".format( data_keys - schema_keys, self.type, schema_keys ) # should be overridden by sub-class def update(self): pass def add_property( self, name, data_type=str, display_name=None, title=False, description="" ): """ Appends a property to the object's schema and updates the object on the platform. Args: name (str): Name of the property data_type (type, optional): Python type of the property. Defaults to ``string_types``. display_name (str, optional): Display name for the property. title (bool, optional): If True, the property will be used in the title on the platform description (str, optional): Description of the property Example: Adding a new property with the default data_type:: mouse.add_property('name') Adding a new property with the ``float`` data_type:: mouse.add_property('weight', float) """ prop = self._add_property( name, data_type=data_type, display_name=display_name, title=title, description=description, ) self.update() return prop def add_properties(self, properties): """ Appends multiple properties to the object's schema and updates the object on the platform. Args: properties (list): List of properties to add Note: At least one property on a model needs to serve as the model's title. See ``title`` argument in example(s) below. Example: Add properties using ``ModelProperty`` objects:: model.add_properties([ ModelProperty('name', data_type=str, title=True), ModelProperty('age', data_type=int) ]) Add properties defined as list of dictionaries:: model.add_properties([ { 'name': 'full_name', 'type': str, 'title': True }, { 'name': 'age', 'type': int, } ]) """ self._add_properties(properties) self.update() def add_linked_property(self, name, target_model, display_name=None): """ Add a linked property to the model. Args: name (str): Name of the property target_model (Model): Model that the property will link to display_name (str, optional): Display name of the property """ payload = LinkedModelProperty( name, target=target_model, display_name=display_name ) prop = self._api.concepts.create_linked_property(self.dataset_id, self, payload) self.linked[prop.name] = prop return prop def add_linked_properties(self, properties): """ Add multiple linked properties to the model. Args: properties (list): List of LinkedModelProperty objects """ props = self._api.concepts.create_linked_properties( self.dataset_id, self, properties ) for prop in props: self.linked[prop.name] = prop return props def remove_property(self, property): """ Remove property from model schema. Args: property (string, ModelProperty): Property to remove. Can be property name, id, or object. """ # verify property in schema prop_name = None if isinstance(property, string_types): # assume property name first, then assume ID if property in self.schema: # property is name prop_name = property else: # property may be id ids = [x.id for x in self.schema.values()] if property in ids: prop_name = self.schema.value()[ids.index(property)].name elif isinstance(property, ModelProperty): prop_name = property.name else: raise Exception( "Expected 'property' argument of type string or ModelProperty, found type {}".format( type(property) ) ) if prop_name is None: raise Exception( "Property '{}' not found in model's schema.".format(property) ) prop_id = self.schema.get(prop_name).id self._api.concepts.delete_property(self.dataset_id, self, prop_id) self.schema.pop(prop_name) def remove_linked_property(self, prop): """ Delete the linked property with the given name or id. """ # verify linked property is in schema if isinstance(prop, string_types): # assume property name or ID for p in self.linked.values(): if prop == p.id or prop == p.name: prop_id = p.id prop_name = p.name break else: raise Exception( "Property '{}' not found in model's schema.".format(property) ) elif isinstance(prop, ModelProperty): prop_name = prop.name prop_id = prop.id else: raise Exception( "Expected a LinkedModelProperty, found type {}".format(type(property)) ) self._api.concepts.delete_linked_property(self.dataset_id, self, prop_id) self.linked.pop(prop_name) def get_property(self, name): """ Gets the property object by name. Example: >>> mouse.get_propery('weight').type float """ return self.schema.get(name, None) def get_linked_properties(self): """ Get all linked properties attached to this Model. """ return self._api.concepts.get_linked_properties(self.dataset_id, self) def get_linked_property(self, name): """ Get a linked property by name or id. """ for k, v in self.get_linked_properties().items(): if k == name or v.id == name: return v raise Exception("No linked property found with name or id '{}'".format(name)) def as_dict(self): return dict( name=self.type, displayName=self.display_name, description=self.description, locked=self.locked, schema=[p.as_dict() for p in self.schema.values()], ) class BaseRecord(BaseNode): _object_key = "" _value_cls = BaseModelValue def __init__(self, dataset_id, type, *args, **kwargs): self.type = type self.dataset_id = dataset_id self.created_at = kwargs.pop("createdAt", None) self.created_by = kwargs.pop("createdBy", None) self.updated_at = kwargs.pop("updatedAt", None) self.updated_by = kwargs.pop("updatedBy", None) values = kwargs.pop("values", None) super(BaseRecord, self).__init__(*args, **kwargs) self._values = dict() if values is None: return self._set_values(values) def _set_value(self, name, value): if name in self._values: v = self._values[name] v.value = value else: v = self._value_cls(name=name, value=value) self._values[v.name] = v def _set_values(self, values): if isinstance(values, list): for v in values: if isinstance(v, dict): value = self._value_cls.from_dict(v) elif isinstance(v, tuple): value = self._value_cls.from_tuple(v) elif isinstance(v, self._value_cls): value = v else: raise Exception("unsupported value: {}".format(type(v))) self._values[value.name] = value elif isinstance(values, dict): for k, v in values.items(): self._set_value(name=k, value=v) else: raise Exception( "invalid type {}; values must either be a dict or list".format( type(values) ) ) @property def values(self): return {v.name: v.value for v in self._values.values()} # should be overridden by sub-class def update(self): pass def get(self, name): """ Returns: The value of the property if it exists. None otherwise. """ value = self._values.get(name, None) return value.value if value is not None else None def set(self, name, value): """ Updates the value of an existing property or creates a new property if one with the given name does not exist. Note: Updates the object on the platform. """ self._set_value(name, value) try: self.update() except: raise Exception("local object updated, but failed to update remotely") def as_dict(self): return {"values": [v.as_dict() for v in self._values.values()]} @as_native_str() def __repr__(self): return u"<BaseRecord type='{}' id='{}'>".format(self.type, self.id) class ModelTemplate(BaseNode): _object_key = None def __init__( self, name, properties, category=None, id=None, display_name=None, schema=None, description=None, required=None, *args, **kwargs ): assert name is not None, "ModelTemplate name must be defined" assert properties is not None, "ModelTemplate properties must be defined" self.id = id self.schema = schema or "http://schema.blackfynn.io/model/draft-01/schema" self.name = name self.display_name = display_name self.description = description or name self.category = category self.required = required or [] if isinstance(properties, list) and isinstance(properties[0], tuple): self.properties = ModelTemplate.properties_from_tuples(properties) else: self.properties = properties super(ModelTemplate, self).__init__(*args, **kwargs) @classmethod def properties_from_tuples(cls, tuples): d = dict() nested = dict() for tuple in tuples: name = "{}".format(tuple[0]) data_type = tuple[1] nested["type"] = data_type nested["description"] = name d[name] = nested return d def as_dict(self): return { "$schema": self.schema, "name": self.name, "description": self.description, "category": self.category, "properties": self.properties, "required": self.required, } @classmethod def from_dict(cls, data, *args, **kwargs): template = cls( schema=data["$schema"], name=data["name"], description=data["description"], category=data["category"], required=data["required"], properties=data["properties"], display_name=data.get("displayName", None), ) template.id = data.get("$id", None) return template @as_native_str() def __repr__(self): return u"<ModelTemplate name='{}' id='{}'>".format(self.name, self.id) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Models # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class ModelProperty(BaseModelProperty): @as_native_str() def __repr__(self): return u"<ModelProperty name='{}' {}>".format(self.name, self.type) class ModelValue(BaseModelValue): @as_native_str() def __repr__(self): return u"<ModelValue name='{}' value='{}' {}>".format( self.name, self.value, self.type ) class ModelSelect(object): def __init__(self, *join_keys): self.join_keys = [target_type_string(k) for k in join_keys] def as_dict(self): return {"Concepts": {"joinKeys": self.join_keys}} @as_native_str() def __repr__(self): join_keys = [target_type_string(k) for k in self.join_keys] return u"<ModelSelect join_keys='{}'>".format(",".join(join_keys)) class ModelFilter(object): def __init__(self, key, operator, value): self.key = key self.operator = operator self.value = value def as_dict(self): return { "key": self.key, "predicate": {"operation": self.operator, "value": self.value}, } @as_native_str() def __repr__(self): return u"<ModelFilter key='{}' operator='{}' value='{}'>".format( self.key, self.operator, self.value ) class ModelJoin(object): def __init__(self, target, *filters): self.target = target self.filters = [ ModelFilter(*f) if not isinstance(f, ModelFilter) else f for f in filters ] def as_dict(self): key = target_type_string(self.target) return { "targetType": {"concept": {"type": key}}, "filters": [f.as_dict() for f in self.filters], "key": key, } @as_native_str() def __repr__(self): return u"<ModelJoin targetType='{}' filter='{}', key='{}'>".format( target_type_string(self.target), self.filters, self.key ) class Model(BaseModelNode): """ Representation of a Model in the knowledge graph. """ _object_key = "" _property_cls = ModelProperty def __init__( self, dataset_id, name, display_name=None, description=None, locked=False, *args, **kwargs ): self.count = kwargs.pop("count", None) self.state = kwargs.pop("state", None) self._logger = log.get_logger("blackfynn.models.Model") super(Model, self).__init__( dataset_id, name, display_name, description, locked, *args, **kwargs ) def update(self): """ Updates the details of the ``Model`` on the platform. Example:: mouse.update() Note: Currently, you can only append new properties to a ``Model``. """ self._check_exists() _update_self(self, self._api.concepts.update(self.dataset_id, self)) def delete(self): """ Deletes a model from the platform. Must not have any instances. """ return self._api.concepts.delete(self.dataset_id, self) def get_all(self, limit=100, offset=0): """ Retrieves all records of the model from the platform. Returns: List of ``Record`` Example:: mice = mouse.get_all() """ return self._api.concepts.instances.get_all( self.dataset_id, self, limit=limit, offset=offset ) def get(self, id): """ Retrieves a record of the model by id from the platform. Args: id: the Blackfynn id of the model Returns: A single ``Record`` Example:: mouse_001 = mouse.get(123456789) """ return self._api.concepts.instances.get(self.dataset_id, id, self) def query(self): """ Run a query with this model as the join target. """ return self._api.concepts.query.new(self, self.dataset_id) def get_connected(self): """Retrieves all connected models Connected is defined as model that can be reached by following outgoing relationships starting at the current model Args: id: The Blackfynn id of the "root" model Returns: A list of models connected to the given model Example:: connected_models = mouse.get_connected() """ return self._api.concepts.get_connected(self.dataset_id, self.id) def create_record(self, values=dict()): """ Creates a record of the model on the platform. Args: values (dict, optional): values for properties defined in the `Model` schema Returns: The newly created ``Record`` Example:: mouse_002 = mouse.create_record({"id": 2, "weight": 2.2}) """ self._check_exists() data_keys = set(values.keys()) schema_keys = set(self.schema.keys()) assert ( len(data_keys & schema_keys) > 0 ), "An instance of {} must include values for at least one of its properties: {}".format( self.type, schema_keys ) self._validate_values_against_schema(values) values = [ dict(name=k, value=v, dataType=self.schema.get(k)._type) for k, v in values.items() ] ci = Record(dataset_id=self.dataset_id, type=self.type, values=values) ci = self._api.concepts.instances.create(self.dataset_id, ci) return ci def create_records(self, values_list): """ Creates multiple records of the model on the platform. Args: values_list (list): array of dictionaries corresponding to record values. Returns: List of newly created ``Record`` objects. Example:: mouse.create_records([ { 'id': 311, 'weight': 1.9 }, { 'id': 312, 'weight': 2.1 }, { 'id': 313, 'weight': 1.8 }, { 'id': 314, 'weight': 2.3 }, { 'id': 315, 'weight': 2.0 } ]) """ self._check_exists() schema_keys = set(self.schema.keys()) for values in values_list: data_keys = set(values.keys()) assert ( len(data_keys & schema_keys) > 0 ), "An instance of {} must include values for at least one of its propertes: {}".format( self.type, schema_keys ) self._validate_values_against_schema(values) ci_list = [ Record( dataset_id=self.dataset_id, type=self.type, values=[ dict(name=k, value=v, dataType=self.schema.get(k)._type) for k, v in values.items() ], ) for values in values_list ] return self._api.concepts.instances.create_many(self.dataset_id, self, *ci_list) def from_dataframe(self, df): return self.create_many(*df.to_dict(orient="records")) def delete_records(self, *records): """ Deletes one or more records of a concept from the platform. Args: *records: instances and/or ids of records to delete Returns: ``None`` Logs the list of records that failed to delete. Example:: mouse.delete(mouse_002, 123456789, mouse_003.id) """ result = self._api.concepts.delete_instances(self.dataset_id, self, *records) for error in result["errors"]: self._logger.error( "Failed to delete instance {} with error: {}".format(error[0], error[1]) ) def get_related(self): """ Returns a list of related model types and counts of those relationships. "Related" indicates that the model could be connected to the current model via some relationship, i.e. ``B`` is "related to" ``A`` if there exist ``A -[relationship]-> B``. Note that the directionality matters. If ``B`` is the queried model, ``A`` would not appear in the list of "related" models. Returns: List of ``Model`` objects related via a defined relationship Example:: related_models = mouse.get_related() """ return self._api.concepts.get_related(self.dataset_id, self) def __iter__(self): for record in self.get_all(): yield record @as_native_str() def __repr__(self): return u"<Model type='{}' id='{}'>".format(self.type, self.id) class Record(BaseRecord): """ Represents a record of a ``Model``. Includes its neighbors, relationships, and links. """ _object_key = "" _value_cls = ModelValue def _get_relationship_type(self, relationship): return ( relationship.type if isinstance(relationship, RelationshipType) else relationship ) def _get_links(self, model): return self._api.concepts.instances.relations(self.dataset_id, self, model) def get_related(self, model=None, group=False): """ Returns all related records. Args: model (str, Model, optional): Return only related records of this type group (bool, optional): If true, group results by model type (dict) Returns: List of ``Record`` objects. If ``group`` is ``True``, then the result is a dictionary of ``RecordSet`` objects keyed by model names. Example: Get all connected records of type ``disease`` with relationship ``has``:: mouse_001.get_related('disease', 'has') Get all connected records:: mouse_001.get_related() """ if model is None: # return all connected records related_by_model = self._api.concepts.instances.get_all_related( self.dataset_id, self ) if group: return related_by_model else: if len(related_by_model) == 1: # try to retain RecordSet type return list(related_by_model.values())[0] # mixed return types, cannot keep RecordSets related = [] for model_name, model_related in related_by_model.items(): related.extend(model_related) return related else: return self._api.concepts.instances.get_all_related_of_type( self.dataset_id, self, model ) def get_files(self): """ All files related to the current record. Returns: List of data objects i.e. ``DataPackage`` Example:: mouse_001.get_files() """ return self._api.concepts.files(self.dataset_id, self.type, self) def relate_to( self, destinations, relationship_type="related_to", values=None, direction="to" ): """ Relate record to one or more ``Record`` or ``DataPackage`` objects. Args: destinations (list of Record or DataPackage): A list containing the ``Record`` or ``DataPackage`` objects to relate to current record relationship_type (RelationshipType, str, optional): Type of relationship to create values (list of dictionaries, optional): A list of dictionaries corresponding to relationship values direction (str, optional): Relationship direction. Valid values are ``'to'`` and ``'from'`` Returns: List of created ``Relationship`` objects. .. note:: Destinations must all be of type ``DataPackage`` or ``Record``; you cannot mix destination types. Example: Relate to a single ``Record``, define relationship type:: mouse_001.relate_to(lab_009, 'located_at') Relate to multiple ``DataPackage`` objects:: mouse_001.relate_to([eeg, mri1, mri2]) """ self._check_exists() # accept object or list if isinstance(destinations, (Record, DataPackage)): destinations = [destinations] if isinstance(destinations, Collection): destinations = destinations.items if not destinations: return None # default values if values is None: values = [dict() for _ in destinations] if values is None else values else: values = [dict(name=k, value=v) for val in values for k, v in val.items()] assert len(destinations) == len( values ), "Length of values must match length of destinations" # check type if not ( all([isinstance(d, DataPackage) for d in destinations]) or all([isinstance(d, Record) for d in destinations]) ): raise Exception( "All destinations must be of object type Record or DataPackage" ) # auto-create relationship type if isinstance(relationship_type, string_types): relationships_types = self._api.concepts.relationships.get_all( self.dataset_id ) if relationship_type not in relationships_types: r = RelationshipType( dataset_id=self.dataset_id, name=relationship_type, description=relationship_type, source=self.model.id, destination=destinations[0].model.id, ) relationship_type = self._api.concepts.relationships.create( self.dataset_id, r ) else: relationship_type = relationships_types[relationship_type] # relationships (to packages) if isinstance(destinations[0], DataPackage): # if linking packages, link one at a time result = [ self._api.concepts.relationships.instances.link( self.dataset_id, relationship_type, self, d, values=v ) for d, v in zip(destinations, values) ] return RelationshipSet(relationship_type, result) # relationships (to records) if direction == "to": relationships = [ Relationship( type=relationship_type.type, dataset_id=self.dataset_id, source=self, destination=d.id, values=v, ) for d, v in zip(destinations, values) ] elif direction == "from": relationships = [ Relationship( type=relationship_type.type, dataset_id=self.dataset_id, source=d.id, destination=self, values=v, ) for d, v in zip(destinations, values) ] else: raise Exception('Direction must be value "to" or "from"') # use batch endpoint to create relationships return self._api.concepts.relationships.instances.create_many( self.dataset_id, relationship_type, *relationships ) def get_linked_values(self): """ Get all link values attached to this Record. """ return self._api.concepts.instances.get_linked_values( self.dataset_id, self.model, self ) def get_linked_value(self, link): """ Get a link value by name or id. """ all_links = self.get_linked_values() # First assume link is a link value id: for l in all_links: if link == l.id: return l # Then assume link is a linked property name: try: prop_id = self.model.get_linked_property(link).id except: raise Exception( "No link found with a name or ID matching '{}'".format(link) ) else: for l in all_links: if prop_id == l.type.id: return l raise Exception("No link found with a name or ID matching '{}'".format(link)) def add_linked_value(self, target, link): """ Attach a linked property value to the Record. target: the id or Record object of the target record link: the id or LinkedModelProperty object of the link type """ model = self.model if isinstance(target, Record): target = target.id if isinstance(link, LinkedModelProperty): link_id = link.id elif isinstance(link, string_types): link_id = model.get_linked_property(link).id payload = dict( name=model.type, displayName=model.display_name, schemaLinkedPropertyId=link_id, to=target, ) return self._api.concepts.instances.create_link( self.dataset_id, self.model, self, payload ) def delete_linked_value(self, link_name): """ Delete a link by name or id. """ link = self.get_linked_value(link_name) self._api.concepts.instances.remove_link( self.dataset_id, self.model, self, link ) @property def model(self): """ The ``Model`` of the current record. Returns: A single ``Model``. """ return self._api.concepts.get(self.dataset_id, self.type) def update(self): """ Updates the values of the record on the platform (after modification). Example:: mouse_001.set('name', 'Mickey') mouse_001.update() """ self._check_exists() _update_self(self, self._api.concepts.instances.update(self.dataset_id, self)) def delete(self): """ Deletes the instance from the platform. Example:: mouse_001.delete() """ return self._api.concepts.instances.delete(self.dataset_id, self) @as_native_str() def __repr__(self): return u"<Record type='{}' id='{}'>".format(self.type, self.id) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Query Result # # Returned per "row" result of a query # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class QueryResult(object): def __init__(self, dataset_id, target, joined): self.dataset_id = dataset_id self._target = target self._joined = joined @property def target(self): """ Get the target of the query. Returns: the target of the query. Example:: For the following query, Review.query() \ .filter("is_complete", "eq", False) \ .join("reviewer", ("id", "eq", "12345")) \ .select(reviewer") .run() a record whose type is `review` would be the target. """ return self._target def get(self, model): """ Get the result for a specific join key appearing in a `select()`. Args: model: (string|Model) The type of the record to retrieve from this query result. Returns: the record whose type matches the given model, or None if no such record exists. Example:: For the following query, result = Review.query() \ .filter("is_complete", "eq", False) \ .join("reviewer", ("id", "eq", "12345")) \ .select(reviewer") .run() reviewer_record = result.get("reviewer") # Also equivalent to `result.get(Reviewer)` """ return self._joined.get(target_type_string(model), None) def items(self): """ Gets all (model:string, record:Record) instances contained in this query result. Returns: A list of (model:string, record:Record) pairs contained in this query result. """ return self._joined.items() def __getitem__(self, model): return self.get(model) def __contains__(self, model): return target_type_string(model) in self._joined def as_dict(self): d = {t: record.as_dict() for (t, record) in self._joined.items()} d["targetValue"] = self.target.as_dict() return d @as_native_str() def __repr__(self): return u"<QueryResult dataset='{}' target='{}'>".format( self.dataset_id, self._target.id ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Relationships # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class RelationshipProperty(BaseModelProperty): @as_native_str() def __repr__(self): return u"<RelationshipProperty name='{}' {}>".format(self.name, self.type) class RelationshipValue(BaseModelValue): @as_native_str() def __repr__(self): return u"<RelationshipValue name='{}' value='{}' {}>".format( self.name, self.value, self.type ) class RelationshipType(BaseModelNode): """ Model for defining a relationships. """ _object_key = "" _property_cls = RelationshipProperty def __init__( self, dataset_id, name, display_name=None, description=None, locked=False, source=None, destination=None, *args, **kwargs ): kwargs.pop("type", None) self.destination = destination self.source = source super(RelationshipType, self).__init__( dataset_id, name, display_name, description, locked, *args, **kwargs ) def update(self): raise Exception("Updating Relationships is not available at this time.") # TODO: _update_self(self, self._api.concepts.relationships.update(self.dataset_id, self)) # TODO: delete when update is supported, handled in super-class def add_property(self, name, display_name=None, data_type=str): raise Exception("Updating Relationships is not available at this time.") # TODO: delete when update is supported, handled in super-class def add_properties(self, properties): raise Exception("Updating Relationships is not available at this time.") def delete(self): raise Exception("Deleting Relationships is not available at this time.") # TODO: self._api.concepts.relationships.delete(self.dataset_id, self) def get_all(self): """ Retrieves all relationships of this type from the platform. Returns: List of ``Relationship`` Example:: belongs_to_relationships = belongs_to.get_all() """ return self._api.concepts.relationships.instances.get_all(self.dataset_id, self) def get(self, id): """ Retrieves a relationship by id from the platform. Args: id (int): the id of the instance Returns: A single ``Relationship`` Example:: mouse_001 = mouse.get(123456789) """ return self._api.concepts.relationships.instances.get(self.dataset_id, id, self) def relate(self, source, destination, values=dict()): """ Relates a ``Record`` to another ``Record`` or ``DataPackage`` using current relationship. Args: source (Record, DataPackage): record or data package the relationship orginates from destination (Record, DataPackage): record or data package the relationship points to values (dict, optional): values for properties defined in the relationship's schema Returns: The newly created ``Relationship`` Example: Create a relationship between a ``Record`` and a ``DataPackage``:: from_relationship.relate(mouse_001, eeg) Create a relationship (with values) between a ``Record`` and a ``DataPackage``:: from_relationship.relate(mouse_001, eeg, {"date": datetime.datetime(1991, 02, 26, 07, 0)}) """ self._check_exists() self._validate_values_against_schema(values) return self._api.concepts.relationships.instances.link( self.dataset_id, self, source, destination, values ) def create(self, items): """ Create multiple relationships between records using current relationship type. Args: items (list): List of relationships to be created. Each relationship should be either a dictionary or tuple. If relationships are dictionaries, they are required to have ``from``/``to`` or ``source``/``destination`` keys. There is an optional ``values`` key which can be used to attach metadata to the relationship; ``values`` should be a dictionary with key/value pairs. If relationships are tuples, they must be in the form ``(source, dest)``. Returns: Array of newly created ``Relationships`` objects Example: Create multiple relationships (dictionary format):: diagnosed_with.create([ { 'from': participant_001, 'to': parkinsons}, { 'from': participant_321, 'to': als} ]) Create multiple relationships (tuple format):: diagnosed_with.create([ (participant_001, parkinsons), (participant_321, als) ]) """ self._check_exists() # handle non-array if isinstance(items, (dict, tuple)): items = [items] relations = [] for value in items: # get source, destination, and values if isinstance(value, tuple): src, dest = value vals = {} elif isinstance(value, dict): src = value.get("from", value.get("source")) dest = value.get("to", value.get("destination")) vals = value.get("values", {}) else: raise Exception( "Expected relationship as tuple or dictionary, found {}".format( type(value) ) ) # Check sources and destinations if not isinstance(src, (Record, DataPackage, string_types)): raise Exception( "source must be object of type Record, DataPackage, or UUID" ) if not isinstance(dest, (Record, DataPackage, string_types)): raise Exception( "destination must be object of type Record, DataPackage, or UUID" ) # create local relationship object relations.append( Relationship( dataset_id=self.dataset_id, type=self.type, source=src, destination=dest, values=[ dict(name=k, value=v, dataType=self.schema.get(k).type) for k, v in vals.items() ], ) ) return self._api.concepts.relationships.instances.create_many( self.dataset_id, self, *relations ) def as_dict(self): d = super(RelationshipType, self).as_dict() d["type"] = "relationship" if self.source is not None: d["from"] = self.source if self.destination is not None: d["to"] = self.destination return d @as_native_str() def __repr__(self): return u"<RelationshipType type='{}' id='{}'>".format(self.type, self.id) class Relationship(BaseRecord): """ A single instance of a ``RelationshipType``. """ _object_key = "" def __init__(self, dataset_id, type, source, destination, *args, **kwargs): assert isinstance( source, (Record, string_types, DataPackage) ), "source must be Model, UUID, or DataPackage" assert isinstance( destination, (Record, string_types, DataPackage) ), "destination must be Model, UUID, or DataPackage" if isinstance(source, (Record, DataPackage)): source = source.id if isinstance(destination, (Record, DataPackage)): destination = destination.id self.source = source self.destination = destination kwargs.pop("schemaRelationshipId", None) super(Relationship, self).__init__(dataset_id, type, *args, **kwargs) def relationship(self): """ Retrieves the relationship definition of this instance from the platform Returns: A single ``RelationshipType``. """ return self._api.concepts.relationships.get(self.dataset_id, self.type) # TODO: delete when update is supported, handled in super-class def set(self, name, value): raise Exception("Updating a Relationship is not available at this time.") def update(self): raise Exception("Updating a Relationship is not available at this time.") # TODO: _update_self(self, self._api.concepts.relationships.instances.update(self.dataset_id, self)) def delete(self): """ Deletes the instance from the platform. Example:: mouse_001_eeg_link.delete() """ return self._api.concepts.relationships.instances.delete(self.dataset_id, self) @classmethod def from_dict(cls, data, *args, **kwargs): d = dict( source=data.pop("from", None), destination=data.pop("to", None), **data ) item = super(Relationship, cls).from_dict(d, *args, **kwargs) return item def as_dict(self): d = super(Relationship, self).as_dict() d["to"] = self.destination d["from"] = self.source return d @as_native_str() def __repr__(self): return u"<Relationship type='{}' id='{}' source='{}' destination='{}'>".format( self.type, self.id, self.source, self.destination ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Proxies # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class ProxyInstance(BaseRecord): _object_key = "" def __init__(self, dataset_id, type, *args, **kwargs): super(ProxyInstance, self).__init__(dataset_id, type, *args, **kwargs) def item(self): if self.type == "proxy:package": package_id = self.get("id") return self._api.packages.get(package_id) else: raise Exception("unsupported proxy type: {}".format(self.type)) def update(self): raise Exception("Updating a ProxyInstance is not available at this time.") def set(self, name, value): raise Exception("Updating a ProxyInstance is not available at this time.") @as_native_str() def __repr__(self): return u"<ProxyInstance type='{}' id='{}'>".format(self.type, self.id) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model/Relation Instance Sets # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class BaseInstanceList(list): _accept_type = None def __init__(self, type, *args, **kwargs): super(BaseInstanceList, self).__init__(*args, **kwargs) assert isinstance(type, self._accept_type), "type must be type {}".format( self._accept_type ) self.type = type def as_dataframe(self): pass class RecordSet(BaseInstanceList): _accept_type = Model @require_extension def as_dataframe(self, record_id_column_name=None): """ Convert the list of ``Record`` objects to a pandas DataFrame Args: record_id_column_name (string): If set, a column with the desired name will be prepended to this dataframe that contains record ids. Returns: pd.DataFrame """ cols = list(self.type.schema.keys()) if record_id_column_name: if record_id_column_name in cols: raise ValueError( "There is already a column called '{}' in this data set.".format( record_id_column_name ) ) cols.insert(0, record_id_column_name) data = [] for instance in self: values = dict(instance.values) if record_id_column_name: values[record_id_column_name] = instance.id data.append(values) df = pd.DataFrame(data=data, columns=cols) return df class RelationshipSet(BaseInstanceList): _accept_type = RelationshipType @require_extension def as_dataframe(self): """ Converts the list of ``Relationship`` objects to a pandas DataFrame Returns: pd.DataFrame .. note:: In addition to the values in each relationship instance, the DataFrame contains three columns that describe each instance: - ``__source__``: ID of the instance's source - ``__destination__``: ID of the instance's destination - ``__type__``: Type of relationship that the instance is """ cols = ["__source__", "__destination__", "__type__"] cols.extend(self.type.schema.keys()) data = [] for instance in self: d = {} d["_type"] = self.type.type d["_source"] = instance.source d["_destination"] = instance.destination for name, value in instance.values.items(): d[name] = value data.append(d) df = pd.DataFrame(data=data, columns=cols) return df
0
24,648
0
106,871
0
922
0
144
1,588
ff45a14b78903909a6ffd1b4566901c7dab86a97
3,024
py
Python
api/tests/cards/test_card_read.py
onecrayon/api.ashes.live
72709fb4e53220aa9b48749a51f5b834ebb2ca42
[ "0BSD" ]
11
2020-09-13T16:49:21.000Z
2021-07-29T06:17:58.000Z
api/tests/cards/test_card_read.py
onecrayon/api.ashes.live
72709fb4e53220aa9b48749a51f5b834ebb2ca42
[ "0BSD" ]
49
2020-09-11T05:23:02.000Z
2022-03-02T18:31:00.000Z
api/tests/cards/test_card_read.py
onecrayon/api.ashes.live
72709fb4e53220aa9b48749a51f5b834ebb2ca42
[ "0BSD" ]
1
2022-03-27T22:11:29.000Z
2022-03-27T22:11:29.000Z
from fastapi import status from fastapi.testclient import TestClient from api import db from api.models import Card def test_get_legacy_card(client: TestClient, session: db.Session): """Must be able to read JSON for a legacy card""" # This is handled by a migration normally (legacy cards can't normally be created by this API) card = ( session.query(Card) .filter(Card.stub == "example-phoenixborn", Card.is_legacy == True) .first() ) card.json["release"]["is_legacy"] = True card.json["is_legacy"] = True db.flag_modified(card, "json") session.commit() response = client.get("/v2/cards/example-phoenixborn", params={"show_legacy": True}) assert response.status_code == status.HTTP_200_OK assert response.json()["is_legacy"] == True, response.json() def test_get_card(client: TestClient, session: db.Session): """Must be able to read non-Legacy JSON""" response = client.get("/v2/cards/example-phoenixborn") assert response.status_code == status.HTTP_200_OK assert "is_legacy" not in response.json(), response.json() def test_get_nonexistent_card(client: TestClient, session: db.Session): """Must throw an error when the card doesn't exist""" response = client.get("/v2/cards/no-luck") assert response.status_code == status.HTTP_404_NOT_FOUND, response.json() def test_get_details_no_card(client: TestClient, session: db.Session): """Must fail properly when requesting non-existent card""" response = client.get("/v2/cards/no-luck/details") assert response.status_code == status.HTTP_404_NOT_FOUND, response.json() def test_get_details_root_phoenixborn(client: TestClient, session: db.Session): """Must properly find root Phoenixborn cards""" response = client.get("/v2/cards/example-conjured-alteration/details") assert response.status_code == status.HTTP_200_OK def test_get_details_root_non_phoenixborn(client: TestClient, session: db.Session): """Must properly find root non-Phoenixborn cards""" response = client.get("/v2/cards/summon-example-conjuration/details") assert response.status_code == status.HTTP_200_OK def test_get_details_root_phoenixborn_conjurations( client: TestClient, session: db.Session ): """Must properly find conjurations when looking up Phoenixborn unique""" response = client.get("/v2/cards/example-ally/details") assert response.status_code == status.HTTP_200_OK def test_get_details_non_phoenixborn_conjuration( client: TestClient, session: db.Session ): """Must properly find root summons for non-Phoenixborn conjurations""" response = client.get("/v2/cards/example-conjuration/details") assert response.status_code == status.HTTP_200_OK def test_get_details_phoenixborn(client: TestClient, session: db.Session): """Must properly find connected cards when looking up Phoenixborn""" response = client.get("/v2/cards/example-phoenixborn/details") assert response.status_code == status.HTTP_200_OK
39.789474
98
0.737765
from fastapi import status from fastapi.testclient import TestClient from api import db from api.models import Card def test_get_legacy_card(client: TestClient, session: db.Session): """Must be able to read JSON for a legacy card""" # This is handled by a migration normally (legacy cards can't normally be created by this API) card = ( session.query(Card) .filter(Card.stub == "example-phoenixborn", Card.is_legacy == True) .first() ) card.json["release"]["is_legacy"] = True card.json["is_legacy"] = True db.flag_modified(card, "json") session.commit() response = client.get("/v2/cards/example-phoenixborn", params={"show_legacy": True}) assert response.status_code == status.HTTP_200_OK assert response.json()["is_legacy"] == True, response.json() def test_get_card(client: TestClient, session: db.Session): """Must be able to read non-Legacy JSON""" response = client.get("/v2/cards/example-phoenixborn") assert response.status_code == status.HTTP_200_OK assert "is_legacy" not in response.json(), response.json() def test_get_nonexistent_card(client: TestClient, session: db.Session): """Must throw an error when the card doesn't exist""" response = client.get("/v2/cards/no-luck") assert response.status_code == status.HTTP_404_NOT_FOUND, response.json() def test_get_details_no_card(client: TestClient, session: db.Session): """Must fail properly when requesting non-existent card""" response = client.get("/v2/cards/no-luck/details") assert response.status_code == status.HTTP_404_NOT_FOUND, response.json() def test_get_details_root_phoenixborn(client: TestClient, session: db.Session): """Must properly find root Phoenixborn cards""" response = client.get("/v2/cards/example-conjured-alteration/details") assert response.status_code == status.HTTP_200_OK def test_get_details_root_non_phoenixborn(client: TestClient, session: db.Session): """Must properly find root non-Phoenixborn cards""" response = client.get("/v2/cards/summon-example-conjuration/details") assert response.status_code == status.HTTP_200_OK def test_get_details_root_phoenixborn_conjurations( client: TestClient, session: db.Session ): """Must properly find conjurations when looking up Phoenixborn unique""" response = client.get("/v2/cards/example-ally/details") assert response.status_code == status.HTTP_200_OK def test_get_details_non_phoenixborn_conjuration( client: TestClient, session: db.Session ): """Must properly find root summons for non-Phoenixborn conjurations""" response = client.get("/v2/cards/example-conjuration/details") assert response.status_code == status.HTTP_200_OK def test_get_details_phoenixborn(client: TestClient, session: db.Session): """Must properly find connected cards when looking up Phoenixborn""" response = client.get("/v2/cards/example-phoenixborn/details") assert response.status_code == status.HTTP_200_OK
0
0
0
0
0
0
0
0
0
793d046d209b11ed4917626afa99782cc07d3bdf
13,796
py
Python
cbm/foi/foi_v1.py
CsabaWirnhardt/cbm
1822addd72881057af34ac6a7c2a1f02ea511225
[ "BSD-3-Clause" ]
17
2021-01-18T07:27:01.000Z
2022-03-10T12:26:21.000Z
cbm/foi/foi_v1.py
CsabaWirnhardt/cbm
1822addd72881057af34ac6a7c2a1f02ea511225
[ "BSD-3-Clause" ]
4
2021-04-29T11:20:44.000Z
2021-12-06T10:19:17.000Z
cbm/foi/foi_v1.py
CsabaWirnhardt/cbm
1822addd72881057af34ac6a7c2a1f02ea511225
[ "BSD-3-Clause" ]
47
2021-01-21T08:25:22.000Z
2022-03-21T14:28:42.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # This file is part of CbM (https://github.com/ec-jrc/cbm). # Author : Gilbert Voican, Konstantinos Anastasakis # Credits : GTCAP Team # Copyright : 2021 European Commission, Joint Research Centre # License : 3-Clause BSD import os import psycopg2 # from psycopg2 import Error import subprocess from osgeo import gdal from osgeo import ogr from osgeo import osr from rasterstats import zonal_stats from fiona import open as fopen import fiona from yaml import load, FullLoader from os.path import dirname, abspath, join, normpath from pathlib import Path from cbm.utils import config from cbm.datas import db import geopandas as gpd path_foi_func = normpath(join(dirname(abspath(__file__)), 'foi_db_func')) def main(reference_data, raster_classif_file, yaml_file, pre_min_het, pre_max_het, area_threshold, db_str='main'): """FOI assessment is based on spatial analysis of a thematic raster produced in advance. The thematic raster can be the result of a any image/raster processing method yielding a class label for each pixel - crop classification, behavior analysis of land phenomenon, gridded data on soil, slope, humidity, etc. The starting point was the idea that inside of an homgeneous parcel we should have only one type of pixel. For example if the thematic raster is the result of a crop classification, inside a parcel we should have only one type of pixels that represent the respective crop If the thematic raster is the result of a behaviour analysis, all the pixels inside a parcel should behave in the same way during a period of time. The FOI assessment is based on the analysis made on the presence and distribution of different types of pixels inside the FOI. Args: reference_data (str): Spatial data to be tested - parcels that will be checked for heterogeneity and cardinality The parcels poligons in .shp file format or database table name without .shp ending. raster_classif_file (str): Thematic raster - classification raster, or raster from other source that will be used for testing heterogeneity and cardinality yaml_file: YAML file that holds the classes of thematic raster file. can be also a simple list of values in the notebook corespondence between pixel values and names for the classes pre_min_het: Minimum thresholds for heterogeneity checks. pre_max_het: Maximum thresholds for heterogeneity checks. area_threshold: Minimum area for clusters selection. Returns: bool: True if successful, False otherwise. """ # database connection string if type(db_str) is str: db_connection = f"PG:{db.conn_str(db_str)}" elif type(db_str) is list: db_connection = "PG:host={} port={} dbname={} user={} password={}".format( *db_str) # ogr2ogr options geom_field_name = "GEOMETRY_NAME=wkb_geometry" overwrite_option = "-OVERWRITE" geom_type = "MULTIPOLYGON" output_format = "PostgreSQL" # Path for storing the processed data - final spatial data that will be # exported after database processing processed_data = normpath(join('foi', 'processed_data')) os.makedirs(processed_data, exist_ok=True) # Path for storing the final output data output_data = normpath(join('foi', 'output_data')) os.makedirs(output_data, exist_ok=True) reference_data_name = os.path.splitext(os.path.basename(reference_data))[0] try: with open(f"{config.get_value(['paths','temp'])}tb_prefix", 'r') as f: reference_data_table = f.read() except Exception: reference_data_table = reference_data_name # Vector file resulted from the raster stats pixel count # pixelcount_output = f'{output_data}pixel_count_{reference_data_table}.shp' pixelcount_output = f'{processed_data}/{reference_data_name}_pixelcount.shp' # Vector file resulted from raster to vector process (polygonize) polygonize_output = f'{processed_data}/{reference_data_name}_polygonize.shp' # Name of the table to be created in the database - import of the pixel # count into the database pixelcount_table = f"{reference_data_name}_pixelcount" # Name of the table to be created in the database - import of the # polygonize result into the database polygonize_table = f"{reference_data_name}_polygonize" # Name and path of the files resulted from the analysis heterogeneity_output = f'{output_data}/{reference_data_name}_foih_v1.shp' cardinality_output = f'{output_data}/{reference_data_name}_foic_v1.shp' cardinality_output_clusters = f'{output_data}/{reference_data_name}_foic_clusters_v1.shp' sql = "SELECT * FROM " + reference_data_table + ";" try: ps_connection = db_conn() ps_connection.autocommit = True cursor = ps_connection.cursor() gpd_data = gpd.read_postgis( sql=sql, con=ps_connection, geom_col='wkb_geometry') except (Exception, psycopg2.DatabaseError) as error: print("Error while connecting to PostgreSQL", error) finally: # closing database connection. if(ps_connection): cursor.close() ps_connection.close() # print("PostgreSQL connection is closed") temp_reference_data = f'foi/{reference_data_name}_temp.shp' gpd_data.to_file(temp_reference_data) shape = fiona.open(temp_reference_data) spatialRef = shape.crs["init"] # print("Vector EPSG: ", spatialRef) # Import reference data shapefile to database. # Overwrite option is needed, otherwise the import will append new # values to the ones existing in the table subprocess.call(["ogr2ogr", overwrite_option, "-nlt", geom_type, "-lco", geom_field_name, "-a_srs", spatialRef, "-nln", reference_data_table, "-f", "PostgreSQL", db_connection, reference_data]) # Reading the values from yaml file conf = load(open(yaml_file, 'r').read(), Loader=FullLoader) category_map = conf['category_map'] rst_fields = list(category_map.values()) # Counting the number of pixels for each parcel. The fields with names of # the classes from yaml file will be added, # and updated with the number of pixels from each category with fopen(temp_reference_data, 'r') as input: spatialRef = input.crs["init"] schema = input.schema for i in rst_fields: schema['properties'][i] = 'int:5' rst_attribs = dict.fromkeys(rst_fields, 0) with fopen(pixelcount_output, 'w', 'ESRI Shapefile', schema) as output: for i, vct_feat in enumerate(input): vct_val_dict = dict(vct_feat['properties']) rst_val_dict = zonal_stats( vct_feat, raster_classif_file, categorical=True, copy_properties=True, category_map=category_map, nodata=-999)[0] vct_val_dict.update(rst_attribs) for lu in rst_val_dict: vct_val_dict[lu] = rst_val_dict.get(lu) for atrib in vct_val_dict: vct_feat['properties'][atrib] = vct_val_dict.get(atrib) output.write(vct_feat) print("Finished pixel calculation!") # Import resulted shapefile, with the number of pixels for each class to # database. Overwrite option is needed, otherwise the # import will append new values to the ones existing in the table subprocess.call(["ogr2ogr", overwrite_option, "-nlt", geom_type, "-a_srs", spatialRef, "-nln", pixelcount_table, "-f", "PostgreSQL", db_connection, pixelcount_output]) # Number of classes from the thematic raster num_classes = len(category_map) # Minimum and maximum thresholds for heterogeneity checks. In this example, # any parcel # with percentage of pixels for one class between 30 and 70 from the total, # will be considered heterogenous. # min_heterogeneity_threshold = 30 # max_heterogeneity_threshold = 70 min_heterogeneity_threshold = pre_min_het max_heterogeneity_threshold = pre_max_het # Calling the PostgreSQL function wich checks the heterogeneity. # The function calculates the percentages and sets an attribute # "foi_h" to 1 when the percentage of pixels is between thresholds try: ps_connection = db_conn() ps_connection.autocommit = True cursor = ps_connection.cursor() # call stored procedure cursor.callproc('public.check_heterogeneity', ( pixelcount_table, num_classes, min_heterogeneity_threshold, max_heterogeneity_threshold)) print("Running function to check heterogeneity") except (Exception, psycopg2.DatabaseError) as error: print("Error while connecting to PostgreSQL", error) finally: # closing database connection. if(ps_connection): cursor.close() ps_connection.close() print("PostgreSQL connection is closed") print("Heterogeneity assessment function finished") # Export processed data - heterogeneity, to shapefile subprocess.call(["ogr2ogr", "-f", "ESRI Shapefile", heterogeneity_output, db_connection, pixelcount_table]) print("Heterogeneity analysis output downloaded") # Polygonize the thematic raster. The process takes into account only # one band (in this case - first band). Can be used with 8 connected # pixels or with 4 connected pixels. connectedness = '-8' sourceRaster = gdal.Open(raster_classif_file) band = sourceRaster.GetRasterBand(1) srs = osr.SpatialReference(wkt=sourceRaster.GetProjection()) dst_layername = polygonize_output drv = ogr.GetDriverByName("ESRI Shapefile") dst_ds = drv.CreateDataSource(dst_layername) dst_layer = dst_ds.CreateLayer(dst_layername, srs=srs) fd = ogr.FieldDefn("DN", ogr.OFTInteger) dst_layer.CreateField(fd) dst_field = dst_layer.GetLayerDefn().GetFieldIndex("DN") gdal.Polygonize(band, None, dst_layer, dst_field, [connectedness], callback=None) dst_ds.Destroy() # Import polygonize result to database subprocess.call(["ogr2ogr", overwrite_option, "-nlt", geom_type, "-lco", geom_field_name, "-nln", polygonize_table, "-f", output_format, db_connection, polygonize_output]) # Names of the tables to be created in the database during the processing processed_clusters = polygonize_table + "_clusters" processed_cardinality = polygonize_table + "_cardin" # Spatial data to be tested - parcels that will be checked for cardinality # (I think we should use the same data as for heterogeneity) # reference_table = 'reference_data' # Minimum area for clusters selection - only clusters bigger that the # threshold will be counted # area_threshold = 2000 # Calling the PostgreSQL function wich checks the cardinality. The function # fixes the geometry for the spatial data resulted from polygnize, clips # the polygonize result with the parcels that needs to be checked, # calculates the area of the clusters inside each parcel, selects the # clusters that are more than one type, each of them bigger that the # threshold, in each parcel. # The function creates two new tables: one with the clusters that matches # the conditions, the other with data to be tested and a new column # "foi_c" wich is 1 if the parcel has more that two types of clusters # with the area bigger than the thershold # TO DO: put the unique identifier as function param try: ps_connection = db_conn() ps_connection.autocommit = True cursor = ps_connection.cursor() # call stored procedure # cursor.callproc('public.check_cardinality', ( # polygonize_table, reference_data_table, area_threshold)) cursor.execute( "CALL public.check_cardinality_procedure( %s, %s, %s, %s); ", (polygonize_table, reference_data_table, area_threshold, 10000)) print("Running function to check cardinality") except (Exception, psycopg2.DatabaseError) as error: print("Error while connecting to PostgreSQL", error) finally: # closing database connection. if(ps_connection): cursor.close() ps_connection.close() print("PostgreSQL connection is closed") # Export processed data - clusters, to shapefile subprocess.call(["ogr2ogr", "-f", "ESRI Shapefile", cardinality_output_clusters, db_connection, processed_clusters]) print("Cardinality assessment function finished") # Export processed data - data to be tested with "foi_c" flag, to shapefile subprocess.call(["ogr2ogr", "-f", "ESRI Shapefile", cardinality_output, db_connection, processed_cardinality]) print("Cardinality analysis output downloaded") filelist_temp = [f for f in os.listdir( 'foi') if f.startswith(Path(temp_reference_data).stem)] for f in filelist_temp: os.remove(os.path.join('foi', f)) if __name__ == "__main__": import sys main(sys.argv)
40.696165
100
0.683531
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # This file is part of CbM (https://github.com/ec-jrc/cbm). # Author : Gilbert Voican, Konstantinos Anastasakis # Credits : GTCAP Team # Copyright : 2021 European Commission, Joint Research Centre # License : 3-Clause BSD import os import psycopg2 # from psycopg2 import Error import subprocess from osgeo import gdal from osgeo import ogr from osgeo import osr from rasterstats import zonal_stats from fiona import open as fopen import fiona from yaml import load, FullLoader from os.path import dirname, abspath, join, normpath from pathlib import Path from cbm.utils import config from cbm.datas import db import geopandas as gpd path_foi_func = normpath(join(dirname(abspath(__file__)), 'foi_db_func')) def main(reference_data, raster_classif_file, yaml_file, pre_min_het, pre_max_het, area_threshold, db_str='main'): """FOI assessment is based on spatial analysis of a “thematic” raster produced in advance. The thematic raster can be the result of a any image/raster processing method yielding a class label for each pixel - crop classification, behavior analysis of land phenomenon, gridded data on soil, slope, humidity, etc. The starting point was the idea that inside of an homgeneous parcel we should have only one type of pixel. For example if the thematic raster is the result of a crop classification, inside a parcel we should have only one type of pixels that represent the respective crop If the thematic raster is the result of a behaviour analysis, all the pixels inside a parcel should behave in the same way during a period of time. The FOI assessment is based on the analysis made on the presence and distribution of different types of pixels inside the FOI. Args: reference_data (str): Spatial data to be tested - parcels that will be checked for heterogeneity and cardinality The parcels poligons in .shp file format or database table name without .shp ending. raster_classif_file (str): Thematic raster - classification raster, or raster from other source that will be used for testing heterogeneity and cardinality yaml_file: YAML file that holds the classes of thematic raster file. can be also a simple list of values in the notebook corespondence between pixel values and names for the classes pre_min_het: Minimum thresholds for heterogeneity checks. pre_max_het: Maximum thresholds for heterogeneity checks. area_threshold: Minimum area for clusters selection. Returns: bool: True if successful, False otherwise. """ # database connection string if type(db_str) is str: db_connection = f"PG:{db.conn_str(db_str)}" elif type(db_str) is list: db_connection = "PG:host={} port={} dbname={} user={} password={}".format( *db_str) def db_conn(): if type(db_str) is str: return db.conn(db_str) elif type(db_str) is list: return psycopg2.connect("host={} port={} dbname={} user={} password={}".format(*db_str)) # ogr2ogr options geom_field_name = "GEOMETRY_NAME=wkb_geometry" overwrite_option = "-OVERWRITE" geom_type = "MULTIPOLYGON" output_format = "PostgreSQL" # Path for storing the processed data - final spatial data that will be # exported after database processing processed_data = normpath(join('foi', 'processed_data')) os.makedirs(processed_data, exist_ok=True) # Path for storing the final output data output_data = normpath(join('foi', 'output_data')) os.makedirs(output_data, exist_ok=True) reference_data_name = os.path.splitext(os.path.basename(reference_data))[0] try: with open(f"{config.get_value(['paths','temp'])}tb_prefix", 'r') as f: reference_data_table = f.read() except Exception: reference_data_table = reference_data_name # Vector file resulted from the raster stats pixel count # pixelcount_output = f'{output_data}pixel_count_{reference_data_table}.shp' pixelcount_output = f'{processed_data}/{reference_data_name}_pixelcount.shp' # Vector file resulted from raster to vector process (polygonize) polygonize_output = f'{processed_data}/{reference_data_name}_polygonize.shp' # Name of the table to be created in the database - import of the pixel # count into the database pixelcount_table = f"{reference_data_name}_pixelcount" # Name of the table to be created in the database - import of the # polygonize result into the database polygonize_table = f"{reference_data_name}_polygonize" # Name and path of the files resulted from the analysis heterogeneity_output = f'{output_data}/{reference_data_name}_foih_v1.shp' cardinality_output = f'{output_data}/{reference_data_name}_foic_v1.shp' cardinality_output_clusters = f'{output_data}/{reference_data_name}_foic_clusters_v1.shp' sql = "SELECT * FROM " + reference_data_table + ";" try: ps_connection = db_conn() ps_connection.autocommit = True cursor = ps_connection.cursor() gpd_data = gpd.read_postgis( sql=sql, con=ps_connection, geom_col='wkb_geometry') except (Exception, psycopg2.DatabaseError) as error: print("Error while connecting to PostgreSQL", error) finally: # closing database connection. if(ps_connection): cursor.close() ps_connection.close() # print("PostgreSQL connection is closed") temp_reference_data = f'foi/{reference_data_name}_temp.shp' gpd_data.to_file(temp_reference_data) shape = fiona.open(temp_reference_data) spatialRef = shape.crs["init"] # print("Vector EPSG: ", spatialRef) # Import reference data shapefile to database. # Overwrite option is needed, otherwise the import will append new # values to the ones existing in the table subprocess.call(["ogr2ogr", overwrite_option, "-nlt", geom_type, "-lco", geom_field_name, "-a_srs", spatialRef, "-nln", reference_data_table, "-f", "PostgreSQL", db_connection, reference_data]) # Reading the values from yaml file conf = load(open(yaml_file, 'r').read(), Loader=FullLoader) category_map = conf['category_map'] rst_fields = list(category_map.values()) # Counting the number of pixels for each parcel. The fields with names of # the classes from yaml file will be added, # and updated with the number of pixels from each category with fopen(temp_reference_data, 'r') as input: spatialRef = input.crs["init"] schema = input.schema for i in rst_fields: schema['properties'][i] = 'int:5' rst_attribs = dict.fromkeys(rst_fields, 0) with fopen(pixelcount_output, 'w', 'ESRI Shapefile', schema) as output: for i, vct_feat in enumerate(input): vct_val_dict = dict(vct_feat['properties']) rst_val_dict = zonal_stats( vct_feat, raster_classif_file, categorical=True, copy_properties=True, category_map=category_map, nodata=-999)[0] vct_val_dict.update(rst_attribs) for lu in rst_val_dict: vct_val_dict[lu] = rst_val_dict.get(lu) for atrib in vct_val_dict: vct_feat['properties'][atrib] = vct_val_dict.get(atrib) output.write(vct_feat) print("Finished pixel calculation!") # Import resulted shapefile, with the number of pixels for each class to # database. Overwrite option is needed, otherwise the # import will append new values to the ones existing in the table subprocess.call(["ogr2ogr", overwrite_option, "-nlt", geom_type, "-a_srs", spatialRef, "-nln", pixelcount_table, "-f", "PostgreSQL", db_connection, pixelcount_output]) # Number of classes from the thematic raster num_classes = len(category_map) # Minimum and maximum thresholds for heterogeneity checks. In this example, # any parcel # with percentage of pixels for one class between 30 and 70 from the total, # will be considered heterogenous. # min_heterogeneity_threshold = 30 # max_heterogeneity_threshold = 70 min_heterogeneity_threshold = pre_min_het max_heterogeneity_threshold = pre_max_het # Calling the PostgreSQL function wich checks the heterogeneity. # The function calculates the percentages and sets an attribute # "foi_h" to 1 when the percentage of pixels is between thresholds try: ps_connection = db_conn() ps_connection.autocommit = True cursor = ps_connection.cursor() # call stored procedure cursor.callproc('public.check_heterogeneity', ( pixelcount_table, num_classes, min_heterogeneity_threshold, max_heterogeneity_threshold)) print("Running function to check heterogeneity") except (Exception, psycopg2.DatabaseError) as error: print("Error while connecting to PostgreSQL", error) finally: # closing database connection. if(ps_connection): cursor.close() ps_connection.close() print("PostgreSQL connection is closed") print("Heterogeneity assessment function finished") # Export processed data - heterogeneity, to shapefile subprocess.call(["ogr2ogr", "-f", "ESRI Shapefile", heterogeneity_output, db_connection, pixelcount_table]) print("Heterogeneity analysis output downloaded") # Polygonize the thematic raster. The process takes into account only # one band (in this case - first band). Can be used with 8 connected # pixels or with 4 connected pixels. connectedness = '-8' sourceRaster = gdal.Open(raster_classif_file) band = sourceRaster.GetRasterBand(1) srs = osr.SpatialReference(wkt=sourceRaster.GetProjection()) dst_layername = polygonize_output drv = ogr.GetDriverByName("ESRI Shapefile") dst_ds = drv.CreateDataSource(dst_layername) dst_layer = dst_ds.CreateLayer(dst_layername, srs=srs) fd = ogr.FieldDefn("DN", ogr.OFTInteger) dst_layer.CreateField(fd) dst_field = dst_layer.GetLayerDefn().GetFieldIndex("DN") gdal.Polygonize(band, None, dst_layer, dst_field, [connectedness], callback=None) dst_ds.Destroy() # Import polygonize result to database subprocess.call(["ogr2ogr", overwrite_option, "-nlt", geom_type, "-lco", geom_field_name, "-nln", polygonize_table, "-f", output_format, db_connection, polygonize_output]) # Names of the tables to be created in the database during the processing processed_clusters = polygonize_table + "_clusters" processed_cardinality = polygonize_table + "_cardin" # Spatial data to be tested - parcels that will be checked for cardinality # (I think we should use the same data as for heterogeneity) # reference_table = 'reference_data' # Minimum area for clusters selection - only clusters bigger that the # threshold will be counted # area_threshold = 2000 # Calling the PostgreSQL function wich checks the cardinality. The function # fixes the geometry for the spatial data resulted from polygnize, clips # the polygonize result with the parcels that needs to be checked, # calculates the area of the clusters inside each parcel, selects the # clusters that are more than one type, each of them bigger that the # threshold, in each parcel. # The function creates two new tables: one with the clusters that matches # the conditions, the other with data to be tested and a new column # "foi_c" wich is 1 if the parcel has more that two types of clusters # with the area bigger than the thershold # TO DO: put the unique identifier as function param try: ps_connection = db_conn() ps_connection.autocommit = True cursor = ps_connection.cursor() # call stored procedure # cursor.callproc('public.check_cardinality', ( # polygonize_table, reference_data_table, area_threshold)) cursor.execute( "CALL public.check_cardinality_procedure( %s, %s, %s, %s); ", (polygonize_table, reference_data_table, area_threshold, 10000)) print("Running function to check cardinality") except (Exception, psycopg2.DatabaseError) as error: print("Error while connecting to PostgreSQL", error) finally: # closing database connection. if(ps_connection): cursor.close() ps_connection.close() print("PostgreSQL connection is closed") # Export processed data - clusters, to shapefile subprocess.call(["ogr2ogr", "-f", "ESRI Shapefile", cardinality_output_clusters, db_connection, processed_clusters]) print("Cardinality assessment function finished") # Export processed data - data to be tested with "foi_c" flag, to shapefile subprocess.call(["ogr2ogr", "-f", "ESRI Shapefile", cardinality_output, db_connection, processed_cardinality]) print("Cardinality analysis output downloaded") filelist_temp = [f for f in os.listdir( 'foi') if f.startswith(Path(temp_reference_data).stem)] for f in filelist_temp: os.remove(os.path.join('foi', f)) if __name__ == "__main__": import sys main(sys.argv)
6
0
0
0
0
196
0
0
27
e549886f38a359ea6d5cf82b0fcbe44d7f043c7e
3,657
py
Python
laylm/trainer/task.py
nunenuh/layoutlm.pytorch
30853b0a37247b5463836156d9f345d84da050f0
[ "MIT" ]
1
2021-01-25T16:31:54.000Z
2021-01-25T16:31:54.000Z
laylm/trainer/task.py
nunenuh/layoutlm.pytorch
30853b0a37247b5463836156d9f345d84da050f0
[ "MIT" ]
null
null
null
laylm/trainer/task.py
nunenuh/layoutlm.pytorch
30853b0a37247b5463836156d9f345d84da050f0
[ "MIT" ]
null
null
null
import torch.nn as nn import torch.optim as optim
33.550459
104
0.570686
import torch import torch.nn as nn import torch.optim as optim from transformers import ( AdamW, get_linear_schedule_with_warmup, ) from .metrics import FullMetrics import pytorch_lightning as pl from pytorch_lightning import loggers as pl_loggers class TaskLayoutLM(pl.LightningModule): def __init__(self, model, tokenizer, grad_clip=1.0, hparams={}): super().__init__() self.model = model self.tokenizer = tokenizer self.grad_clip = grad_clip self.hparams = hparams self.metrics = FullMetrics(tokenizer) def forward( self, input_ids, bbox, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None ): return self.model( input_ids, bbox, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, labels ) def backward(self, loss, optimizer, optimizer_idx): loss.backward() nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_clip) def shared_step(self, batch, batch_idx): inputs = { "input_ids": batch[0].to(self.device), "attention_mask": batch[1].to(self.device), "token_type_ids": batch[2].to(self.device), "labels": batch[3].to(self.device), "bbox": batch[4].to(self.device) } outputs = self.model(**inputs) loss, logits = outputs[0], outputs[1] metrics = self.metrics(inputs, outputs) return loss, logits, metrics def training_step(self, batch, batch_idx): loss, logits, metrics = self.shared_step(batch, batch_idx) self.log('trn_loss', loss, prog_bar=True, logger=True) self.log('trn_acc', metrics['accuracy'], prog_bar=True, logger=True) self.log('trn_f1', metrics['f1'], prog_bar=True, logger=True) self.log('trn_precision', metrics['precision'], prog_bar=True, logger=True) self.log('trn_recall', metrics['recall'], prog_bar=True, logger=True) return loss def validation_step(self, batch, batch_idx): loss, logits, metrics = self.shared_step(batch, batch_idx) self.log('val_loss', loss, prog_bar=True, logger=True) self.log('val_acc', metrics['accuracy'], prog_bar=True, logger=True) self.log('val_f1', metrics['f1'], prog_bar=True, logger=True) self.log('val_precision', metrics['precision'], prog_bar=True, logger=True) self.log('val_recall', metrics['recall'], prog_bar=True, logger=True) return loss def configure_optimizers(self): no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [ p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay) ], "weight_decay": 0.0, }, { "params": [ p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay) ], "weight_decay": 0.0, }, ] optimizer = AdamW( optimizer_grouped_parameters, lr=5e-5, eps=1e-8 ) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=1) return [optimizer], [scheduler]
0
0
0
3,371
0
0
0
96
135
85c4f894595399211d734bb79e045b6413317d18
557
py
Python
2020/Day_10/part1.py
Adilius/adventofcode
d0d3ad1a0430c3732d108ad8ef2b4d218a37944b
[ "MIT" ]
2
2020-12-01T14:50:51.000Z
2020-12-03T17:08:43.000Z
2020/Day_10/part1.py
Adilius/adventofcode
d0d3ad1a0430c3732d108ad8ef2b4d218a37944b
[ "MIT" ]
null
null
null
2020/Day_10/part1.py
Adilius/adventofcode
d0d3ad1a0430c3732d108ad8ef2b4d218a37944b
[ "MIT" ]
null
null
null
input_file = open("input.txt", "r") lines = input_file.read().splitlines() #Read whole file, split by newlines lines = [int(i) for i in lines] lines.sort() lines.append(lines[-1]+3) oneDifference = 0 threeDifference = 0 previousJoltage = 0 for outlet in lines: if outlet - 3 == previousJoltage: threeDifference += 1 else: oneDifference += 1 previousJoltage = outlet print(lines) print("oneDifference:", oneDifference) print("threeDifference:", threeDifference) answer = oneDifference * threeDifference print("Answer:", answer)
26.52381
75
0.709156
input_file = open("input.txt", "r") lines = input_file.read().splitlines() #Read whole file, split by newlines lines = [int(i) for i in lines] lines.sort() lines.append(lines[-1]+3) oneDifference = 0 threeDifference = 0 previousJoltage = 0 for outlet in lines: if outlet - 3 == previousJoltage: threeDifference += 1 else: oneDifference += 1 previousJoltage = outlet print(lines) print("oneDifference:", oneDifference) print("threeDifference:", threeDifference) answer = oneDifference * threeDifference print("Answer:", answer)
0
0
0
0
0
0
0
0
0
e82f452914c75b9c2ebe56457a4ddeef9877b340
1,231
py
Python
yeti.py
chaitanyakrishna/yeti
796257311a84cd84873fd2423d5ccce231459560
[ "Apache-2.0" ]
null
null
null
yeti.py
chaitanyakrishna/yeti
796257311a84cd84873fd2423d5ccce231459560
[ "Apache-2.0" ]
null
null
null
yeti.py
chaitanyakrishna/yeti
796257311a84cd84873fd2423d5ccce231459560
[ "Apache-2.0" ]
1
2021-11-16T13:21:56.000Z
2021-11-16T13:21:56.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import logging logging.basicConfig(format='%(levelname)s:%(module)s:%(message)s', level=logging.ERROR) COMMANDS = { 'webserver': webserver, 'syncdb': syncdb, } if __name__ == '__main__': main()
25.122449
112
0.682372
#!/usr/bin/env python # -*- coding: utf-8 -*- import logging import argparse from core.web import webapp logging.basicConfig(format='%(levelname)s:%(module)s:%(message)s', level=logging.ERROR) def webserver(args): # Enable debug and autoreload in dev webapp.debug = args.debug if webapp.debug: webapp.jinja_env.auto_reload = True webapp.config['TEMPLATES_AUTO_RELOAD'] = True syncdb() print "[+] Yeti started. Point browser to http://localhost:5000/{}".format(" (debug)" if args.debug else "") webapp.run(host="0.0.0.0") def syncdb(args=None): from core.internals import Internals Internals.syncdb() COMMANDS = { 'webserver': webserver, 'syncdb': syncdb, } def main(): parser = argparse.ArgumentParser() subparsers = parser.add_subparsers(help='sub-command help', dest="command") webserver = subparsers.add_parser('webserver', help='Launch yeti webserver') webserver.add_argument('--debug', action='store_true', help="Run Flask in debug mode") subparsers.add_parser('syncdb', help='Sync database with Yeti version') args = parser.parse_args() command = args.command COMMANDS[command](args) if __name__ == '__main__': main()
0
0
0
0
0
858
0
0
114
d4dc1d4acf798618eb4e02139f69296e021d2d15
1,261
py
Python
main.py
MunityVR/Game
d22f3dcf8a394eca26cf90d4be38b6c328c8e707
[ "CC0-1.0" ]
null
null
null
main.py
MunityVR/Game
d22f3dcf8a394eca26cf90d4be38b6c328c8e707
[ "CC0-1.0" ]
null
null
null
main.py
MunityVR/Game
d22f3dcf8a394eca26cf90d4be38b6c328c8e707
[ "CC0-1.0" ]
null
null
null
# Spaces minsp = 0 maxsp = 500 # Admin's configuration print("Hey Admin!") sw = str(input("Make up a word : ")) guesses = float(input("How many guesses should the user have : ")) h = str(input("Do you want to give the user a hint? y/n : ")) guess = '' gc = 0 # Admin's hint if h == 'y': hint = str(input("What hint do you wanna give to the user, when the user type down \'Hint\' : ")) elif h == 'n': hint = str("I didn\'t give you a hint.") # Spaces - So user can't see what the admin did. while minsp != maxsp: print("") minsp = minsp + 1 print("Hey User!") # The game starts here. while guess != sw or gc != guesses: guess = str(input("Enter a guess : ")) gc = gc + 1 # Events during/end the game. if guess == sw: print("You win!") exit() elif guess == 'Np =>': print("You know something that nobody else knows!") gc = gc - 1 elif guess == 'Amazing Grace': print("Alan Jackson!") gc = gc - 1 elif guess == 'Hint' or guess == 'hint': print("Admin > " + str(hint)) elif guess == 'GCount' or guess == 'gcount': print(str(gc) + "/" + str(guesses)) gc = gc - 1 elif gc == guesses: print("You lose!") exit()
24.25
101
0.547978
# Spaces minsp = 0 maxsp = 500 # Admin's configuration print("Hey Admin!") sw = str(input("Make up a word : ")) guesses = float(input("How many guesses should the user have : ")) h = str(input("Do you want to give the user a hint? y/n : ")) guess = '' gc = 0 # Admin's hint if h == 'y': hint = str(input("What hint do you wanna give to the user, when the user type down \'Hint\' : ")) elif h == 'n': hint = str("I didn\'t give you a hint.") # Spaces - So user can't see what the admin did. while minsp != maxsp: print("") minsp = minsp + 1 print("Hey User!") # The game starts here. while guess != sw or gc != guesses: guess = str(input("Enter a guess : ")) gc = gc + 1 # Events during/end the game. if guess == sw: print("You win!") exit() elif guess == 'Np =>': print("You know something that nobody else knows!") gc = gc - 1 elif guess == 'Amazing Grace': print("Alan Jackson!") gc = gc - 1 elif guess == 'Hint' or guess == 'hint': print("Admin > " + str(hint)) elif guess == 'GCount' or guess == 'gcount': print(str(gc) + "/" + str(guesses)) gc = gc - 1 elif gc == guesses: print("You lose!") exit()
0
0
0
0
0
0
0
0
0
185a70f8f9c5531ed16ad5da0552a6bd1da2bbad
4,294
py
Python
pycspr/client/events.py
MrKrautee/casper-python-sdk
13e9da83de8892583da7ada91e4231e6f85e5e13
[ "Apache-2.0" ]
2
2021-10-05T07:50:20.000Z
2021-10-06T09:58:19.000Z
pycspr/client/events.py
MrKrautee/casper-python-sdk
13e9da83de8892583da7ada91e4231e6f85e5e13
[ "Apache-2.0" ]
null
null
null
pycspr/client/events.py
MrKrautee/casper-python-sdk
13e9da83de8892583da7ada91e4231e6f85e5e13
[ "Apache-2.0" ]
null
null
null
# Map: channel type <-> event type. _CHANNEL_TO_TYPE = { NodeSseChannelType.deploys: { NodeSseEventType.ApiVersion, NodeSseEventType.DeployAccepted }, NodeSseChannelType.main: { NodeSseEventType.ApiVersion, NodeSseEventType.BlockAdded, NodeSseEventType.DeployProcessed, NodeSseEventType.Fault, NodeSseEventType.Step }, NodeSseChannelType.sigs: { NodeSseEventType.ApiVersion, NodeSseEventType.FinalitySignature } }
34.629032
78
0.62599
import enum import requests import sseclient from json import loads from typing import Callable from typing import Generator from typing import Tuple from pycspr.api import NodeConnectionInfo class NodeSseChannelType(enum.Enum): """ Enumeration over set of exposed node SEE event types. """ deploys = enum.auto() main = enum.auto() sigs = enum.auto() class NodeSseEventType(enum.Enum): """ Enumeration over set of exposed node SEE event types. """ ApiVersion = enum.auto() BlockAdded = enum.auto() DeployAccepted = enum.auto() DeployProcessed = enum.auto() Fault = enum.auto() FinalitySignature = enum.auto() Step = enum.auto() # Map: channel type <-> event type. _CHANNEL_TO_TYPE = { NodeSseChannelType.deploys: { NodeSseEventType.ApiVersion, NodeSseEventType.DeployAccepted }, NodeSseChannelType.main: { NodeSseEventType.ApiVersion, NodeSseEventType.BlockAdded, NodeSseEventType.DeployProcessed, NodeSseEventType.Fault, NodeSseEventType.Step }, NodeSseChannelType.sigs: { NodeSseEventType.ApiVersion, NodeSseEventType.FinalitySignature } } class EventsClient: """ Bind to a node's event stream. """ def __init__(self, node: NodeConnectionInfo): """ Constructor EventChannel. :param node: Information required to connect to a node. """ self._node = node def get_events(self, callback: Callable, channel_type: NodeSseChannelType, event_type: NodeSseEventType, event_id: int = 0) -> None: """ Binds to a node's event stream - events are passed to callback for processing. :param callback: Callback to invoke whenever an event of relevant type is received. :param channel_type: Type of event channel to which to bind. :param event_type: Type of event type to listen for (all if unspecified). :param event_id: Identifer of event from which to start stream listening. """ # validate that the channel supports the event type. if channel_type not in _CHANNEL_TO_TYPE: raise ValueError(f"Unsupported SSE channel: {channel_type.name}.") if event_type not in _CHANNEL_TO_TYPE[channel_type]: raise ValueError(f"Unsupported SSE channel/event permutation: " f"{channel_type.name}:{event_type.name}.") # get and set sse clieant params = f"?start_from={event_id}" if event_id else "" url = f"{self._node.address_sse}/{channel_type.name.lower()}{params}" stream = requests.get(url, stream=True) self._sse_client = sseclient.SSEClient(stream) for event_type, event_id, payload in self._yield_events(self): callback(self._channel_type, event_type, event_id, payload) def _yield_events(self) -> Generator: """ Yields events streaming from node. """ try: for event in self._sse_client.events(): parsed = self._parse_event(event.id, loads(event.data)) if parsed: yield parsed except Exception as err: try: self._sse_client.close() finally: raise err def _parse_event(self, event_id: int, payload: dict ) -> Tuple[NodeSseEventType, int, dict]: """ Parses raw event data for upstream processing. """ events = { "ApiVersion": NodeSseEventType.ApiVersion, "BlockAdded": NodeSseEventType.BlockAdded, "DeployProcessed": NodeSseEventType.DeployProcessed, "Fault": NodeSseEventType.Fault, "Step": NodeSseEventType.Step, "DeployAccepted": NodeSseEventType.DeployAccepted, "FinalitySignature": NodeSseEventType.FinalitySignature } for event_name in events: if event_name in payload: return events.get(event_name), event_id, payload # @TODO: process unkown event_type print(f"Unknown event occured. even_id: {event_id}\n" f"payload: {payload}") return None
0
0
0
3,517
0
0
0
16
246
562a96982f8632cd52e3eb1b793d70b9c95e52cb
2,400
py
Python
truck_microservice/truck/models.py
getnosleep/VirtualUnjam
bae08eec9756c963dab409c6e4e7397ef019cc8a
[ "MIT" ]
null
null
null
truck_microservice/truck/models.py
getnosleep/VirtualUnjam
bae08eec9756c963dab409c6e4e7397ef019cc8a
[ "MIT" ]
null
null
null
truck_microservice/truck/models.py
getnosleep/VirtualUnjam
bae08eec9756c963dab409c6e4e7397ef019cc8a
[ "MIT" ]
null
null
null
# library imports # property imports # import socket # Koennte die richtige Loesung sein...
37.5
135
0.737083
# library imports from django.db import models from django.core.validators import MaxValueValidator, MinValueValidator # property imports from .properties import * class TruckEntity(models.Model): # Params id = models.PositiveIntegerField(default=ID, primary_key=True) address = models.TextField(default=ADDRESS_SELF, max_length=50) length = models.FloatField(default=LENGTH) distance = models.FloatField(default=DISTANCE) # Movement currentDistance = models.FloatField(default=.0) currentRouteSection = models.FloatField(default=.0, validators=[MinValueValidator(.0)]) currentSpeed = models.FloatField(default=.0, validators=[MinValueValidator(MIN_SPEED), MaxValueValidator(MAX_SPEED)]) acceleration = models.FloatField(default=.0, validators=[MinValueValidator(MIN_ACCELERATION), MaxValueValidator(MAX_ACCELERATION)]) targetRouteSection = models.FloatField(default=20000.0, validators=[MinValueValidator(.0)]) targetSpeed = models.FloatField(default=.0, validators=[MinValueValidator(MIN_SPEED), MaxValueValidator(MAX_SPEED)]) # Convoy leadingTruckAddress = models.TextField(default=None, blank=True, null=True, max_length=50) frontTruckAddress = models.TextField(default=None, blank=True, null=True, max_length=50) backTruckAddress = models.TextField(default=None, blank=True, null=True, max_length=50) position = models.PositiveIntegerField(default=None, blank=True, null=True) polling = models.BooleanField(default=False) broken = models.BooleanField(default=False) # Computed def closing(self): return self.distance > self.currentDistance and self.position and not self.leadingTruckAddress == ADDRESS_SELF def accelerating(self): return self.acceleration > .0 def decelerating(self): return self.acceleration < .0 def movementStats(self): return [self.currentRouteSection, self.currentSpeed, self.acceleration] def targetStats(self): return [self.targetRouteSection, self.targetSpeed] @property def minSpeed(self): return MIN_SPEED @property def maxSpeed(self): return MAX_SPEED @property def minAcceleration(self): return MIN_ACCELERATION @property def maxAcceleration(self): return MAX_ACCELERATION # import socket # Koennte die richtige Loesung sein...
0
176
0
1,980
0
0
0
61
89
96a9acf8dbfedc8c99c78a3eb9a85b6b5ebf731b
1,106
py
Python
x1/append_nop.py
pepepper/lab
63b15a9455681353560b176256b59715a44aa6e0
[ "CC0-1.0" ]
null
null
null
x1/append_nop.py
pepepper/lab
63b15a9455681353560b176256b59715a44aa6e0
[ "CC0-1.0" ]
1
2021-06-28T06:30:13.000Z
2021-06-28T06:30:13.000Z
x1/append_nop.py
pepepper/lab
63b15a9455681353560b176256b59715a44aa6e0
[ "CC0-1.0" ]
1
2021-06-27T20:36:07.000Z
2021-06-27T20:36:07.000Z
#!/usr/bin/env python3 main()
30.722222
139
0.512658
#!/usr/bin/env python3 import sys def main(): if len(sys.argv) < 5: print(f'Usage: {sys.argv[0]} top.bin bottom_loop.bin bottom_reset.bin out.bin reset_fill_from reset_fill_to', file=sys.stderr) sys.exit(1) with open(sys.argv[1], 'rb') as tf, open(sys.argv[2], 'rb') as btmlf, open(sys.argv[3], 'rb') as btmrf, open(sys.argv[4], 'wb') as out: top, btml, btmr = tf.read(), btmlf.read(), btmrf.read() fill_from, fill_to = int(sys.argv[5]), int(sys.argv[6]) out.write(top) if fill_from == 0: blen, b = len(btmr), btmr else: blen, b = len(btml), btml for i in range((1024 * 64 - len(top) - blen) // 4): out.write(b'\x00\x00\xa0\xe1') out.write(b) for i in range(1024 * 1024 * 15 // (1024 * 64) - 1): if fill_from <= i+1 < fill_to: blen, b = len(btmr), btmr else: blen, b = len(btml), btml for j in range((1024 * 64 - blen) // 4): out.write(b'\x00\x00\xa0\xe1') out.write(b) main()
0
0
0
0
0
1,038
0
-11
46
818ccd30f153dce67753185ecd7905c078fbf3f3
4,310
py
Python
tests/test_task.py
Infinidat/pyvisdk
f2f4e5f50da16f659ccc1d84b6a00f397fa997f8
[ "MIT" ]
null
null
null
tests/test_task.py
Infinidat/pyvisdk
f2f4e5f50da16f659ccc1d84b6a00f397fa997f8
[ "MIT" ]
null
null
null
tests/test_task.py
Infinidat/pyvisdk
f2f4e5f50da16f659ccc1d84b6a00f397fa997f8
[ "MIT" ]
null
null
null
import unittest TASKS = ['hello world', 'I hate VMware', 'me too', 'This is a very long task name, a very very long name', 'school sucks', 'one more', 'last one'] if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testHosts'] unittest.main()
35.04065
91
0.655452
import unittest, types from pyvisdk import Vim from tests.common import get_options from pyvisdk.facade.task import TaskManager def nothing(): pass def random_string(n): import random import string return ''.join(random.choice(string.ascii_uppercase + string.digits) for x in range(n)) TASKS = ['hello world', 'I hate VMware', 'me too', 'This is a very long task name, a very very long name', 'school sucks', 'one more', 'last one'] class Test_Task(unittest.TestCase): @classmethod def setUpClass(cls): cls.options = get_options() cls.vim = Vim(cls.options.server) cls.vim.login(cls.options.username, cls.options.password) cls.manager = TaskManager(cls.vim) cls.obj = cls.vim.getHostSystems()[0] cls.cleanUpStaleTasks() @classmethod def cleanUpStaleTasks(cls): for task in cls.manager._managed_object.recentTask: if task.info.state in ['running', 'queued']: task.SetTaskState('error', None, None) @classmethod def tearDownClass(cls): cls.vim.logout() def test_task(self): with self.manager.task(self.obj, TASKS[0]): pass def test_task__error(self): with self.assertRaises(Exception): with self.manager.task(self.obj, TASKS[1]): raise Exception() def test_wrap(self): task = self.manager.task(self.obj, TASKS[2]) func = task.wraps(nothing) func() def test_step(self): task = self.manager.task(self.obj, TASKS[3]) task.step([nothing, nothing, nothing]) def test_step_manually(self): with self.manager.task(self.obj, TASKS[4]) as task: task.update_progress(10) task.update_progress(20) task.update_progress(90) class Test_TaskWait(Test_Task): def test_waitForTask_ref(self): dummy_task = self.manager.task(self.obj, TASKS[5]) task = dummy_task._managed_object task.SetTaskState("success") self.assertEquals(task.core.waitForTask(task.ref), 'success') def test_waitForTask_regular(self): dummy_task = self.manager.task(self.obj, TASKS[5]) task = dummy_task._managed_object task.SetTaskState("success") self.assertEquals(task.core.waitForTask(task), 'success') def test_waitForTask_fail(self): from pyvisdk.exceptions import VisdkTaskError dummy_task = self.manager.task(self.obj, TASKS[5]) task = dummy_task._managed_object task.SetTaskState("error", None, None) with self.assertRaises(VisdkTaskError): task.core.waitForTask(task) def _change_task(self, task, new_state): task.SetTaskState(new_state, None, None) def _waitForTask_timeout(self, is_running, wait_timeout, how_long=5): from pyvisdk.exceptions import VisdkTaskError import threading dummy_task = self.manager.task(self.obj, TASKS[5]) task = dummy_task._managed_object if is_running: task.SetTaskState("running", None, None) timer = threading.Timer(how_long, self._change_task, args=[task, "success"]) timer.start() if wait_timeout is not None and how_long > wait_timeout: with self.assertRaises(VisdkTaskError): task.core.waitForTask(task, wait_timeout) else: self.assertEquals(task.core.waitForTask(task, wait_timeout), 'success') timer.join() def test_waitForTask_timeout_running_infinite_wait(self): self._waitForTask_timeout(True, None) def test_waitForTask_timeout_queued_infinite_wait(self): self._waitForTask_timeout(False, None) def test_waitForTask_timeout_running_long_wait(self): self._waitForTask_timeout(True, 10) def test_waitForTask_timeout_queued_long_wait(self): self._waitForTask_timeout(False, 10) def test_waitForTask_timeout_running_short_wait(self): self._waitForTask_timeout(True, 1) def test_waitForTask_timeout_queued_short_wait(self): self._waitForTask_timeout(False, 1) if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testHosts'] unittest.main()
0
520
0
3,127
0
130
0
46
170
30eaa2105d07e43d9a8ec898704e63e5994f330e
12,680
py
Python
MyUtils/ImageProcessing.py
mairob/Semantic-segmentation-and-Depth-estimation
d9624cdbde000a0c41e1025f89aa6edfdf947045
[ "MIT" ]
6
2018-06-15T21:18:58.000Z
2021-07-05T08:41:21.000Z
MyUtils/ImageProcessing.py
mairob/Semantic-segmentation-and-Depth-estimation
d9624cdbde000a0c41e1025f89aa6edfdf947045
[ "MIT" ]
null
null
null
MyUtils/ImageProcessing.py
mairob/Semantic-segmentation-and-Depth-estimation
d9624cdbde000a0c41e1025f89aa6edfdf947045
[ "MIT" ]
4
2018-06-15T21:19:08.000Z
2021-07-05T08:41:23.000Z
#! /usr/bin/python3 ############################################################# ### Helper File for TFRecords and Image manipulation ######## ############################################################# import tensorflow as tf import numpy as np ## Label mapping for Cityscapes (34 classes) Cityscapes34_ID_2_RGB = [(0,0,0), (0,0,0), (0,0,0), (0,0,0), (0,0,0) # 0=unlabeled, ego vehicle,rectification border, oo roi, static ,(111,74,0),(81,0,81),(128,64,128),(244,35,232),(250,170,160) # 5=dynamic, 6=ground, 7=road, 8=sidewalk, 9=parking ,(230,150,140), (70,70,70), (102,102,156),(190,153,153),(180,165,180) # 10=rail track, 11=building, 12=wall, 13=fence, 14=guard rail ,(150,100,100),(150,120, 90),(153,153,153),(153,153,153),(250,170, 30) # 15= bridge, 16=tunnel, 17=pole, 18=polegroup, 19=traffic light ,(220,220,0),(107,142,35),(152,251,152),(70,130,180),(220,20,60) # 20=traffic sign 21=vegetation, 22=terrain, 23=sky, 24=person ,(255,0,0),(0,0,142),(0,0,70),(0,60,100),(0,0,90), (0,0,110), (0,80,100), (0,0,230), (119, 11, 32)] # 25=rider, 26=car, 22=terrain, 27=truck, 28=bus, 29=caravan, 30= trailer, 31=train, 32=motorcyle ,33=bicycle ## Label mapping for Cityscapes (19 classes + '255'=wildcard) Cityscapes20_ID_2_RGB = [(128,64,128),(244,35,232), (70,70,70), (102,102,156),(190,153,153) #0=road, 1=sidewalk, 2=building, 3=wall, 4=fence ,(153,153,153), (250,170, 30), (220,220,0),(107,142,35),(152,251,152),(70,130,180),(220,20,60) # 5= pole, 6=traffic light, 7= traffic sign, 8= vegetation,9= terrain, 10=sky, 11=person ,(255,0,0),(0,0,142),(0,0,70),(0,60,100), (0,80,100), (0,0,230), (119, 11, 32), (255,255,255)] # 12=rider, 13=car, 14=truck, 15=bus, 16=train, 17=motorcycle, 18=bicycle, #255 --cast via tf.minimum Pred_2_ID = [7, 8, 11, 12, 13 #0=road, 1=sidewalk, 2=building, 3=wall, 4=fence ,17 , 19, 20, 21, 22, 23, 24 # 5= pole, 6=traffic light, 7= traffic sign, 8= vegetation,9= terrain, 10=sky, 11=person ,25 , 26, 27, 28, 31, 32, 33, -1] # 12=rider, 13=car, 14=truck, 15=bus, 16=train, 17=motorcycle, 18=bicycle, #255 --cast via tf.minimum ################################################################################## ################## Functions for Image Preprocessing ############################# ################################################################################## def read_and_decode(filename_queue, hasDisparity=False, constHeight=1024, constWidth=1024): """Decode images from TF-Records Bytestream. TF-Record must be compiled with the "make_tf_record.py"-script! Args: filename_queue: String representation of TF-Records (returned from tf.train.string_input_producer([TFRECORD_FILENAME]) filename_queue: Boolean, needed for procession disparity maps constHeight, constWidth: Expected shapes of Images to decode Returns: Decoded image and mask """ with tf.name_scope("Input_Decoder"): reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) if not hasDisparity: features = tf.parse_single_example( serialized_example, features={ 'image_raw': tf.FixedLenFeature([], tf.string), 'mask_raw': tf.FixedLenFeature([], tf.string) }) image = tf.decode_raw(features['image_raw'], tf.uint8) annotation = tf.decode_raw(features['mask_raw'], tf.uint8) image_shape = tf.stack([constHeight, constWidth, 3]) annotation_shape = tf.stack([constHeight, constWidth, 1]) image = tf.reshape(image, image_shape) annotation = tf.reshape(annotation, annotation_shape) return image, annotation else: features = tf.parse_single_example( serialized_example, features={ 'image_raw': tf.FixedLenFeature([], tf.string), 'mask_raw': tf.FixedLenFeature([], tf.string), 'disp_raw': tf.FixedLenFeature([], tf.string) }) image = tf.decode_raw(features['image_raw'], tf.uint8) annotation = tf.decode_raw(features['mask_raw'], tf.uint8) disparity = tf.decode_raw(features['disp_raw'], tf.int16) #uint6 image_shape = tf.stack([constHeight, constWidth, 3]) masks_shape = tf.stack([constHeight, constWidth, 1]) image = tf.reshape(image, image_shape) annotation = tf.reshape(annotation, masks_shape) disparity = tf.reshape(disparity, masks_shape) return image, annotation, disparity def decode_labels(mask, num_images=1, num_classes=20, label=Cityscapes20_ID_2_RGB): """Decode batch of segmentation masks. Args: mask: result of inference after taking argmax. num_images: number of images to decode from the batch. num_classes: number of classes to predict (including background). label: List, which value to assign for different classes Returns: A batch with num_images RGB images of the same size as the input. """ from PIL import Image n, h, w, c = mask.shape assert(n >= num_images), 'Batch size %d should be greater or equal than number of images to save %d.' % (n, num_images) outputs = np.zeros((num_images, h, w, 3), dtype=np.uint8) for i in range(num_images): img = Image.new('RGB', (len(mask[i, 0]), len(mask[i]))) pixels = img.load() for j_, j in enumerate(mask[i, :, :, 0]): for k_, k in enumerate(j): if k < num_classes: pixels[k_,j_] = label[k] outputs[i] = np.array(img) return outputs from tensorflow.python.ops import control_flow_ops def flip_randomly_left_right_image_with_annotation(image_tensor, annotation_tensor): """Flips an image randomly and applies the same to an annotation tensor. Args: image_tensor, annotation_tensor: 3-D-Tensors Returns: Flipped image and gt. """ random_var = tf.random_uniform(maxval=2, dtype=tf.int32, shape=[]) randomly_flipped_img = control_flow_ops.cond(pred=tf.equal(random_var, 0), fn1=lambda: tf.image.flip_left_right(image_tensor), fn2=lambda: image_tensor) randomly_flipped_annotation = control_flow_ops.cond(pred=tf.equal(random_var, 0), fn1=lambda: tf.image.flip_left_right(annotation_tensor), fn2=lambda: annotation_tensor) return randomly_flipped_img, randomly_flipped_annotation def random_crop_and_pad_image_and_labels(image, sem_labels, dep_labels, size): """Randomly crops `image` together with `labels`. Args: image: A Tensor with shape [D_1, ..., D_K, N] labels: A Tensor with shape [D_1, ..., D_K, M] size: A Tensor with shape [K] indicating the crop size. Returns: A tuple of (cropped_image, cropped_label). """ combined = tf.concat([image, sem_labels, dep_labels], axis=2) print("combined : ", str(combined.get_shape()[:])) combined_crop = tf.random_crop(combined, [size[0], size[1],5]) print("combined_crop : ", str(combined_crop.get_shape()[:])) channels = tf.unstack(combined_crop, axis=-1) image = tf.stack([channels[0],channels[1],channels[2]], axis=-1) sem_label = tf.expand_dims(channels[3], axis=2) dep_label = tf.expand_dims(channels[4], axis=2) return image, sem_label, dep_label ################################################################################## ################## Functions for Image Postprocessing ############################# ################################################################################## def generate_prediction_Img(mask, num_images=1, num_classes= 20, label=Pred_2_ID): """Decode batch of segmentation masks. Args: mask: result of inference after taking argmax. num_images: number of images to decode from the batch. num_classes: number of classes to predict (including background). label: List, which value to assign for different classes Returns: A batch with num_images RGB images of the same size as the input. """ from PIL import Image n, h, w, c = mask.shape assert(n >= num_images), 'Batch size %d should be greater or equal than number of images to save %d.' % (n, num_images) outputs = np.zeros((num_images, h, w), dtype=np.uint8) for i in range(num_images): img = Image.new('L', (len(mask[i, 0]), len(mask[i]))) pixels = img.load() for j_, j in enumerate(mask[i, :, :, 0]): for k_, k in enumerate(j): if k < num_classes: pixels[k_,j_] = label[k] outputs[i] = np.array(img) return outputs def plot_depthmap(mask): """Network output as [w, h, 1]-Tensor is transformed to a heatmap for easier visual interpretation Args: mask: result of inference (depth = 1) Returns: A RGB-Image (representation of the depth prediction as heatmap """ import matplotlib.pyplot as plt cmap = plt.get_cmap('hot') gray = mask[0,:,:,0].astype(np.uint16) divisor = np.max(gray) - np.min(gray) if divisor != 0: normed = (gray - np.min(gray)) / divisor else: normed = (gray - np.min(gray)) rgba_img = cmap(normed) rgb_img = np.delete(rgba_img, 3,2) return (65535 * rgb_img).astype(np.float32)
44.181185
133
0.593612
#! /usr/bin/python3 ############################################################# ### Helper File for TFRecords and Image manipulation ######## ############################################################# import tensorflow as tf import numpy as np ## Label mapping for Cityscapes (34 classes) Cityscapes34_ID_2_RGB = [(0,0,0), (0,0,0), (0,0,0), (0,0,0), (0,0,0) # 0=unlabeled, ego vehicle,rectification border, oo roi, static ,(111,74,0),(81,0,81),(128,64,128),(244,35,232),(250,170,160) # 5=dynamic, 6=ground, 7=road, 8=sidewalk, 9=parking ,(230,150,140), (70,70,70), (102,102,156),(190,153,153),(180,165,180) # 10=rail track, 11=building, 12=wall, 13=fence, 14=guard rail ,(150,100,100),(150,120, 90),(153,153,153),(153,153,153),(250,170, 30) # 15= bridge, 16=tunnel, 17=pole, 18=polegroup, 19=traffic light ,(220,220,0),(107,142,35),(152,251,152),(70,130,180),(220,20,60) # 20=traffic sign 21=vegetation, 22=terrain, 23=sky, 24=person ,(255,0,0),(0,0,142),(0,0,70),(0,60,100),(0,0,90), (0,0,110), (0,80,100), (0,0,230), (119, 11, 32)] # 25=rider, 26=car, 22=terrain, 27=truck, 28=bus, 29=caravan, 30= trailer, 31=train, 32=motorcyle ,33=bicycle ## Label mapping for Cityscapes (19 classes + '255'=wildcard) Cityscapes20_ID_2_RGB = [(128,64,128),(244,35,232), (70,70,70), (102,102,156),(190,153,153) #0=road, 1=sidewalk, 2=building, 3=wall, 4=fence ,(153,153,153), (250,170, 30), (220,220,0),(107,142,35),(152,251,152),(70,130,180),(220,20,60) # 5= pole, 6=traffic light, 7= traffic sign, 8= vegetation,9= terrain, 10=sky, 11=person ,(255,0,0),(0,0,142),(0,0,70),(0,60,100), (0,80,100), (0,0,230), (119, 11, 32), (255,255,255)] # 12=rider, 13=car, 14=truck, 15=bus, 16=train, 17=motorcycle, 18=bicycle, #255 --cast via tf.minimum Pred_2_ID = [7, 8, 11, 12, 13 #0=road, 1=sidewalk, 2=building, 3=wall, 4=fence ,17 , 19, 20, 21, 22, 23, 24 # 5= pole, 6=traffic light, 7= traffic sign, 8= vegetation,9= terrain, 10=sky, 11=person ,25 , 26, 27, 28, 31, 32, 33, -1] # 12=rider, 13=car, 14=truck, 15=bus, 16=train, 17=motorcycle, 18=bicycle, #255 --cast via tf.minimum ################################################################################## ################## Functions for Image Preprocessing ############################# ################################################################################## def read_and_decode(filename_queue, hasDisparity=False, constHeight=1024, constWidth=1024): """Decode images from TF-Records Bytestream. TF-Record must be compiled with the "make_tf_record.py"-script! Args: filename_queue: String representation of TF-Records (returned from tf.train.string_input_producer([TFRECORD_FILENAME]) filename_queue: Boolean, needed for procession disparity maps constHeight, constWidth: Expected shapes of Images to decode Returns: Decoded image and mask """ with tf.name_scope("Input_Decoder"): reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) if not hasDisparity: features = tf.parse_single_example( serialized_example, features={ 'image_raw': tf.FixedLenFeature([], tf.string), 'mask_raw': tf.FixedLenFeature([], tf.string) }) image = tf.decode_raw(features['image_raw'], tf.uint8) annotation = tf.decode_raw(features['mask_raw'], tf.uint8) image_shape = tf.stack([constHeight, constWidth, 3]) annotation_shape = tf.stack([constHeight, constWidth, 1]) image = tf.reshape(image, image_shape) annotation = tf.reshape(annotation, annotation_shape) return image, annotation else: features = tf.parse_single_example( serialized_example, features={ 'image_raw': tf.FixedLenFeature([], tf.string), 'mask_raw': tf.FixedLenFeature([], tf.string), 'disp_raw': tf.FixedLenFeature([], tf.string) }) image = tf.decode_raw(features['image_raw'], tf.uint8) annotation = tf.decode_raw(features['mask_raw'], tf.uint8) disparity = tf.decode_raw(features['disp_raw'], tf.int16) #uint6 image_shape = tf.stack([constHeight, constWidth, 3]) masks_shape = tf.stack([constHeight, constWidth, 1]) image = tf.reshape(image, image_shape) annotation = tf.reshape(annotation, masks_shape) disparity = tf.reshape(disparity, masks_shape) return image, annotation, disparity def decode_labels(mask, num_images=1, num_classes=20, label=Cityscapes20_ID_2_RGB): """Decode batch of segmentation masks. Args: mask: result of inference after taking argmax. num_images: number of images to decode from the batch. num_classes: number of classes to predict (including background). label: List, which value to assign for different classes Returns: A batch with num_images RGB images of the same size as the input. """ from PIL import Image n, h, w, c = mask.shape assert(n >= num_images), 'Batch size %d should be greater or equal than number of images to save %d.' % (n, num_images) outputs = np.zeros((num_images, h, w, 3), dtype=np.uint8) for i in range(num_images): img = Image.new('RGB', (len(mask[i, 0]), len(mask[i]))) pixels = img.load() for j_, j in enumerate(mask[i, :, :, 0]): for k_, k in enumerate(j): if k < num_classes: pixels[k_,j_] = label[k] outputs[i] = np.array(img) return outputs def apply_with_random_selector(x, func, num_cases): from tensorflow.python.ops import control_flow_ops with tf.name_scope("Random_Selector"): sel = tf.random_uniform([], maxval=num_cases, dtype=tf.int32) # Pass the real x only to one of the func calls. return control_flow_ops.merge([ func(control_flow_ops.switch(x, tf.equal(sel, case))[1], case) for case in range(num_cases)])[0] def distort_color(image, color_ordering=0, fast_mode=True, scope=None): with tf.name_scope("Color_distortion"): if fast_mode: if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) else: image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_brightness(image, max_delta=32. / 255.) else: if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) elif color_ordering == 1: image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) elif color_ordering == 2: image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) elif color_ordering == 3: image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_brightness(image, max_delta=32. / 255.) else: raise ValueError('color_ordering must be in [0, 3]') # The random_* ops do not necessarily clamp. return tf.clip_by_value(image, 0.0, 1.0) from tensorflow.python.ops import control_flow_ops def flip_randomly_left_right_image_with_annotation(image_tensor, annotation_tensor): """Flips an image randomly and applies the same to an annotation tensor. Args: image_tensor, annotation_tensor: 3-D-Tensors Returns: Flipped image and gt. """ random_var = tf.random_uniform(maxval=2, dtype=tf.int32, shape=[]) randomly_flipped_img = control_flow_ops.cond(pred=tf.equal(random_var, 0), fn1=lambda: tf.image.flip_left_right(image_tensor), fn2=lambda: image_tensor) randomly_flipped_annotation = control_flow_ops.cond(pred=tf.equal(random_var, 0), fn1=lambda: tf.image.flip_left_right(annotation_tensor), fn2=lambda: annotation_tensor) return randomly_flipped_img, randomly_flipped_annotation def random_crop_and_pad_image_and_labels(image, sem_labels, dep_labels, size): """Randomly crops `image` together with `labels`. Args: image: A Tensor with shape [D_1, ..., D_K, N] labels: A Tensor with shape [D_1, ..., D_K, M] size: A Tensor with shape [K] indicating the crop size. Returns: A tuple of (cropped_image, cropped_label). """ combined = tf.concat([image, sem_labels, dep_labels], axis=2) print("combined : ", str(combined.get_shape()[:])) combined_crop = tf.random_crop(combined, [size[0], size[1],5]) print("combined_crop : ", str(combined_crop.get_shape()[:])) channels = tf.unstack(combined_crop, axis=-1) image = tf.stack([channels[0],channels[1],channels[2]], axis=-1) sem_label = tf.expand_dims(channels[3], axis=2) dep_label = tf.expand_dims(channels[4], axis=2) return image, sem_label, dep_label def preprocessImage(image, central_crop_fraction= 0.875): with tf.name_scope("Preprocessing"): if image.dtype != tf.float32: image = tf.image.convert_image_dtype(image, dtype=tf.float32) distorted_image = apply_with_random_selector( image, lambda x, ordering: distort_color(x, ordering, fast_mode=True),num_cases=4) image = tf.subtract(distorted_image, 0.5) image = tf.multiply(image, 2.0) return image ################################################################################## ################## Functions for Image Postprocessing ############################# ################################################################################## def generate_prediction_Img(mask, num_images=1, num_classes= 20, label=Pred_2_ID): """Decode batch of segmentation masks. Args: mask: result of inference after taking argmax. num_images: number of images to decode from the batch. num_classes: number of classes to predict (including background). label: List, which value to assign for different classes Returns: A batch with num_images RGB images of the same size as the input. """ from PIL import Image n, h, w, c = mask.shape assert(n >= num_images), 'Batch size %d should be greater or equal than number of images to save %d.' % (n, num_images) outputs = np.zeros((num_images, h, w), dtype=np.uint8) for i in range(num_images): img = Image.new('L', (len(mask[i, 0]), len(mask[i]))) pixels = img.load() for j_, j in enumerate(mask[i, :, :, 0]): for k_, k in enumerate(j): if k < num_classes: pixels[k_,j_] = label[k] outputs[i] = np.array(img) return outputs def plot_depthmap(mask): """Network output as [w, h, 1]-Tensor is transformed to a heatmap for easier visual interpretation Args: mask: result of inference (depth = 1) Returns: A RGB-Image (representation of the depth prediction as heatmap """ import matplotlib.pyplot as plt cmap = plt.get_cmap('hot') gray = mask[0,:,:,0].astype(np.uint16) divisor = np.max(gray) - np.min(gray) if divisor != 0: normed = (gray - np.min(gray)) / divisor else: normed = (gray - np.min(gray)) rgba_img = cmap(normed) rgb_img = np.delete(rgba_img, 3,2) return (65535 * rgb_img).astype(np.float32)
0
0
0
0
0
2,685
0
0
75
6ea46e439fa32f14f73fb96fd66ffd82937d8f5e
3,149
py
Python
analyser/analyser.py
yimig/pyfilm-spliter
baf586e976a7a99373a13e1923f250eaf70f77b8
[ "Apache-2.0" ]
null
null
null
analyser/analyser.py
yimig/pyfilm-spliter
baf586e976a7a99373a13e1923f250eaf70f77b8
[ "Apache-2.0" ]
null
null
null
analyser/analyser.py
yimig/pyfilm-spliter
baf586e976a7a99373a13e1923f250eaf70f77b8
[ "Apache-2.0" ]
null
null
null
import data_connector.model_sentence import data_connector.model_word import sys sys.path.append("../")
36.616279
119
0.58463
import analyser.caption_factory import data_connector.model_sentence import data_connector.model_word import data_connector.data_manager from xml.etree.ElementTree import * import re import sys sys.path.append("../") from log_writer import LogWriter class Analyser: @property def sentence_list(self): return self.__sentence_list @sentence_list.setter def sentence_list(self, value): self.__sentence_list = value @property def word_list(self): return self.__word_list @word_list.setter def word_list(self, value): self.__word_list = value def __init__(self, start_id: int = 0): try: self.__db_setting = self.__decode_xml() print('分解字幕文件并分割视频....') self.__sentence_list = analyser.caption_factory.CaptionFactory.load_dir(self.__caption_path, start_id, self.__audio_path) self.__word_list = [] try: dm = data_connector.data_manager.DataManager(self.__db_setting) print('分析例句并上传....') for sentence in self.__sentence_list: self.__split_word(sentence) dm.execute_sql(sentence.to_sql()) print('上传分析结果....') for word in self.__word_list: dm.execute_sql(word.to_sql()) dm.close_connection() except Exception as e: LogWriter.write_warning(e, "连接数据库失败") raise e except Exception as e: LogWriter.write_warning(e, "读取配置文件失败") raise e print('作业结束。') # 从例句中分割出单词并保存 def __split_word(self, sentence: data_connector.model_sentence.ModelSentence): words = sentence.s_en.split(' ') dm = data_connector.data_manager.DataManager(self.__db_setting) for word in words: clean_word = re.sub('[,.!?:]', '', word.lower()) trans = dm.get_translation(clean_word) if trans: is_include = False for word_model in self.__word_list: if clean_word == word_model.word: word_model.sentences += '|' + str(sentence.s_id) is_include = True if not is_include: self.__word_list.append(data_connector.model_word.ModelWord(clean_word, str(sentence.s_id), trans)) dm.close_connection() # 解析xml文件 def __decode_xml(self): db_setting = {} setting = parse('.\\setting.xml') for item in setting.iterfind('path'): self.__caption_path = item.findtext('caption_path') self.__audio_path = item.findtext('audio_path') for item in setting.iterfind('database'): db_setting.update({'server': item.findtext('server')}) db_setting.update({'user': item.findtext('user')}) db_setting.update({'password': item.findtext('password')}) db_setting.update({'database': item.findtext('db_name')}) return db_setting
180
232
0
2,583
0
0
0
36
133
90c849bc94c70a99e4e373256b50144ecdba6cd3
13,498
py
Python
python38/Lib/site-packages/openpyxl/reader/worksheet.py
alextusinean/TikTokCommentScraper
94ae7d5e20129f33a18857197794758b62909b22
[ "MIT" ]
28
2021-07-23T16:08:55.000Z
2022-03-15T16:19:32.000Z
python38/Lib/site-packages/openpyxl/reader/worksheet.py
alextusinean/TikTokCommentScraper
94ae7d5e20129f33a18857197794758b62909b22
[ "MIT" ]
4
2021-10-08T03:28:30.000Z
2022-02-08T13:01:40.000Z
python38/Lib/site-packages/openpyxl/reader/worksheet.py
alextusinean/TikTokCommentScraper
94ae7d5e20129f33a18857197794758b62909b22
[ "MIT" ]
11
2021-07-15T04:40:27.000Z
2022-03-19T14:01:12.000Z
from __future__ import absolute_import # Copyright (c) 2010-2015 openpyxl """Reader for a single worksheet.""" from io import BytesIO # compatibility imports # package imports from openpyxl.worksheet import Worksheet from openpyxl.worksheet.iter_worksheet import IterableWorksheet def _get_xml_iter(xml_source): """ Possible inputs: strings, bytes, members of zipfile, temporary file Always return a file like object """ if not hasattr(xml_source, 'read'): try: xml_source = xml_source.encode("utf-8") except (AttributeError, UnicodeDecodeError): pass return BytesIO(xml_source) else: try: xml_source.seek(0) except: pass return xml_source def read_worksheet(xml_source, parent, preset_title, shared_strings, style_table, color_index=None, worksheet_path=None): """Read an xml worksheet""" if worksheet_path: ws = IterableWorksheet(parent, preset_title, worksheet_path, xml_source, shared_strings, style_table) else: ws = Worksheet(parent, preset_title) fast_parse(ws, xml_source, shared_strings, style_table, color_index) return ws
41.027356
106
0.602682
from __future__ import absolute_import # Copyright (c) 2010-2015 openpyxl """Reader for a single worksheet.""" from io import BytesIO # compatibility imports from openpyxl.xml.functions import iterparse # package imports from openpyxl.cell import Cell from openpyxl.worksheet import Worksheet, ColumnDimension, RowDimension from openpyxl.worksheet.iter_worksheet import IterableWorksheet from openpyxl.worksheet.page import PageMargins, PrintOptions, PageSetup from openpyxl.worksheet.protection import SheetProtection from openpyxl.worksheet.views import SheetView from openpyxl.xml.constants import SHEET_MAIN_NS, REL_NS from openpyxl.xml.functions import safe_iterator from openpyxl.styles import Color from openpyxl.formatting import ConditionalFormatting from openpyxl.worksheet.properties import parse_sheetPr from openpyxl.utils import ( coordinate_from_string, get_column_letter, column_index_from_string ) def _get_xml_iter(xml_source): """ Possible inputs: strings, bytes, members of zipfile, temporary file Always return a file like object """ if not hasattr(xml_source, 'read'): try: xml_source = xml_source.encode("utf-8") except (AttributeError, UnicodeDecodeError): pass return BytesIO(xml_source) else: try: xml_source.seek(0) except: pass return xml_source class WorkSheetParser(object): COL_TAG = '{%s}col' % SHEET_MAIN_NS ROW_TAG = '{%s}row' % SHEET_MAIN_NS CELL_TAG = '{%s}c' % SHEET_MAIN_NS VALUE_TAG = '{%s}v' % SHEET_MAIN_NS FORMULA_TAG = '{%s}f' % SHEET_MAIN_NS MERGE_TAG = '{%s}mergeCell' % SHEET_MAIN_NS INLINE_STRING = "{%s}is/{%s}t" % (SHEET_MAIN_NS, SHEET_MAIN_NS) INLINE_RICHTEXT = "{%s}is/{%s}r/{%s}t" % (SHEET_MAIN_NS, SHEET_MAIN_NS, SHEET_MAIN_NS) def __init__(self, ws, xml_source, shared_strings, style_table, color_index=None): self.ws = ws self.source = xml_source self.shared_strings = shared_strings self.style_table = style_table self.color_index = color_index self.guess_types = ws.parent._guess_types self.data_only = ws.parent.data_only self.styles = [dict(style) for style in self.ws.parent._cell_styles] self.keep_vba = ws.parent.vba_archive is not None def parse(self): dispatcher = { '{%s}mergeCells' % SHEET_MAIN_NS: self.parse_merge, '{%s}col' % SHEET_MAIN_NS: self.parse_column_dimensions, '{%s}row' % SHEET_MAIN_NS: self.parse_row_dimensions, '{%s}printOptions' % SHEET_MAIN_NS: self.parse_print_options, '{%s}pageMargins' % SHEET_MAIN_NS: self.parse_margins, '{%s}pageSetup' % SHEET_MAIN_NS: self.parse_page_setup, '{%s}headerFooter' % SHEET_MAIN_NS: self.parse_header_footer, '{%s}conditionalFormatting' % SHEET_MAIN_NS: self.parser_conditional_formatting, '{%s}autoFilter' % SHEET_MAIN_NS: self.parse_auto_filter, '{%s}sheetProtection' % SHEET_MAIN_NS: self.parse_sheet_protection, '{%s}dataValidations' % SHEET_MAIN_NS: self.parse_data_validation, '{%s}sheetPr' % SHEET_MAIN_NS: self.parse_properties, '{%s}legacyDrawing' % SHEET_MAIN_NS: self.parse_legacy_drawing, '{%s}sheetViews' % SHEET_MAIN_NS: self.parse_sheet_views, } tags = dispatcher.keys() stream = _get_xml_iter(self.source) it = iterparse(stream, tag=tags) for _, element in it: tag_name = element.tag if tag_name in dispatcher: dispatcher[tag_name](element) element.clear() # Handle parsed conditional formatting rules together. if len(self.ws.conditional_formatting.parse_rules): self.ws.conditional_formatting.update(self.ws.conditional_formatting.parse_rules) def parse_cell(self, element): value = element.find(self.VALUE_TAG) if value is not None: value = value.text formula = element.find(self.FORMULA_TAG) data_type = element.get('t', 'n') coordinate = element.get('r') style_id = element.get('s') # assign formula to cell value unless only the data is desired if formula is not None and not self.data_only: data_type = 'f' if formula.text: value = "=" + formula.text else: value = "=" formula_type = formula.get('t') if formula_type: self.ws.formula_attributes[coordinate] = {'t': formula_type} si = formula.get('si') # Shared group index for shared formulas if si: self.ws.formula_attributes[coordinate]['si'] = si ref = formula.get('ref') # Range for shared formulas if ref: self.ws.formula_attributes[coordinate]['ref'] = ref style = {} if style_id is not None: style_id = int(style_id) style = self.styles[style_id] column, row = coordinate_from_string(coordinate) cell = Cell(self.ws, column, row, **style) self.ws._add_cell(cell) if value is not None: if data_type == 'n': value = cell._cast_numeric(value) elif data_type == 'b': value = bool(int(value)) elif data_type == 's': value = self.shared_strings[int(value)] elif data_type == 'str': data_type = 's' else: if data_type == 'inlineStr': data_type = 's' child = element.find(self.INLINE_STRING) if child is None: child = element.find(self.INLINE_RICHTEXT) if child is not None: value = child.text if self.guess_types or value is None: cell.value = value else: cell._value=value cell.data_type=data_type def parse_merge(self, element): for mergeCell in safe_iterator(element, ('{%s}mergeCell' % SHEET_MAIN_NS)): self.ws.merge_cells(mergeCell.get('ref')) def parse_column_dimensions(self, col): min = int(col.get('min')) if col.get('min') else 1 max = int(col.get('max')) if col.get('max') else 1 # Ignore ranges that go up to the max column 16384. Columns need to be extended to handle # ranges without creating an entry for every single one. if max != 16384: for colId in range(min, max + 1): column = get_column_letter(colId) attrs = dict(col.attrib) attrs['index'] = column attrs['worksheet'] = self.ws if column not in self.ws.column_dimensions: dim = ColumnDimension(**attrs) self.ws.column_dimensions[column] = dim def parse_row_dimensions(self, row): attrs = dict(row.attrib) attrs['worksheet'] = self.ws dim = RowDimension(**attrs) self.ws.row_dimensions[dim.index] = dim for cell in safe_iterator(row, self.CELL_TAG): self.parse_cell(cell) def parse_print_options(self, element): self.ws.print_options = PrintOptions(**element.attrib) def parse_margins(self, element): self.page_margins = PageMargins(**element.attrib) def parse_page_setup(self, element): id_key = '{%s}id' % REL_NS if id_key in element.attrib.keys(): element.attrib.pop(id_key) self.ws.page_setup = PageSetup(**element.attrib) def parse_header_footer(self, element): oddHeader = element.find('{%s}oddHeader' % SHEET_MAIN_NS) if oddHeader is not None and oddHeader.text is not None: self.ws.header_footer.setHeader(oddHeader.text) oddFooter = element.find('{%s}oddFooter' % SHEET_MAIN_NS) if oddFooter is not None and oddFooter.text is not None: self.ws.header_footer.setFooter(oddFooter.text) def parser_conditional_formatting(self, element): range_string = element.get('sqref') cfRules = element.findall('{%s}cfRule' % SHEET_MAIN_NS) if range_string not in self.ws.conditional_formatting.parse_rules: self.ws.conditional_formatting.parse_rules[range_string] = [] for cfRule in cfRules: if not cfRule.get('type') or cfRule.get('type') == 'dataBar': # dataBar conditional formatting isn't supported, as it relies on the complex <extLst> tag continue rule = {'type': cfRule.get('type')} for attr in ConditionalFormatting.rule_attributes: if cfRule.get(attr) is not None: if attr == 'priority': rule[attr] = int(cfRule.get(attr)) else: rule[attr] = cfRule.get(attr) formula = cfRule.findall('{%s}formula' % SHEET_MAIN_NS) for f in formula: if 'formula' not in rule: rule['formula'] = [] rule['formula'].append(f.text) colorScale = cfRule.find('{%s}colorScale' % SHEET_MAIN_NS) if colorScale is not None: rule['colorScale'] = {'cfvo': [], 'color': []} cfvoNodes = colorScale.findall('{%s}cfvo' % SHEET_MAIN_NS) for node in cfvoNodes: cfvo = {} if node.get('type') is not None: cfvo['type'] = node.get('type') if node.get('val') is not None: cfvo['val'] = node.get('val') rule['colorScale']['cfvo'].append(cfvo) colorNodes = colorScale.findall('{%s}color' % SHEET_MAIN_NS) for color in colorNodes: attrs = dict(color.items()) color = Color(**attrs) rule['colorScale']['color'].append(color) iconSet = cfRule.find('{%s}iconSet' % SHEET_MAIN_NS) if iconSet is not None: rule['iconSet'] = {'cfvo': []} for iconAttr in ConditionalFormatting.icon_attributes: if iconSet.get(iconAttr) is not None: rule['iconSet'][iconAttr] = iconSet.get(iconAttr) cfvoNodes = iconSet.findall('{%s}cfvo' % SHEET_MAIN_NS) for node in cfvoNodes: cfvo = {} if node.get('type') is not None: cfvo['type'] = node.get('type') if node.get('val') is not None: cfvo['val'] = node.get('val') rule['iconSet']['cfvo'].append(cfvo) self.ws.conditional_formatting.parse_rules[range_string].append(rule) def parse_auto_filter(self, element): self.ws.auto_filter.ref = element.get("ref") for fc in safe_iterator(element, '{%s}filterColumn' % SHEET_MAIN_NS): filters = fc.find('{%s}filters' % SHEET_MAIN_NS) if filters is None: continue vals = [f.get("val") for f in safe_iterator(filters, '{%s}filter' % SHEET_MAIN_NS)] blank = filters.get("blank") self.ws.auto_filter.add_filter_column(fc.get("colId"), vals, blank=blank) for sc in safe_iterator(element, '{%s}sortCondition' % SHEET_MAIN_NS): self.ws.auto_filter.add_sort_condition(sc.get("ref"), sc.get("descending")) def parse_sheet_protection(self, element): values = element.attrib self.ws.protection = SheetProtection(**values) password = values.get("password") if password is not None: self.ws.protection.set_password(password, True) def parse_data_validation(self, element): from openpyxl.worksheet.datavalidation import parser for tag in safe_iterator(element, "{%s}dataValidation" % SHEET_MAIN_NS): dv = parser(tag) self.ws._data_validations.append(dv) def parse_properties(self, element): self.ws.sheet_properties = parse_sheetPr(element) def parse_legacy_drawing(self, element): if self.keep_vba: # Create an id that will not clash with any other ids that will # be generated. self.ws.vba_controls = 'vbaControlId' def parse_sheet_views(self, element): for el in element.findall("{%s}sheetView" % SHEET_MAIN_NS): # according to the specification the last view wins pass self.ws.sheet_view = SheetView.from_tree(el) def fast_parse(ws, xml_source, shared_strings, style_table, color_index=None, keep_vba=False): parser = WorkSheetParser(ws, xml_source, shared_strings, style_table, color_index) parser.parse() del parser def read_worksheet(xml_source, parent, preset_title, shared_strings, style_table, color_index=None, worksheet_path=None): """Read an xml worksheet""" if worksheet_path: ws = IterableWorksheet(parent, preset_title, worksheet_path, xml_source, shared_strings, style_table) else: ws = Worksheet(parent, preset_title) fast_parse(ws, xml_source, shared_strings, style_table, color_index) return ws
0
0
0
11,371
0
194
0
408
288
86cd014089a67861caf0503440063d428b748d8d
6,297
py
Python
tutorials/tutorial_4_adding_a_dataset.py
AliAbdulHussain/moabb
d308f024636802c21b06726457ce5ddacd418e16
[ "BSD-3-Clause" ]
null
null
null
tutorials/tutorial_4_adding_a_dataset.py
AliAbdulHussain/moabb
d308f024636802c21b06726457ce5ddacd418e16
[ "BSD-3-Clause" ]
null
null
null
tutorials/tutorial_4_adding_a_dataset.py
AliAbdulHussain/moabb
d308f024636802c21b06726457ce5ddacd418e16
[ "BSD-3-Clause" ]
null
null
null
""" ================================= Creating a dataset class in MOABB ================================= """ # Authors: Pedro L. C. Rodrigues, Sylvain Chevallier # # https://github.com/plcrodrigues/Workshop-MOABB-BCI-Graz-2019 import numpy as np from scipy.io import savemat from moabb.paradigms import LeftRightImagery from moabb.evaluations import WithinSessionEvaluation from pyriemann.classification import MDM from pyriemann.estimation import Covariances from sklearn.pipeline import make_pipeline ############################################################################## # Creating some Data # ------------------ # # To illustrate the creation of a dataset class in MOABB, we first create an # example dataset saved in .mat file. It contains a single fake recording on # 8 channels lasting for 150 seconds (sampling frequency 256 Hz). We have # included the script that creates this dataset and have uploaded it online. # The fake dataset is available on the # [Zenodo website](https://sandbox.zenodo.org/record/369543) def create_example_dataset(): """Create a fake example for a dataset""" sfreq = 256 t_recording = 150 t_trial = 1 # duration of a trial intertrial = 2 # time between end of a trial and the next one n_chan = 8 x = np.zeros((n_chan + 1, t_recording * sfreq)) # electrodes + stimulus stim = np.zeros(t_recording * sfreq) t_offset = 1.0 # offset where the trials start n_trials = 40 rep = np.linspace(0, 4 * t_trial, t_trial * sfreq) signal = np.sin(2 * np.pi / t_trial * rep) for n in range(n_trials): label = n % 2 + 1 # alternate between class 0 and class 1 tn = int(t_offset * sfreq + n * (t_trial + intertrial) * sfreq) stim[tn] = label noise = 0.1 * np.random.randn(n_chan, len(signal)) x[:-1, tn:(tn + t_trial * sfreq)] = label * signal + noise x[-1, :] = stim return x, sfreq # Create the fake data for subject in [1, 2, 3]: x, fs = create_example_dataset() filename = 'subject_' + str(subject).zfill(2) + '.mat' mdict = {} mdict['x'] = x mdict['fs'] = fs savemat(filename, mdict) ############################################################################## # Creating a Dataset Class # ------------------------ # # We will create now a dataset class using the fake data simulated with the # code from above. For this, we first need to import the right classes from # MOABB # - `dl` is a very useful script that downloads automatically a dataset online # if it is not yet available in the user's computer. The script knows where # to download the files because we create a global variable telling the URL # where to fetch the data. # - `BaseDataset` is the basic class that we overload to create our dataset. # # The global variable with the dataset's URL should specify an online # repository where all the files are stored. ExampleDataset_URL = 'https://sandbox.zenodo.org/record/369543/files/' # The `ExampleDataset` needs to implement only 3 functions: # - `__init__` for indicating the parameter of the dataset # - `_get_single_subject_data` to define how to process the data once they # have been downloaded # - `data_path` to define how the data are downloaded. ############################################################################## # Using the ExampleDataset # ------------------------ # # Now that the `ExampleDataset` is defined, it could be instanciated directly. # The rest of the code follows the steps described in the previous tutorials. dataset = ExampleDataset() paradigm = LeftRightImagery() X, labels, meta = paradigm.get_data(dataset=dataset, subjects=[1]) evaluation = WithinSessionEvaluation(paradigm=paradigm, datasets=dataset, overwrite=True) pipelines = {} pipelines['MDM'] = make_pipeline(Covariances('oas'), MDM(metric='riemann')) scores = evaluation.process(pipelines) print(scores) ############################################################################## # Pushing on MOABB Github # ----------------------- # # If you want to make your dataset available to everyone, you could upload # your data on public server (like Zenodo or Figshare) and signal that you # want to add your dataset to MOABB in the [dedicated issue](https://github.com/NeuroTechX/moabb/issues/1). # noqa: E501 # You could then follow the instructions on [how to contribute](https://github.com/NeuroTechX/moabb/blob/master/CONTRIBUTING.md) # noqa: E501
37.706587
143
0.610767
""" ================================= Creating a dataset class in MOABB ================================= """ # Authors: Pedro L. C. Rodrigues, Sylvain Chevallier # # https://github.com/plcrodrigues/Workshop-MOABB-BCI-Graz-2019 import numpy as np from scipy.io import savemat, loadmat import mne from moabb.datasets.base import BaseDataset from moabb.datasets import download as dl from moabb.paradigms import LeftRightImagery from moabb.evaluations import WithinSessionEvaluation from pyriemann.classification import MDM from pyriemann.estimation import Covariances from sklearn.pipeline import make_pipeline ############################################################################## # Creating some Data # ------------------ # # To illustrate the creation of a dataset class in MOABB, we first create an # example dataset saved in .mat file. It contains a single fake recording on # 8 channels lasting for 150 seconds (sampling frequency 256 Hz). We have # included the script that creates this dataset and have uploaded it online. # The fake dataset is available on the # [Zenodo website](https://sandbox.zenodo.org/record/369543) def create_example_dataset(): """Create a fake example for a dataset""" sfreq = 256 t_recording = 150 t_trial = 1 # duration of a trial intertrial = 2 # time between end of a trial and the next one n_chan = 8 x = np.zeros((n_chan + 1, t_recording * sfreq)) # electrodes + stimulus stim = np.zeros(t_recording * sfreq) t_offset = 1.0 # offset where the trials start n_trials = 40 rep = np.linspace(0, 4 * t_trial, t_trial * sfreq) signal = np.sin(2 * np.pi / t_trial * rep) for n in range(n_trials): label = n % 2 + 1 # alternate between class 0 and class 1 tn = int(t_offset * sfreq + n * (t_trial + intertrial) * sfreq) stim[tn] = label noise = 0.1 * np.random.randn(n_chan, len(signal)) x[:-1, tn:(tn + t_trial * sfreq)] = label * signal + noise x[-1, :] = stim return x, sfreq # Create the fake data for subject in [1, 2, 3]: x, fs = create_example_dataset() filename = 'subject_' + str(subject).zfill(2) + '.mat' mdict = {} mdict['x'] = x mdict['fs'] = fs savemat(filename, mdict) ############################################################################## # Creating a Dataset Class # ------------------------ # # We will create now a dataset class using the fake data simulated with the # code from above. For this, we first need to import the right classes from # MOABB # - `dl` is a very useful script that downloads automatically a dataset online # if it is not yet available in the user's computer. The script knows where # to download the files because we create a global variable telling the URL # where to fetch the data. # - `BaseDataset` is the basic class that we overload to create our dataset. # # The global variable with the dataset's URL should specify an online # repository where all the files are stored. ExampleDataset_URL = 'https://sandbox.zenodo.org/record/369543/files/' # The `ExampleDataset` needs to implement only 3 functions: # - `__init__` for indicating the parameter of the dataset # - `_get_single_subject_data` to define how to process the data once they # have been downloaded # - `data_path` to define how the data are downloaded. class ExampleDataset(BaseDataset): ''' Dataset used to exemplify the creation of a dataset class in MOABB. The data samples have been simulated and has no physiological meaning whatsoever. ''' def __init__(self): super().__init__( subjects=[1, 2, 3], sessions_per_subject=1, events={'left_hand': 1, 'right_hand': 2}, code='Example dataset', interval=[0, 0.75], paradigm='imagery', doi='') def _get_single_subject_data(self, subject): """return data for a single subject""" file_path_list = self.data_path(subject) data = loadmat(file_path_list[0]) x = data['x'] fs = data['fs'] ch_names = ['ch' + str(i) for i in range(8)] + ['stim'] ch_types = ['eeg' for i in range(8)] + ['stim'] info = mne.create_info(ch_names, fs, ch_types) raw = mne.io.RawArray(x, info) sessions = {} sessions['session_1'] = {} sessions['session_1']['run_1'] = raw return sessions def data_path(self, subject, path=None, force_update=False, update_path=None, verbose=None): """Download the data from one subject""" if subject not in self.subject_list: raise(ValueError("Invalid subject number")) url = '{:s}subject_0{:d}.mat'.format(ExampleDataset_URL, subject) path = dl.data_path(url, 'ExampleDataset') return [path] # it has to return a list ############################################################################## # Using the ExampleDataset # ------------------------ # # Now that the `ExampleDataset` is defined, it could be instanciated directly. # The rest of the code follows the steps described in the previous tutorials. dataset = ExampleDataset() paradigm = LeftRightImagery() X, labels, meta = paradigm.get_data(dataset=dataset, subjects=[1]) evaluation = WithinSessionEvaluation(paradigm=paradigm, datasets=dataset, overwrite=True) pipelines = {} pipelines['MDM'] = make_pipeline(Covariances('oas'), MDM(metric='riemann')) scores = evaluation.process(pipelines) print(scores) ############################################################################## # Pushing on MOABB Github # ----------------------- # # If you want to make your dataset available to everyone, you could upload # your data on public server (like Zenodo or Figshare) and signal that you # want to add your dataset to MOABB in the [dedicated issue](https://github.com/NeuroTechX/moabb/issues/1). # noqa: E501 # You could then follow the instructions on [how to contribute](https://github.com/NeuroTechX/moabb/blob/master/CONTRIBUTING.md) # noqa: E501
0
0
0
1,542
0
0
0
40
95
f4f59e9616efbd52c782c87011c67a4852f64da0
486
py
Python
test/sqlalchemy_filterparams_tests/database_test.py
cbrand/python-sqlalchemy-filterparams
6e555cfe9e2f0f2c5f6d6606485de50bc76aaf73
[ "MIT" ]
2
2016-02-24T03:07:26.000Z
2016-05-22T22:00:40.000Z
test/sqlalchemy_filterparams_tests/database_test.py
cbrand/python-sqlalchemy-filterparams
6e555cfe9e2f0f2c5f6d6606485de50bc76aaf73
[ "MIT" ]
null
null
null
test/sqlalchemy_filterparams_tests/database_test.py
cbrand/python-sqlalchemy-filterparams
6e555cfe9e2f0f2c5f6d6606485de50bc76aaf73
[ "MIT" ]
null
null
null
# -*- encoding: utf-8 -*-
20.25
50
0.713992
# -*- encoding: utf-8 -*- from unittest import TestCase from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from sqlalchemy_filterparams_tests.models import ( Base, ) class BaseDatabaseTest(TestCase): engine = create_engine('sqlite:///:memory:') Session = sessionmaker(bind=engine) session = Session() def setUp(self): Base.metadata.create_all(self.engine) def tearDown(self): Base.metadata.drop_all(self.engine)
0
0
0
263
0
0
0
82
113
49aaf3536a9b3013f2535a7951571b5299a8099f
604
py
Python
heisen/core/__init__.py
HeisenCore/heisen
0cd4d27822960553a8e83a72c7dfeefa76e65c06
[ "MIT" ]
5
2016-08-30T07:51:08.000Z
2021-09-13T11:30:05.000Z
heisen/core/__init__.py
HeisenCore/heisen
0cd4d27822960553a8e83a72c7dfeefa76e65c06
[ "MIT" ]
15
2016-09-15T19:21:24.000Z
2016-10-22T16:22:15.000Z
heisen/core/__init__.py
HeisenCore/heisen
0cd4d27822960553a8e83a72c7dfeefa76e65c06
[ "MIT" ]
null
null
null
rpc_call = get_rpc_connection()
27.454545
80
0.692053
from heisen.config import settings from jsonrpclib.request import ConnectionPool def get_rpc_connection(): if settings.CREDENTIALS: username, passowrd = settings.CREDENTIALS[0] else: username = passowrd = None servers = {'self': []} for instance_number in range(settings.INSTANCE_COUNT): servers['self'].append(( 'localhost', settings.RPC_PORT + instance_number, username, passowrd )) servers.update(getattr(settings, 'RPC_SERVERS', {})) return ConnectionPool(servers, 'heisen', settings.APP_NAME) rpc_call = get_rpc_connection()
0
0
0
0
0
465
0
37
67
5bc89390a9afb112693a9caadb722ffe80a659c2
1,331
py
Python
pytition/petition/management/commands/update.py
lpoujade/Pytition
b66a4b358dc4e7dc368ec30e34e124f21920371e
[ "BSD-3-Clause" ]
1
2020-08-13T23:01:48.000Z
2020-08-13T23:01:48.000Z
pytition/petition/management/commands/update.py
lpoujade/Pytition
b66a4b358dc4e7dc368ec30e34e124f21920371e
[ "BSD-3-Clause" ]
14
2020-08-05T17:27:54.000Z
2020-09-25T02:11:32.000Z
pytition/petition/management/commands/update.py
lpoujade/Pytition
b66a4b358dc4e7dc368ec30e34e124f21920371e
[ "BSD-3-Clause" ]
null
null
null
import subprocess from functools import partial run = partial(subprocess.run, shell=True, check=True)
34.128205
156
0.593539
import subprocess from functools import partial from django.core.management.base import BaseCommand from django.conf import settings from pathlib import Path import os run = partial(subprocess.run, shell=True, check=True) class Command(BaseCommand): """Update pytition install """ def handle(self, *args, **options): try: git_path = Path(settings.BASE_DIR).parent os.chdir(git_path) run("git checkout master && git pull") version_cmd = "curl -s https://api.github.com/repos/pytition/pytition/releases/latest | grep 'tag_name' | cut -d : -f2,3 | tr -d \\\" | tr -d ," version = run(version_cmd, capture_output=True).stdout.decode().strip() checkout_cmd = f"git checkout {version}" run(checkout_cmd) run("pip3 install --upgrade -r requirements.txt") os.chdir(settings.BASE_DIR) run("python3 manage.py migrate") run("python3 manage.py collectstatic --no-input") run("python3 manage.py compilemessages") except subprocess.CalledProcessError as e: print(e) if e.stdout != None: print(f"stdout: {e.stdout}") if e.stderr != None: print(f"stderr:{e.stderr}")
0
0
0
1,084
0
0
0
32
111
d8a9231416df4329b68705f67027a39e5c572589
3,401
py
Python
bcml4pheno/ttbarzp.py
sheride/bcml4pheno
c9629dafcdbee0a4c28ceb7b28c9862de8479a24
[ "Apache-2.0" ]
null
null
null
bcml4pheno/ttbarzp.py
sheride/bcml4pheno
c9629dafcdbee0a4c28ceb7b28c9862de8479a24
[ "Apache-2.0" ]
null
null
null
bcml4pheno/ttbarzp.py
sheride/bcml4pheno
c9629dafcdbee0a4c28ceb7b28c9862de8479a24
[ "Apache-2.0" ]
null
null
null
# AUTOGENERATED! DO NOT EDIT! File to edit: ttbarzp.ipynb (unless otherwise specified). __all__ = ['get_elijah_ttbarzp_cs', 'get_manuel_ttbarzp_cs', 'import47Ddata', 'get47Dfeatures'] # Cell import numpy as np import tensorflow as tf # Cell def get_elijah_ttbarzp_cs(): r""" Contains cross section information produced by Elijah for $pp \to t\overline{t} \; Z'$ collider phenomenology. Returns list containing signal masses, signal cross sections (for those masses, in pb), and background cross sections (also in pb) """ # Z' masses (GeV) for which Elijah created signal samples elijah_masses = [10, 50, 100, 200, 350, 500, 1000, 2000, 5000] # signal cross sections (pb) elijah_sig_css = [9.801, 0.5445, 0.1442, 0.03622, 0.009998, 0.003802, 0.0003936, 2.034e-05, 2.748e-08] # background cross sections (pb) elijah_bg_css = [0.106, 0.0117, 5.58] return [elijah_masses, elijah_sig_css, elijah_bg_css] # Cell def get_manuel_ttbarzp_cs(): r""" Contains cross section information produced through MadGraph by Manuel for collider phenomenology regarding the semihadronic, semileptonic $pp \to t\overline{t} \; Z', Z' \to b\overline{b}$ channel """ # Z' masses (GeV) for which I (Elijah) created signal samples manuel_masses = [350, 500, 750, 1000, 2000, 3000, 4000] # signal cross sections (pb) manuel_sig_css = [0.001395, 0.0007823, 0.0003429, 0.0001692, 1.808e-05, 1.325e-06, 4.456e-07] # background cross sections (pb) manuel_bg_css = [0.1339, 0.01187, 5.603] return [manuel_masses, manuel_sig_css, manuel_bg_css] # Cell def import47Ddata(name): r""" Imports `name.npy` file containing 47-dimensional data for training Available files: - bgh.npy (Standard Model background 1, $pp \to t\overline{t}h$) - bg4t.npy (Standard Model background 2, $pp \to t\overline{t}t\overline{t}$) - bgnoh.npy (Standard Model background 3, $pp \to t\overline{t} \; \setminus \; h$) - sig350G.npy ($Z'$ signal, $m_{Z'} = 350$ GeV) - sig500G.npy ($Z'$ signal, $m_{Z'} = 500$ GeV) - sig1T.npy ($Z'$ signal, $m_{Z'} = 1$ TeV) - sig2T.npy ($Z'$ signal, $m_{Z'} = 2$ TeV) - sig4T.npy ($Z'$ signal, $m_{Z'} = 4$ TeV) """ if name[-4:] == '.npy': name = name[:-4] url = 'https://storage.googleapis.com/ttbarzp/47dim/' try: path = tf.keras.utils.get_file(f'{name}.npy', url + name + '.npy') data = np.load(path) return data except: print(f"{name}.npy doesn't appear to exist") # Cell def get47Dfeatures(): """ Returns list containing the names of the 47 features found in the data accessible through `ttbarzp.import47Ddata()` """ return [ 'pT b1', 'pT b2', 'pT b3', 'pT b4', 'sdEta b1 b2', 'sdEta b1 b3', 'sdEta b1 b4', 'sdEta b2 b3', 'sdEta b2 b4', 'sdEta b3 b4', 'sdPhi b1 b2', 'sdPhi b1 b3', 'sdPhi b1 b4', 'sdPhi b2 b3', 'sdPhi b2 b4', 'sdPhi b3 b4', 'dR b1 b2', 'dR b1 b3', 'dR b1 b4', 'dR b2 b3', 'dR b2 b4', 'dR b3 b4', 'MET', 'pT l', 'MT l MET', 'M b1 b2', 'M b1 b3', 'M b1 b4', 'M b2 b3', 'M b2 b4', 'M b3 b4', 'MT b1 l MET', 'MT b2 l MET', 'MT b3 l MET', 'MT b4 l MET', 'M j1 j2', 'pT j1', 'pT j2', 'dR j1 j2', 'dR b1 l', 'dR b2 l', 'dR b3 l', 'dR b4 l', 'sdPhi b1 l', 'sdPhi b2 l', 'sdPhi b3 l', 'sdPhi b4 l']
41.987654
121
0.614525
# AUTOGENERATED! DO NOT EDIT! File to edit: ttbarzp.ipynb (unless otherwise specified). __all__ = ['get_elijah_ttbarzp_cs', 'get_manuel_ttbarzp_cs', 'import47Ddata', 'get47Dfeatures'] # Cell import numpy as np import tensorflow as tf # Cell def get_elijah_ttbarzp_cs(): r""" Contains cross section information produced by Elijah for $pp \to t\overline{t} \; Z'$ collider phenomenology. Returns list containing signal masses, signal cross sections (for those masses, in pb), and background cross sections (also in pb) """ # Z' masses (GeV) for which Elijah created signal samples elijah_masses = [10, 50, 100, 200, 350, 500, 1000, 2000, 5000] # signal cross sections (pb) elijah_sig_css = [9.801, 0.5445, 0.1442, 0.03622, 0.009998, 0.003802, 0.0003936, 2.034e-05, 2.748e-08] # background cross sections (pb) elijah_bg_css = [0.106, 0.0117, 5.58] return [elijah_masses, elijah_sig_css, elijah_bg_css] # Cell def get_manuel_ttbarzp_cs(): r""" Contains cross section information produced through MadGraph by Manuel for collider phenomenology regarding the semihadronic, semileptonic $pp \to t\overline{t} \; Z', Z' \to b\overline{b}$ channel """ # Z' masses (GeV) for which I (Elijah) created signal samples manuel_masses = [350, 500, 750, 1000, 2000, 3000, 4000] # signal cross sections (pb) manuel_sig_css = [0.001395, 0.0007823, 0.0003429, 0.0001692, 1.808e-05, 1.325e-06, 4.456e-07] # background cross sections (pb) manuel_bg_css = [0.1339, 0.01187, 5.603] return [manuel_masses, manuel_sig_css, manuel_bg_css] # Cell def import47Ddata(name): r""" Imports `name.npy` file containing 47-dimensional data for training Available files: - bgh.npy (Standard Model background 1, $pp \to t\overline{t}h$) - bg4t.npy (Standard Model background 2, $pp \to t\overline{t}t\overline{t}$) - bgnoh.npy (Standard Model background 3, $pp \to t\overline{t} \; \setminus \; h$) - sig350G.npy ($Z'$ signal, $m_{Z'} = 350$ GeV) - sig500G.npy ($Z'$ signal, $m_{Z'} = 500$ GeV) - sig1T.npy ($Z'$ signal, $m_{Z'} = 1$ TeV) - sig2T.npy ($Z'$ signal, $m_{Z'} = 2$ TeV) - sig4T.npy ($Z'$ signal, $m_{Z'} = 4$ TeV) """ if name[-4:] == '.npy': name = name[:-4] url = 'https://storage.googleapis.com/ttbarzp/47dim/' try: path = tf.keras.utils.get_file(f'{name}.npy', url + name + '.npy') data = np.load(path) return data except: print(f"{name}.npy doesn't appear to exist") # Cell def get47Dfeatures(): """ Returns list containing the names of the 47 features found in the data accessible through `ttbarzp.import47Ddata()` """ return [ 'pT b1', 'pT b2', 'pT b3', 'pT b4', 'sdEta b1 b2', 'sdEta b1 b3', 'sdEta b1 b4', 'sdEta b2 b3', 'sdEta b2 b4', 'sdEta b3 b4', 'sdPhi b1 b2', 'sdPhi b1 b3', 'sdPhi b1 b4', 'sdPhi b2 b3', 'sdPhi b2 b4', 'sdPhi b3 b4', 'dR b1 b2', 'dR b1 b3', 'dR b1 b4', 'dR b2 b3', 'dR b2 b4', 'dR b3 b4', 'MET', 'pT l', 'MT l MET', 'M b1 b2', 'M b1 b3', 'M b1 b4', 'M b2 b3', 'M b2 b4', 'M b3 b4', 'MT b1 l MET', 'MT b2 l MET', 'MT b3 l MET', 'MT b4 l MET', 'M j1 j2', 'pT j1', 'pT j2', 'dR j1 j2', 'dR b1 l', 'dR b2 l', 'dR b3 l', 'dR b4 l', 'sdPhi b1 l', 'sdPhi b2 l', 'sdPhi b3 l', 'sdPhi b4 l']
0
0
0
0
0
0
0
0
0
27d6a8f043d6d02fb9eb37d08984a8c17e445752
457
py
Python
backend_application/app/wikisearch/migrations/0005_article_urls.py
cdeler/woogle
5774ce380947734bf0ed82bd27cdc5359bc1a646
[ "MIT" ]
null
null
null
backend_application/app/wikisearch/migrations/0005_article_urls.py
cdeler/woogle
5774ce380947734bf0ed82bd27cdc5359bc1a646
[ "MIT" ]
54
2018-07-05T13:39:48.000Z
2018-09-24T09:58:40.000Z
backend_application/app/wikisearch/migrations/0005_article_urls.py
cdeler/woogle
5774ce380947734bf0ed82bd27cdc5359bc1a646
[ "MIT" ]
null
null
null
# Generated by Django 2.0.7 on 2018-08-06 02:02
24.052632
121
0.621444
# Generated by Django 2.0.7 on 2018-08-06 02:02 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('wikisearch', '0004_auto_20180730_2216'), ] operations = [ migrations.AddField( model_name='article', name='urls', field=models.CharField(default='None', help_text='url of wiki article', max_length=2000, verbose_name='URL'), ), ]
0
0
0
343
0
0
0
19
46
aa0c45fc09b8a64070231bbbba2d3e138ed5f826
1,172
py
Python
setup.py
EKT/pyrundeck
cfc5140d6ef336a54efcf1915df202ff35a7a492
[ "BSD-3-Clause" ]
2
2016-10-19T07:26:27.000Z
2021-02-04T10:26:15.000Z
setup.py
EKT/pyrundeck
cfc5140d6ef336a54efcf1915df202ff35a7a492
[ "BSD-3-Clause" ]
null
null
null
setup.py
EKT/pyrundeck
cfc5140d6ef336a54efcf1915df202ff35a7a492
[ "BSD-3-Clause" ]
2
2016-10-19T07:26:35.000Z
2017-07-24T10:14:29.000Z
from setuptools import setup, find_packages setup( name="PyRundeck", version="0.3.7", description="A thin, pure Python wrapper for the Rundeck API", author="Panagiotis Koutsourakis", author_email="[email protected]", license='BSD', url='https://github.com/EKT/pyrundeck', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Topic :: Internet :: REST API client', 'Topic :: Software Development :: Libraries :: Python Modules', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ], keywords='rest api client rundeck', packages=find_packages(exclude=['tests', '*_virtualenv', 'doc']), install_requires=[ 'lxml>=3.4.4', 'requests>=2.7.0', 'pyopenssl>=0.15.1', 'ndg-httpsclient>=0.4.0', 'pyasn1>=0.1.8', 'pyyaml>=3.11' ] )
33.485714
71
0.583618
from setuptools import setup, find_packages setup( name="PyRundeck", version="0.3.7", description="A thin, pure Python wrapper for the Rundeck API", author="Panagiotis Koutsourakis", author_email="[email protected]", license='BSD', url='https://github.com/EKT/pyrundeck', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Topic :: Internet :: REST API client', 'Topic :: Software Development :: Libraries :: Python Modules', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ], keywords='rest api client rundeck', packages=find_packages(exclude=['tests', '*_virtualenv', 'doc']), install_requires=[ 'lxml>=3.4.4', 'requests>=2.7.0', 'pyopenssl>=0.15.1', 'ndg-httpsclient>=0.4.0', 'pyasn1>=0.1.8', 'pyyaml>=3.11' ] )
0
0
0
0
0
0
0
0
0
335a7affe187d0655121af5cae9cd6180241399b
3,928
py
Python
src/product/migrations/0001_initial.py
gabriel-gn/magalu-favorites-api
c9e2e3c6752530272198ef8c12357016149c1d34
[ "MIT" ]
null
null
null
src/product/migrations/0001_initial.py
gabriel-gn/magalu-favorites-api
c9e2e3c6752530272198ef8c12357016149c1d34
[ "MIT" ]
null
null
null
src/product/migrations/0001_initial.py
gabriel-gn/magalu-favorites-api
c9e2e3c6752530272198ef8c12357016149c1d34
[ "MIT" ]
null
null
null
# Generated by Django 3.2.2 on 2021-05-16 03:23 import django.core.validators
46.761905
176
0.580193
# Generated by Django 3.2.2 on 2021-05-16 03:23 from django.conf import settings import django.core.validators from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Product', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(editable=False)), ('modified', models.DateTimeField(editable=False)), ('title', models.CharField(default='Novo Produto', max_length=256)), ('description', models.TextField(blank=True, default='')), ('price', models.FloatField(validators=[django.core.validators.MinValueValidator(0)])), ('image', models.CharField(default='https://www.pngkey.com/png/full/75-754812_question-mark-image-point-d-interrogation-png.png', max_length=256)), ], options={ 'ordering': ['-created'], 'abstract': False, }, ), migrations.CreateModel( name='ProductBrand', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(editable=False)), ('modified', models.DateTimeField(editable=False)), ('name', models.CharField(default='Nova Marca', max_length=256)), ('category', models.PositiveIntegerField(choices=[(0, 'Outros'), (1, 'Alimentação'), (2, 'Entretenimento'), (3, 'Informática'), (4, 'Jardinagem')], default=0)), ], options={ 'ordering': ['-created'], 'abstract': False, }, ), migrations.CreateModel( name='UserFavorites', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(editable=False)), ('modified', models.DateTimeField(editable=False)), ('products', models.ManyToManyField(blank=True, to='product.Product')), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['-created'], 'abstract': False, }, ), migrations.CreateModel( name='ProductReview', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(editable=False)), ('modified', models.DateTimeField(editable=False)), ('rating', models.IntegerField(validators=[django.core.validators.MinValueValidator(0), django.core.validators.MaxValueValidator(100)])), ('description', models.TextField(blank=True, default='')), ('product', models.ForeignKey(default=None, null=True, on_delete=django.db.models.deletion.SET_NULL, to='product.product')), ('user', models.ForeignKey(default=None, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['-created'], 'abstract': False, }, ), migrations.AddField( model_name='product', name='brand', field=models.ForeignKey(default=None, null=True, on_delete=django.db.models.deletion.SET_NULL, to='product.productbrand'), ), ]
6
0
0
3,715
0
0
0
41
90
2ccf31155892bd9aa8de51d4885b66f2bda3d3f0
12,401
py
Python
pysnmp/APPN-DLUR-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
11
2021-02-02T16:27:16.000Z
2021-08-31T06:22:49.000Z
pysnmp/APPN-DLUR-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
75
2021-02-24T17:30:31.000Z
2021-12-08T00:01:18.000Z
pysnmp/APPN-DLUR-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module APPN-DLUR-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/APPN-DLUR-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 17:08:22 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # SnaControlPointName, = mibBuilder.importSymbols("APPN-MIB", "SnaControlPointName") OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, SingleValueConstraint, ConstraintsIntersection, ConstraintsUnion, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "SingleValueConstraint", "ConstraintsIntersection", "ConstraintsUnion", "ValueSizeConstraint") snanauMIB, = mibBuilder.importSymbols("SNA-NAU-MIB", "snanauMIB") NotificationGroup, ModuleCompliance, ObjectGroup = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance", "ObjectGroup") Unsigned32, IpAddress, Integer32, Counter32, Bits, Gauge32, ObjectIdentity, Counter64, MibScalar, MibTable, MibTableRow, MibTableColumn, NotificationType, MibIdentifier, ModuleIdentity, iso, TimeTicks = mibBuilder.importSymbols("SNMPv2-SMI", "Unsigned32", "IpAddress", "Integer32", "Counter32", "Bits", "Gauge32", "ObjectIdentity", "Counter64", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "NotificationType", "MibIdentifier", "ModuleIdentity", "iso", "TimeTicks") DisplayString, TextualConvention, TruthValue = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention", "TruthValue") dlurMIB = ModuleIdentity((1, 3, 6, 1, 2, 1, 34, 5)) if mibBuilder.loadTexts: dlurMIB.setLastUpdated('9705101500Z') if mibBuilder.loadTexts: dlurMIB.setOrganization('IETF SNA NAU MIB WG / AIW APPN/HPR MIBs SIG') dlurObjects = MibIdentifier((1, 3, 6, 1, 2, 1, 34, 5, 1)) dlurNodeInfo = MibIdentifier((1, 3, 6, 1, 2, 1, 34, 5, 1, 1)) dlurNodeCapabilities = MibIdentifier((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 1)) dlurNodeCpName = MibScalar((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 1, 1), SnaControlPointName()).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurNodeCpName.setStatus('current') dlurReleaseLevel = MibScalar((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(2, 2)).setFixedLength(2)).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurReleaseLevel.setStatus('current') dlurAnsSupport = MibScalar((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("continueOrStop", 1), ("stopOnly", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurAnsSupport.setStatus('current') dlurMultiSubnetSupport = MibScalar((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 1, 4), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurMultiSubnetSupport.setStatus('current') dlurDefaultDefPrimDlusName = MibScalar((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 1, 5), SnaControlPointName()).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurDefaultDefPrimDlusName.setStatus('current') dlurNetworkNameForwardingSupport = MibScalar((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 1, 6), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurNetworkNameForwardingSupport.setStatus('current') dlurNondisDlusDlurSessDeactSup = MibScalar((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 1, 7), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurNondisDlusDlurSessDeactSup.setStatus('current') dlurDefaultDefBackupDlusTable = MibTable((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 2), ) if mibBuilder.loadTexts: dlurDefaultDefBackupDlusTable.setStatus('current') dlurDefaultDefBackupDlusEntry = MibTableRow((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 2, 1), ).setIndexNames((0, "APPN-DLUR-MIB", "dlurDefaultDefBackupDlusIndex")) if mibBuilder.loadTexts: dlurDefaultDefBackupDlusEntry.setStatus('current') dlurDefaultDefBackupDlusIndex = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 2, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: dlurDefaultDefBackupDlusIndex.setStatus('current') dlurDefaultDefBackupDlusName = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 2, 1, 2), SnaControlPointName()).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurDefaultDefBackupDlusName.setStatus('current') dlurPuInfo = MibIdentifier((1, 3, 6, 1, 2, 1, 34, 5, 1, 2)) dlurPuTable = MibTable((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1), ) if mibBuilder.loadTexts: dlurPuTable.setStatus('current') dlurPuEntry = MibTableRow((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1, 1), ).setIndexNames((0, "APPN-DLUR-MIB", "dlurPuName")) if mibBuilder.loadTexts: dlurPuEntry.setStatus('current') dlurPuName = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1, 1, 1), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 17))) if mibBuilder.loadTexts: dlurPuName.setStatus('current') dlurPuSscpSuppliedName = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 17))).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurPuSscpSuppliedName.setStatus('current') dlurPuStatus = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9))).clone(namedValues=NamedValues(("reset", 1), ("pendReqActpuRsp", 2), ("pendActpu", 3), ("pendActpuRsp", 4), ("active", 5), ("pendLinkact", 6), ("pendDactpuRsp", 7), ("pendInop", 8), ("pendInopActpu", 9)))).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurPuStatus.setStatus('current') dlurPuAnsSupport = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("continue", 1), ("stop", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurPuAnsSupport.setStatus('current') dlurPuLocation = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("internal", 1), ("downstream", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurPuLocation.setStatus('current') dlurPuLsName = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1, 1, 6), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 10))).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurPuLsName.setStatus('current') dlurPuDlusSessnStatus = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("reset", 1), ("pendingActive", 2), ("active", 3), ("pendingInactive", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurPuDlusSessnStatus.setStatus('current') dlurPuActiveDlusName = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1, 1, 8), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 17))).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurPuActiveDlusName.setStatus('current') dlurPuDefPrimDlusName = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1, 1, 9), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 17))).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurPuDefPrimDlusName.setStatus('current') dlurPuDefBackupDlusTable = MibTable((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 2), ) if mibBuilder.loadTexts: dlurPuDefBackupDlusTable.setStatus('current') dlurPuDefBackupDlusEntry = MibTableRow((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 2, 1), ).setIndexNames((0, "APPN-DLUR-MIB", "dlurPuDefBackupDlusPuName"), (0, "APPN-DLUR-MIB", "dlurPuDefBackupDlusIndex")) if mibBuilder.loadTexts: dlurPuDefBackupDlusEntry.setStatus('current') dlurPuDefBackupDlusPuName = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 2, 1, 1), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 17))) if mibBuilder.loadTexts: dlurPuDefBackupDlusPuName.setStatus('current') dlurPuDefBackupDlusIndex = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 2, 1, 2), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: dlurPuDefBackupDlusIndex.setStatus('current') dlurPuDefBackupDlusName = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 2, 1, 3), SnaControlPointName()).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurPuDefBackupDlusName.setStatus('current') dlurDlusInfo = MibIdentifier((1, 3, 6, 1, 2, 1, 34, 5, 1, 3)) dlurDlusTable = MibTable((1, 3, 6, 1, 2, 1, 34, 5, 1, 3, 1), ) if mibBuilder.loadTexts: dlurDlusTable.setStatus('current') dlurDlusEntry = MibTableRow((1, 3, 6, 1, 2, 1, 34, 5, 1, 3, 1, 1), ).setIndexNames((0, "APPN-DLUR-MIB", "dlurDlusName")) if mibBuilder.loadTexts: dlurDlusEntry.setStatus('current') dlurDlusName = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 3, 1, 1, 1), SnaControlPointName()) if mibBuilder.loadTexts: dlurDlusName.setStatus('current') dlurDlusSessnStatus = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 3, 1, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("reset", 1), ("pendingActive", 2), ("active", 3), ("pendingInactive", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurDlusSessnStatus.setStatus('current') dlurConformance = MibIdentifier((1, 3, 6, 1, 2, 1, 34, 5, 2)) dlurCompliances = MibIdentifier((1, 3, 6, 1, 2, 1, 34, 5, 2, 1)) dlurGroups = MibIdentifier((1, 3, 6, 1, 2, 1, 34, 5, 2, 2)) dlurCompliance = ModuleCompliance((1, 3, 6, 1, 2, 1, 34, 5, 2, 1, 1)).setObjects(("APPN-DLUR-MIB", "dlurConfGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dlurCompliance = dlurCompliance.setStatus('current') dlurConfGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 34, 5, 2, 2, 1)).setObjects(("APPN-DLUR-MIB", "dlurNodeCpName"), ("APPN-DLUR-MIB", "dlurReleaseLevel"), ("APPN-DLUR-MIB", "dlurAnsSupport"), ("APPN-DLUR-MIB", "dlurMultiSubnetSupport"), ("APPN-DLUR-MIB", "dlurNetworkNameForwardingSupport"), ("APPN-DLUR-MIB", "dlurNondisDlusDlurSessDeactSup"), ("APPN-DLUR-MIB", "dlurDefaultDefPrimDlusName"), ("APPN-DLUR-MIB", "dlurDefaultDefBackupDlusName"), ("APPN-DLUR-MIB", "dlurPuSscpSuppliedName"), ("APPN-DLUR-MIB", "dlurPuStatus"), ("APPN-DLUR-MIB", "dlurPuAnsSupport"), ("APPN-DLUR-MIB", "dlurPuLocation"), ("APPN-DLUR-MIB", "dlurPuLsName"), ("APPN-DLUR-MIB", "dlurPuDlusSessnStatus"), ("APPN-DLUR-MIB", "dlurPuActiveDlusName"), ("APPN-DLUR-MIB", "dlurPuDefPrimDlusName"), ("APPN-DLUR-MIB", "dlurPuDefBackupDlusName"), ("APPN-DLUR-MIB", "dlurDlusSessnStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dlurConfGroup = dlurConfGroup.setStatus('current') mibBuilder.exportSymbols("APPN-DLUR-MIB", dlurPuTable=dlurPuTable, dlurPuDefBackupDlusName=dlurPuDefBackupDlusName, dlurNodeCpName=dlurNodeCpName, dlurPuStatus=dlurPuStatus, dlurNetworkNameForwardingSupport=dlurNetworkNameForwardingSupport, dlurPuDefBackupDlusTable=dlurPuDefBackupDlusTable, dlurDlusInfo=dlurDlusInfo, dlurPuAnsSupport=dlurPuAnsSupport, dlurDefaultDefBackupDlusIndex=dlurDefaultDefBackupDlusIndex, dlurGroups=dlurGroups, dlurPuName=dlurPuName, dlurCompliances=dlurCompliances, dlurPuDefPrimDlusName=dlurPuDefPrimDlusName, dlurPuDefBackupDlusEntry=dlurPuDefBackupDlusEntry, dlurMultiSubnetSupport=dlurMultiSubnetSupport, dlurNodeInfo=dlurNodeInfo, dlurPuLsName=dlurPuLsName, dlurDlusName=dlurDlusName, dlurConformance=dlurConformance, dlurNodeCapabilities=dlurNodeCapabilities, dlurDlusTable=dlurDlusTable, dlurCompliance=dlurCompliance, dlurDefaultDefPrimDlusName=dlurDefaultDefPrimDlusName, dlurDlusSessnStatus=dlurDlusSessnStatus, dlurPuDefBackupDlusIndex=dlurPuDefBackupDlusIndex, dlurPuLocation=dlurPuLocation, dlurDefaultDefBackupDlusTable=dlurDefaultDefBackupDlusTable, dlurPuInfo=dlurPuInfo, PYSNMP_MODULE_ID=dlurMIB, dlurObjects=dlurObjects, dlurConfGroup=dlurConfGroup, dlurPuDefBackupDlusPuName=dlurPuDefBackupDlusPuName, dlurNondisDlusDlurSessDeactSup=dlurNondisDlusDlurSessDeactSup, dlurPuActiveDlusName=dlurPuActiveDlusName, dlurReleaseLevel=dlurReleaseLevel, dlurAnsSupport=dlurAnsSupport, dlurDefaultDefBackupDlusEntry=dlurDefaultDefBackupDlusEntry, dlurPuSscpSuppliedName=dlurPuSscpSuppliedName, dlurDefaultDefBackupDlusName=dlurDefaultDefBackupDlusName, dlurPuEntry=dlurPuEntry, dlurPuDlusSessnStatus=dlurPuDlusSessnStatus, dlurMIB=dlurMIB, dlurDlusEntry=dlurDlusEntry)
127.845361
1,703
0.756149
# # PySNMP MIB module APPN-DLUR-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/APPN-DLUR-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 17:08:22 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # SnaControlPointName, = mibBuilder.importSymbols("APPN-MIB", "SnaControlPointName") OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, SingleValueConstraint, ConstraintsIntersection, ConstraintsUnion, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "SingleValueConstraint", "ConstraintsIntersection", "ConstraintsUnion", "ValueSizeConstraint") snanauMIB, = mibBuilder.importSymbols("SNA-NAU-MIB", "snanauMIB") NotificationGroup, ModuleCompliance, ObjectGroup = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance", "ObjectGroup") Unsigned32, IpAddress, Integer32, Counter32, Bits, Gauge32, ObjectIdentity, Counter64, MibScalar, MibTable, MibTableRow, MibTableColumn, NotificationType, MibIdentifier, ModuleIdentity, iso, TimeTicks = mibBuilder.importSymbols("SNMPv2-SMI", "Unsigned32", "IpAddress", "Integer32", "Counter32", "Bits", "Gauge32", "ObjectIdentity", "Counter64", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "NotificationType", "MibIdentifier", "ModuleIdentity", "iso", "TimeTicks") DisplayString, TextualConvention, TruthValue = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention", "TruthValue") dlurMIB = ModuleIdentity((1, 3, 6, 1, 2, 1, 34, 5)) if mibBuilder.loadTexts: dlurMIB.setLastUpdated('9705101500Z') if mibBuilder.loadTexts: dlurMIB.setOrganization('IETF SNA NAU MIB WG / AIW APPN/HPR MIBs SIG') dlurObjects = MibIdentifier((1, 3, 6, 1, 2, 1, 34, 5, 1)) dlurNodeInfo = MibIdentifier((1, 3, 6, 1, 2, 1, 34, 5, 1, 1)) dlurNodeCapabilities = MibIdentifier((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 1)) dlurNodeCpName = MibScalar((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 1, 1), SnaControlPointName()).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurNodeCpName.setStatus('current') dlurReleaseLevel = MibScalar((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(2, 2)).setFixedLength(2)).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurReleaseLevel.setStatus('current') dlurAnsSupport = MibScalar((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("continueOrStop", 1), ("stopOnly", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurAnsSupport.setStatus('current') dlurMultiSubnetSupport = MibScalar((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 1, 4), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurMultiSubnetSupport.setStatus('current') dlurDefaultDefPrimDlusName = MibScalar((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 1, 5), SnaControlPointName()).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurDefaultDefPrimDlusName.setStatus('current') dlurNetworkNameForwardingSupport = MibScalar((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 1, 6), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurNetworkNameForwardingSupport.setStatus('current') dlurNondisDlusDlurSessDeactSup = MibScalar((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 1, 7), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurNondisDlusDlurSessDeactSup.setStatus('current') dlurDefaultDefBackupDlusTable = MibTable((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 2), ) if mibBuilder.loadTexts: dlurDefaultDefBackupDlusTable.setStatus('current') dlurDefaultDefBackupDlusEntry = MibTableRow((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 2, 1), ).setIndexNames((0, "APPN-DLUR-MIB", "dlurDefaultDefBackupDlusIndex")) if mibBuilder.loadTexts: dlurDefaultDefBackupDlusEntry.setStatus('current') dlurDefaultDefBackupDlusIndex = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 2, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: dlurDefaultDefBackupDlusIndex.setStatus('current') dlurDefaultDefBackupDlusName = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 1, 2, 1, 2), SnaControlPointName()).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurDefaultDefBackupDlusName.setStatus('current') dlurPuInfo = MibIdentifier((1, 3, 6, 1, 2, 1, 34, 5, 1, 2)) dlurPuTable = MibTable((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1), ) if mibBuilder.loadTexts: dlurPuTable.setStatus('current') dlurPuEntry = MibTableRow((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1, 1), ).setIndexNames((0, "APPN-DLUR-MIB", "dlurPuName")) if mibBuilder.loadTexts: dlurPuEntry.setStatus('current') dlurPuName = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1, 1, 1), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 17))) if mibBuilder.loadTexts: dlurPuName.setStatus('current') dlurPuSscpSuppliedName = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 17))).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurPuSscpSuppliedName.setStatus('current') dlurPuStatus = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9))).clone(namedValues=NamedValues(("reset", 1), ("pendReqActpuRsp", 2), ("pendActpu", 3), ("pendActpuRsp", 4), ("active", 5), ("pendLinkact", 6), ("pendDactpuRsp", 7), ("pendInop", 8), ("pendInopActpu", 9)))).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurPuStatus.setStatus('current') dlurPuAnsSupport = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("continue", 1), ("stop", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurPuAnsSupport.setStatus('current') dlurPuLocation = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("internal", 1), ("downstream", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurPuLocation.setStatus('current') dlurPuLsName = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1, 1, 6), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 10))).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurPuLsName.setStatus('current') dlurPuDlusSessnStatus = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("reset", 1), ("pendingActive", 2), ("active", 3), ("pendingInactive", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurPuDlusSessnStatus.setStatus('current') dlurPuActiveDlusName = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1, 1, 8), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 17))).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurPuActiveDlusName.setStatus('current') dlurPuDefPrimDlusName = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 1, 1, 9), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 17))).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurPuDefPrimDlusName.setStatus('current') dlurPuDefBackupDlusTable = MibTable((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 2), ) if mibBuilder.loadTexts: dlurPuDefBackupDlusTable.setStatus('current') dlurPuDefBackupDlusEntry = MibTableRow((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 2, 1), ).setIndexNames((0, "APPN-DLUR-MIB", "dlurPuDefBackupDlusPuName"), (0, "APPN-DLUR-MIB", "dlurPuDefBackupDlusIndex")) if mibBuilder.loadTexts: dlurPuDefBackupDlusEntry.setStatus('current') dlurPuDefBackupDlusPuName = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 2, 1, 1), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 17))) if mibBuilder.loadTexts: dlurPuDefBackupDlusPuName.setStatus('current') dlurPuDefBackupDlusIndex = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 2, 1, 2), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: dlurPuDefBackupDlusIndex.setStatus('current') dlurPuDefBackupDlusName = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 2, 2, 1, 3), SnaControlPointName()).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurPuDefBackupDlusName.setStatus('current') dlurDlusInfo = MibIdentifier((1, 3, 6, 1, 2, 1, 34, 5, 1, 3)) dlurDlusTable = MibTable((1, 3, 6, 1, 2, 1, 34, 5, 1, 3, 1), ) if mibBuilder.loadTexts: dlurDlusTable.setStatus('current') dlurDlusEntry = MibTableRow((1, 3, 6, 1, 2, 1, 34, 5, 1, 3, 1, 1), ).setIndexNames((0, "APPN-DLUR-MIB", "dlurDlusName")) if mibBuilder.loadTexts: dlurDlusEntry.setStatus('current') dlurDlusName = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 3, 1, 1, 1), SnaControlPointName()) if mibBuilder.loadTexts: dlurDlusName.setStatus('current') dlurDlusSessnStatus = MibTableColumn((1, 3, 6, 1, 2, 1, 34, 5, 1, 3, 1, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("reset", 1), ("pendingActive", 2), ("active", 3), ("pendingInactive", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: dlurDlusSessnStatus.setStatus('current') dlurConformance = MibIdentifier((1, 3, 6, 1, 2, 1, 34, 5, 2)) dlurCompliances = MibIdentifier((1, 3, 6, 1, 2, 1, 34, 5, 2, 1)) dlurGroups = MibIdentifier((1, 3, 6, 1, 2, 1, 34, 5, 2, 2)) dlurCompliance = ModuleCompliance((1, 3, 6, 1, 2, 1, 34, 5, 2, 1, 1)).setObjects(("APPN-DLUR-MIB", "dlurConfGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dlurCompliance = dlurCompliance.setStatus('current') dlurConfGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 34, 5, 2, 2, 1)).setObjects(("APPN-DLUR-MIB", "dlurNodeCpName"), ("APPN-DLUR-MIB", "dlurReleaseLevel"), ("APPN-DLUR-MIB", "dlurAnsSupport"), ("APPN-DLUR-MIB", "dlurMultiSubnetSupport"), ("APPN-DLUR-MIB", "dlurNetworkNameForwardingSupport"), ("APPN-DLUR-MIB", "dlurNondisDlusDlurSessDeactSup"), ("APPN-DLUR-MIB", "dlurDefaultDefPrimDlusName"), ("APPN-DLUR-MIB", "dlurDefaultDefBackupDlusName"), ("APPN-DLUR-MIB", "dlurPuSscpSuppliedName"), ("APPN-DLUR-MIB", "dlurPuStatus"), ("APPN-DLUR-MIB", "dlurPuAnsSupport"), ("APPN-DLUR-MIB", "dlurPuLocation"), ("APPN-DLUR-MIB", "dlurPuLsName"), ("APPN-DLUR-MIB", "dlurPuDlusSessnStatus"), ("APPN-DLUR-MIB", "dlurPuActiveDlusName"), ("APPN-DLUR-MIB", "dlurPuDefPrimDlusName"), ("APPN-DLUR-MIB", "dlurPuDefBackupDlusName"), ("APPN-DLUR-MIB", "dlurDlusSessnStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dlurConfGroup = dlurConfGroup.setStatus('current') mibBuilder.exportSymbols("APPN-DLUR-MIB", dlurPuTable=dlurPuTable, dlurPuDefBackupDlusName=dlurPuDefBackupDlusName, dlurNodeCpName=dlurNodeCpName, dlurPuStatus=dlurPuStatus, dlurNetworkNameForwardingSupport=dlurNetworkNameForwardingSupport, dlurPuDefBackupDlusTable=dlurPuDefBackupDlusTable, dlurDlusInfo=dlurDlusInfo, dlurPuAnsSupport=dlurPuAnsSupport, dlurDefaultDefBackupDlusIndex=dlurDefaultDefBackupDlusIndex, dlurGroups=dlurGroups, dlurPuName=dlurPuName, dlurCompliances=dlurCompliances, dlurPuDefPrimDlusName=dlurPuDefPrimDlusName, dlurPuDefBackupDlusEntry=dlurPuDefBackupDlusEntry, dlurMultiSubnetSupport=dlurMultiSubnetSupport, dlurNodeInfo=dlurNodeInfo, dlurPuLsName=dlurPuLsName, dlurDlusName=dlurDlusName, dlurConformance=dlurConformance, dlurNodeCapabilities=dlurNodeCapabilities, dlurDlusTable=dlurDlusTable, dlurCompliance=dlurCompliance, dlurDefaultDefPrimDlusName=dlurDefaultDefPrimDlusName, dlurDlusSessnStatus=dlurDlusSessnStatus, dlurPuDefBackupDlusIndex=dlurPuDefBackupDlusIndex, dlurPuLocation=dlurPuLocation, dlurDefaultDefBackupDlusTable=dlurDefaultDefBackupDlusTable, dlurPuInfo=dlurPuInfo, PYSNMP_MODULE_ID=dlurMIB, dlurObjects=dlurObjects, dlurConfGroup=dlurConfGroup, dlurPuDefBackupDlusPuName=dlurPuDefBackupDlusPuName, dlurNondisDlusDlurSessDeactSup=dlurNondisDlusDlurSessDeactSup, dlurPuActiveDlusName=dlurPuActiveDlusName, dlurReleaseLevel=dlurReleaseLevel, dlurAnsSupport=dlurAnsSupport, dlurDefaultDefBackupDlusEntry=dlurDefaultDefBackupDlusEntry, dlurPuSscpSuppliedName=dlurPuSscpSuppliedName, dlurDefaultDefBackupDlusName=dlurDefaultDefBackupDlusName, dlurPuEntry=dlurPuEntry, dlurPuDlusSessnStatus=dlurPuDlusSessnStatus, dlurMIB=dlurMIB, dlurDlusEntry=dlurDlusEntry)
0
0
0
0
0
0
0
0
0
43c22f960b133202f8a7111b1fe3f2235264bfa8
136
py
Python
planning/urls.py
essanpupil/moneytracker
506424ff287d4c093430e93169fedb7ee7da34f7
[ "MIT" ]
null
null
null
planning/urls.py
essanpupil/moneytracker
506424ff287d4c093430e93169fedb7ee7da34f7
[ "MIT" ]
null
null
null
planning/urls.py
essanpupil/moneytracker
506424ff287d4c093430e93169fedb7ee7da34f7
[ "MIT" ]
null
null
null
from django.urls import path from planning.views import main app_name = 'planning' urlpatterns = [ path('', main, name='main'), ]
15.111111
32
0.691176
from django.urls import path from planning.views import main app_name = 'planning' urlpatterns = [ path('', main, name='main'), ]
0
0
0
0
0
0
0
0
0
838292766d385db372fa0d4af4505071b2dc24b9
610
py
Python
baseConverter.py
Alex0Blackwell/python-projects
2abb51d1267913bcdd4807e1a10b931c90eb1bef
[ "MIT" ]
2
2019-11-13T17:45:53.000Z
2020-02-23T02:25:30.000Z
baseConverter.py
Alex0Blackwell/python-projects
2abb51d1267913bcdd4807e1a10b931c90eb1bef
[ "MIT" ]
null
null
null
baseConverter.py
Alex0Blackwell/python-projects
2abb51d1267913bcdd4807e1a10b931c90eb1bef
[ "MIT" ]
null
null
null
# Base conversion algorithm # Fastest way to convert bases # Note this does it in reverse so the strings and the strings elements # must be reversed usrNum = int(input("Enter a number to convert:\n")) usrBase = int(input("Enter a base:\n")) print(baseConvert(usrNum, usrBase))
27.727273
77
0.639344
# Base conversion algorithm # Fastest way to convert bases # Note this does it in reverse so the strings and the strings elements # must be reversed def baseConvert(num, base): # Given a number and a base to convert to res = '' q = num while(q > 0): r = q % base # Reverse string because the whole string will eventually be reversed res += ',' + str(r)[::-1] q = q // base return res[::-1] # Return the whole string reversed usrNum = int(input("Enter a number to convert:\n")) usrBase = int(input("Enter a base:\n")) print(baseConvert(usrNum, usrBase))
0
0
0
0
0
307
0
0
23
0ed91efc5dacfde2c285ab9386a5f5ce32dd3da1
1,785
py
Python
backend/classification/features/extraction.py
PolyCortex/polydodo
473d5a8b89e9bdb68ba9592241e45d30b86b471c
[ "MIT" ]
13
2020-06-02T03:17:10.000Z
2022-03-23T04:06:52.000Z
backend/classification/features/extraction.py
PolyCortex/polydodo
473d5a8b89e9bdb68ba9592241e45d30b86b471c
[ "MIT" ]
43
2020-07-15T04:21:06.000Z
2022-03-06T00:32:19.000Z
backend/classification/features/extraction.py
PolyCortex/polydodo
473d5a8b89e9bdb68ba9592241e45d30b86b471c
[ "MIT" ]
2
2020-12-27T07:21:18.000Z
2021-09-16T20:06:47.000Z
"""Feature extraction tools based off a two channel EEG recording""" import numpy as np from classification.config.constants import (EEG_CHANNELS, AGE_FEATURE_BINS) from classification.features.pipeline import get_feature_union def get_eeg_features(epochs, in_bed_seconds, out_of_bed_seconds): """Returns the continuous feature matrix Input ------- epochs: mne.Epochs object with signals with or without annotations in_bed_seconds: timespan, in seconds, from which the subject started the recording and went to bed out_of_bed_seconds: timespan, in seconds, from which the subject started the recording and got out of bed Returns ------- Array of size (nb_epochs, nb_continuous_features) """ features = [] feature_union = get_feature_union() for channel in EEG_CHANNELS: channel_epochs = epochs.copy().pick_channels({channel}) channel_features = feature_union.transform(channel_epochs) features.append(channel_features) return np.hstack(tuple(features)) def get_non_eeg_features(age, sex, nb_epochs): """Returns the categorical feature matrix Input ------- age: Age of the subject sex: Sex of the subject nb_epochs: corresponds to the nb of epochs which will be analyzed. Returns ------- Array of size (nb_epochs,nb_categorical_features), which contains (duplicated) value for all epochs because it concerns the same subject. """ age_category = next( category_index for category_index, age_range in enumerate(AGE_FEATURE_BINS) if age >= age_range[0] and age <= age_range[1] ) X_categorical = [sex.value, age_category] return np.array(X_categorical * nb_epochs).reshape(nb_epochs, -1)
30.775862
75
0.707003
"""Feature extraction tools based off a two channel EEG recording""" import numpy as np from classification.config.constants import ( EEG_CHANNELS, AGE_FEATURE_BINS, ) from classification.features.pipeline import get_feature_union def get_eeg_features(epochs, in_bed_seconds, out_of_bed_seconds): """Returns the continuous feature matrix Input ------- epochs: mne.Epochs object with signals with or without annotations in_bed_seconds: timespan, in seconds, from which the subject started the recording and went to bed out_of_bed_seconds: timespan, in seconds, from which the subject started the recording and got out of bed Returns ------- Array of size (nb_epochs, nb_continuous_features) """ features = [] feature_union = get_feature_union() for channel in EEG_CHANNELS: channel_epochs = epochs.copy().pick_channels({channel}) channel_features = feature_union.transform(channel_epochs) features.append(channel_features) return np.hstack(tuple(features)) def get_non_eeg_features(age, sex, nb_epochs): """Returns the categorical feature matrix Input ------- age: Age of the subject sex: Sex of the subject nb_epochs: corresponds to the nb of epochs which will be analyzed. Returns ------- Array of size (nb_epochs,nb_categorical_features), which contains (duplicated) value for all epochs because it concerns the same subject. """ age_category = next( category_index for category_index, age_range in enumerate(AGE_FEATURE_BINS) if age >= age_range[0] and age <= age_range[1] ) X_categorical = [sex.value, age_category] return np.array(X_categorical * nb_epochs).reshape(nb_epochs, -1)
0
0
0
0
0
0
0
11
0
f052b9fc28af42e699049bdfe2b0ac01d467c316
187
py
Python
user_details/give_default.py
Shreyanshsachan/College-Predictor
87068aa1d1a889ced586ff155bc2b5d9a78340f7
[ "MIT" ]
null
null
null
user_details/give_default.py
Shreyanshsachan/College-Predictor
87068aa1d1a889ced586ff155bc2b5d9a78340f7
[ "MIT" ]
null
null
null
user_details/give_default.py
Shreyanshsachan/College-Predictor
87068aa1d1a889ced586ff155bc2b5d9a78340f7
[ "MIT" ]
null
null
null
preference_list_of_user=[]
20.777778
31
0.84492
preference_list_of_user=[] def give(def_list): Def=def_list global preference_list_of_user preference_list_of_user=Def return Def def give_to_model(): return preference_list_of_user
0
0
0
0
0
116
0
0
45
58988f8f98d9e6ccb12c9b0191a886bc9755df2f
669
py
Python
OPTED2fiveletter.py
caranha/wordle_helper
731259e14f704a48bd84f528085dc8a70898adee
[ "RSA-MD" ]
null
null
null
OPTED2fiveletter.py
caranha/wordle_helper
731259e14f704a48bd84f528085dc8a70898adee
[ "RSA-MD" ]
null
null
null
OPTED2fiveletter.py
caranha/wordle_helper
731259e14f704a48bd84f528085dc8a70898adee
[ "RSA-MD" ]
null
null
null
import re from bs4 import BeautifulSoup from string import ascii_lowercase base_file = "OPTED/words_X.html" fiveletter = [] for letter in ascii_lowercase: file = base_file.replace("X",letter) with open(file, "r") as f: html = f.read() words = BeautifulSoup(html, "html.parser").find_all("b") for w in words: wt = w.get_text().lower() length = len(wt) == 5 duplicate = wt in fiveletter ascii = not re.search("[\W]", wt) if length and ascii and not duplicate: fiveletter.append(wt) with open("five_letter_words.txt", "w") as f: for w in fiveletter: f.write(w+"\n")
22.3
60
0.617339
import os import re from bs4 import BeautifulSoup from string import ascii_lowercase base_file = "OPTED/words_X.html" fiveletter = [] for letter in ascii_lowercase: file = base_file.replace("X",letter) with open(file, "r") as f: html = f.read() words = BeautifulSoup(html, "html.parser").find_all("b") for w in words: wt = w.get_text().lower() length = len(wt) == 5 duplicate = wt in fiveletter ascii = not re.search("[\W]", wt) if length and ascii and not duplicate: fiveletter.append(wt) with open("five_letter_words.txt", "w") as f: for w in fiveletter: f.write(w+"\n")
0
0
0
0
0
0
0
-12
22
4861261a51c5c31e103d20e20adeece80de4bce7
1,198
py
Python
rotate/ciphers.py
Noxell-zs/ROT13
36f1b788616979d6644448e0a8cc728bb2c15ad9
[ "MIT" ]
null
null
null
rotate/ciphers.py
Noxell-zs/ROT13
36f1b788616979d6644448e0a8cc728bb2c15ad9
[ "MIT" ]
null
null
null
rotate/ciphers.py
Noxell-zs/ROT13
36f1b788616979d6644448e0a8cc728bb2c15ad9
[ "MIT" ]
null
null
null
"""Realization of algorithms for char-by-char text encryption. Functions: rot_13(str) -> str Character offset by 13 positions. caesar_1(str) -> str Character offset by 1 position. """ def rot_13(char_in: str) -> str: """Character offset by 13 positions. Parameters: char_in : function Character of the source text. Returns: char_out : str Character of the encrypted text. """ num = ord(char_in[0]) if (97 <= num <= 109) or (65 <= num <= 77): char_out = chr(num + 13) elif (110 <= num <= 122) or (78 <= num <= 90): char_out = chr(num - 13) else: char_out = char_in return char_out def caesar_1(char_in: str) -> str: """Character offset by 1 position. Parameters: char_in : function Character of the source text. Returns: char_out : str Character of the encrypted text. """ num = ord(char_in[0]) if (97 <= num <= 121) or (65 <= num <= 89): char_out = chr(num + 1) elif num == 122 or num == 90: char_out = chr(num - 25) else: char_out = char_in return char_out
20.655172
62
0.551753
"""Realization of algorithms for char-by-char text encryption. Functions: rot_13(str) -> str Character offset by 13 positions. caesar_1(str) -> str Character offset by 1 position. """ def rot_13(char_in: str) -> str: """Character offset by 13 positions. Parameters: char_in : function Character of the source text. Returns: char_out : str Character of the encrypted text. """ num = ord(char_in[0]) if (97 <= num <= 109) or (65 <= num <= 77): char_out = chr(num + 13) elif (110 <= num <= 122) or (78 <= num <= 90): char_out = chr(num - 13) else: char_out = char_in return char_out def caesar_1(char_in: str) -> str: """Character offset by 1 position. Parameters: char_in : function Character of the source text. Returns: char_out : str Character of the encrypted text. """ num = ord(char_in[0]) if (97 <= num <= 121) or (65 <= num <= 89): char_out = chr(num + 1) elif num == 122 or num == 90: char_out = chr(num - 25) else: char_out = char_in return char_out
0
0
0
0
0
0
0
0
0
6776cf0bd080254a676d541e382d4eb2f31a05f5
7,640
py
Python
pymatgen/analysis/tests/test_diffusion_analyzer.py
rajeshprasanth/pymatgen
eb6cd95230c11ac761a96ebf82b98f71177bb71f
[ "MIT" ]
null
null
null
pymatgen/analysis/tests/test_diffusion_analyzer.py
rajeshprasanth/pymatgen
eb6cd95230c11ac761a96ebf82b98f71177bb71f
[ "MIT" ]
null
null
null
pymatgen/analysis/tests/test_diffusion_analyzer.py
rajeshprasanth/pymatgen
eb6cd95230c11ac761a96ebf82b98f71177bb71f
[ "MIT" ]
1
2018-10-28T01:41:38.000Z
2018-10-28T01:41:38.000Z
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import division, unicode_literals import unittest2 as unittest import os """ TODO: Change the module doc. """ __author__ = "shyuepingong" __version__ = "0.1" __maintainer__ = "Shyue Ping Ong" __email__ = "[email protected]" __status__ = "Beta" __date__ = "5/2/13" test_dir = os.path.join(os.path.dirname(__file__), "..", "..", "..", 'test_files') if __name__ == '__main__': unittest.main()
41.978022
85
0.610602
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import division, unicode_literals import unittest2 as unittest import os import json import random import numpy as np import csv import scipy.constants as const from pymatgen.analysis.diffusion_analyzer import DiffusionAnalyzer,\ get_conversion_factor, fit_arrhenius from pymatgen.core.structure import Structure from pymatgen.util.testing import PymatgenTest from monty.tempfile import ScratchDir """ TODO: Change the module doc. """ __author__ = "shyuepingong" __version__ = "0.1" __maintainer__ = "Shyue Ping Ong" __email__ = "[email protected]" __status__ = "Beta" __date__ = "5/2/13" test_dir = os.path.join(os.path.dirname(__file__), "..", "..", "..", 'test_files') class FuncTest(unittest.TestCase): def test_get_conversion_factor(self): filepath = os.path.join(test_dir, 'LiFePO4.cif') s = Structure.from_file(filepath) # large tolerance because scipy constants changed between 0.16.1 and 0.17 self.assertAlmostEqual(41370704.343540139, get_conversion_factor(s, "Li", 600), delta=20) def test_fit_arrhenius(self): Ea = 0.5 k = const.k / const.e c = 12 temps = np.array([300, 1000, 500]) diffusivities = c * np.exp(-Ea/(k * temps)) diffusivities *= np.array([1.00601834013, 1.00803236262, 0.98609720824]) r = fit_arrhenius(temps, diffusivities) self.assertAlmostEqual(r[0], Ea) self.assertAlmostEqual(r[1], c) self.assertAlmostEqual(r[2], 0.000895566) # when not enough values for error estimate r2 = fit_arrhenius([1, 2], [10, 10]) self.assertAlmostEqual(r2[0], 0) self.assertAlmostEqual(r2[1], 10) self.assertEqual(r2[2], None) class DiffusionAnalyzerTest(PymatgenTest): def test_init(self): # Diffusion vasprun.xmls are rather large. We are only going to use a # very small preprocessed run for testing. Note that the results are # unreliable for short runs. with open(os.path.join(test_dir, "DiffusionAnalyzer.json")) as f: dd = json.load(f) d = DiffusionAnalyzer.from_dict(dd) # large tolerance because scipy constants changed between 0.16.1 and 0.17 self.assertAlmostEqual(d.conductivity, 74.165372613735684, 4) self.assertAlmostEqual(d.diffusivity, 1.16083658794e-06, 7) self.assertAlmostEqual(d.conductivity_std_dev, 0.0097244677795984488, 7) self.assertAlmostEqual(d.diffusivity_std_dev, 9.1013023085561779e-09, 7) self.assertArrayAlmostEqual( d.conductivity_components, [45.9109703, 26.2856302, 150.5405727], 3) self.assertArrayAlmostEqual( d.diffusivity_components, [7.49601236e-07, 4.90254273e-07, 2.24649255e-06]) self.assertArrayAlmostEqual( d.conductivity_components_std_dev, [0.0063579, 0.0180862, 0.0217917] ) self.assertArrayAlmostEqual( d.diffusivity_components_std_dev, [8.9465670e-09, 2.4931224e-08, 2.2636384e-08] ) self.assertArrayAlmostEqual( d.max_ion_displacements, [1.4620659693989553, 1.2787303484445025, 3.419618540097756, 2.340104469126246, 2.6080973517594233, 1.3928579365672844, 1.3561505956708932, 1.6699242923686253, 1.0352389639563648, 1.1662520093955808, 1.2322019205885841, 0.8094210554832534, 1.9917808504954169, 1.2684148391206396, 2.392633794162402, 2.566313049232671, 1.3175030435622759, 1.4628945430952793, 1.0984921286753002, 1.2864482076554093, 0.655567027815413, 0.5986961164605746, 0.5639091444309045, 0.6166004192954059, 0.5997911580422605, 0.4374606277579815, 1.1865683960470783, 0.9017064371676591, 0.6644840367853767, 1.0346375380664645, 0.6177630142863979, 0.7952002051914302, 0.7342686123054011, 0.7858047956905577, 0.5570732369065661, 1.0942937746885417, 0.6509372395308788, 1.0876687380413455, 0.7058162184725, 0.8298306317598585, 0.7813913747621343, 0.7337655232056153, 0.9057161616236746, 0.5979093093186919, 0.6830333586985015, 0.7926500894084628, 0.6765180009988608, 0.8555866032968998, 0.713087091642237, 0.7621007695790749]) self.assertEqual(d.sq_disp_ions.shape, (50, 206)) self.assertAlmostEqual(d.max_framework_displacement, 1.18656839605) ss = list(d.get_drift_corrected_structures(10, 1000, 20)) self.assertEqual(len(ss), 50) n = random.randint(0, 49) n_orig = n * 20 + 10 self.assertArrayAlmostEqual( ss[n].cart_coords - d.structure.cart_coords + d.drift[:, n_orig, :], d.disp[:, n_orig, :]) d = DiffusionAnalyzer.from_dict(d.as_dict()) self.assertIsInstance(d, DiffusionAnalyzer) #Ensure summary dict is json serializable. json.dumps(d.get_summary_dict(include_msd_t=True)) d = DiffusionAnalyzer(d.structure, d.disp, d.specie, d.temperature, d.time_step, d.step_skip, smoothed="max") self.assertAlmostEqual(d.conductivity, 74.165372613735684, 4) self.assertAlmostEqual(d.diffusivity, 1.14606446822e-06, 7) d = DiffusionAnalyzer(d.structure, d.disp, d.specie, d.temperature, d.time_step, d.step_skip, smoothed=False) self.assertAlmostEqual(d.conductivity, 27.20479170406027, 4) self.assertAlmostEqual(d.diffusivity, 4.25976905436e-07, 7) d = DiffusionAnalyzer(d.structure, d.disp, d.specie, d.temperature, d.time_step, d.step_skip, smoothed="constant", avg_nsteps=100) self.assertAlmostEqual(d.conductivity, 47.404056230438741, 4) self.assertAlmostEqual(d.diffusivity, 7.4226016496716148e-07, 7) # Can't average over 2000 steps because this is a 1000-step run. self.assertRaises(ValueError, DiffusionAnalyzer, d.structure, d.disp, d.specie, d.temperature, d.time_step, d.step_skip, smoothed="constant", avg_nsteps=2000) d = DiffusionAnalyzer.from_structures( list(d.get_drift_corrected_structures()), d.specie, d.temperature, d.time_step, d.step_skip, d.smoothed, avg_nsteps=100) self.assertAlmostEqual(d.conductivity, 47.404056230438741, 4) self.assertAlmostEqual(d.diffusivity, 7.4226016496716148e-07, 7) d.export_msdt("test.csv") with open("test.csv") as f: data = [] for row in csv.reader(f): if row: data.append(row) data.pop(0) data = np.array(data, dtype=np.float64) self.assertArrayAlmostEqual(data[:, 1], d.msd) os.remove("test.csv") if __name__ == '__main__': unittest.main()
0
0
0
6,710
0
0
0
131
245
d94e383e015801e9caaa411360f5d5c3c970581d
9,511
py
Python
checker/logic.py
ucam-cl-dtg/equality_checker
6a31d3dd360f821e36c4742e1d5139d7292f8319
[ "Apache-2.0" ]
7
2020-07-18T08:04:27.000Z
2022-03-07T06:46:17.000Z
checker/logic.py
ucam-cl-dtg/equality_checker
6a31d3dd360f821e36c4742e1d5139d7292f8319
[ "Apache-2.0" ]
1
2022-03-18T17:05:54.000Z
2022-03-18T17:05:54.000Z
checker/logic.py
ucam-cl-dtg/equality_checker
6a31d3dd360f821e36c4742e1d5139d7292f8319
[ "Apache-2.0" ]
1
2020-07-18T08:04:28.000Z
2020-07-18T08:04:28.000Z
import sympy from .utils import known_equal_pair, contains_incorrect_symbols from .utils import EqualityType from .parsing import logic_parser, UnsafeInputException __all__ = ["check"] KNOWN_PAIRS = dict() def parse_expression(expression_str, *, local_dict=None): """Take a string containing a mathematical expression and return a sympy expression. Wrap the parsing class function parse_expr(...) and catch any exceptions that occur. - 'local_dict' can be a dictionary of (name, sympy.Symbol(...)) pairs, where the string 'name' will not be split up and will be turned into the symbol specified. It may be None. """ try: return logic_parser.parse_expr(expression_str, local_dict=local_dict) except logic_parser.ParsingException: print("Incorrectly formatted expression.") print("Fail: '{}'.".format(expression_str)) return None def exact_match(test_expr, target_expr): """Test if the entered expression exactly matches the known expression. This performs as little simplification of the boolean expression as possible, allowing only the commutativity or AND and OR. Returns True if the sympy expressions have the same internal structure, and False if not. - 'test_expr' should be the untrusted sympy expression to check. - 'target_expr' should be the trusted sympy expression to match against. """ print("[EXACT TEST]") if test_expr == target_expr: print("Exact Match (with '==')") return True elif sympy.srepr(test_expr) == sympy.srepr(target_expr): # This is a (perfectly acceptable) hack for ordering the atoms of each # term, but a more explicit method may be preferable in the future. print("Exact Match (with 'srepr')") return True else: return False def symbolic_equality(test_expr, target_expr): """Test if two expressions are symbolically equivalent. Use the sympy 'simplify_logic' function to simplify the two boolean expressions as much as possible. Two equilvalent expressions MUST simplify to the same thing, and then they can be tested for equivalence again. Returns True if sympy can determine that the two expressions are equal, and returns False if they are not equal. - 'test_expr' should be the untrusted sympy expression to check. - 'target_expr' should be the trusted sympy expression to match against. """ print("[SYMBOLIC TEST]") try: simplified_target = sympy.simplify_logic(target_expr) simplified_test = sympy.simplify_logic(test_expr) if simplified_target == simplified_test or sympy.srepr(simplified_target) == sympy.srepr(simplified_test): print("Symbolic match.") print("INFO: Adding known pair ({0}, {1})".format(target_expr, test_expr)) KNOWN_PAIRS[(target_expr, test_expr)] = EqualityType.SYMBOLIC return True else: return False except NotImplementedError as e: print("{0}: {1} - Can't check symbolic equality!".format(type(e).__name__, str(e).capitalize())) return False def expr_equality(test_expr, target_expr): """Given two sympy expressions: test for exact, symbolic and numeric equality. Check two sympy expressions for equality, throwing a TypeError if either of the provided sympy objects is not an expression. - 'test_expr' should be the untrusted sympy expression to check. - 'target_expr' should be the trusted sympy expression to match against. """ equality_type = EqualityType.EXACT equal = exact_match(test_expr, target_expr) if not equal: # Then try checking for symbolic equality: equality_type = EqualityType.SYMBOLIC equal = symbolic_equality(test_expr, target_expr) return equal, equality_type def general_equality(test_expr, target_expr): """Given two general sympy objects: test for exact, symbolic and numeric equality. - 'test_expr' should be the untrusted sympy object to check. - 'target_expr' should be the trusted sympy object to match against. """ equal, equality_type = known_equal_pair(KNOWN_PAIRS, test_expr, target_expr) # If this is a known pair: return immediately: if equal: return equal, equality_type else: print("[[EXPRESSION CHECK]]") return expr_equality(test_expr, target_expr) def check(test_str, target_str, *, symbols=None, check_symbols=True, description=None, _quiet=False): """The main checking function, calls each of the equality checking functions as required. Returns a dict describing the equality; with important keys being 'equal', and 'equality_type'. The key 'error' is added if something went wrong, and this should always be checked for first. - 'test_str' should be the untrusted string for sympy to parse. - 'target_str' should be the trusted string to parse and match against. - 'symbols' should be a string list or comma separated string of symbols not to split during parsing. - 'check_symbols' indicates whether to verfiy the symbols used in each expression are exactly the same or not; setting this to False will allow symbols which cancel out to be included (probably don't want this in questions). - 'description' is an optional description to print before the checker's output to stdout which can be used to improve logging. - '_quiet' is an internal argument used to suppress some output when this function is called from plus_minus_checker(). """ # Suppress this output if necessary: if not _quiet: print("=" * 50) # For logging purposes, if we have a description: print it! if description is not None: print(description) print("=" * 50) print("[LOGIC]") # If nothing to parse, fail. On server, this will be caught in check_endpoint() if (target_str == "") or (test_str == ""): print("ERROR: No input provided!") if not _quiet: print("=" * 50) return dict(error="Empty string as argument.") # Cleanup the strings before anything is done to them: error_is_test = False try: target_str = logic_parser.cleanup_string(target_str, reject_unsafe_input=True) error_is_test = True test_str = logic_parser.cleanup_string(test_str, reject_unsafe_input=True) except UnsafeInputException: print("ERROR: Input contained non-whitelisted characters!") result = dict(error="Bad input provided!") if error_is_test: print("Test string: '{}'".format(test_str)) result["syntax_error"] = str(True).lower() if not _quiet: print("=" * 50) return result print("Target string: '{}'".format(target_str)) print("Test string: '{}'".format(test_str)) print("[[PARSE EXPRESSIONS]]") # Parse the trusted target expression: target_expr = parse_expression(target_str) # Parse the untrusted test expression: test_expr = parse_expression(test_str) result = dict(target=target_str, test=test_str) if target_expr is None: print("ERROR: TRUSTED EXPRESSION CANNOT BE PARSED!") if not _quiet: print("=" * 50) result["error"] = "Parsing TARGET Expression Failed!" result["code"] = 400 # This is fatal! return result if test_expr is None: print("Incorrectly formatted ToCheck expression.") if not _quiet: print("=" * 50) result["error"] = "Parsing Test Expression Failed!" result["syntax_error"] = str(True).lower() return result result["parsed_target"] = str(target_expr) result["parsed_test"] = str(test_expr) # Now check for symbol match and equality: try: print("Parsed Target: {0}\nParsed ToCheck: {1}".format(target_expr, test_expr)) if check_symbols: # Do we have same set of symbols in each? incorrect_symbols = contains_incorrect_symbols(test_expr, target_expr) if incorrect_symbols is not None: print("[[RESULT]]\nEquality: False") if not _quiet: print("=" * 50) result["equal"] = str(False).lower() result["equality_type"] = EqualityType.SYMBOLIC.value result["incorrect_symbols"] = incorrect_symbols return result # Then check for equality proper: equal, equality_type = general_equality(test_expr, target_expr) except (SyntaxError, TypeError, AttributeError) as e: print("Error when comparing expressions: '{}'.".format(e)) if not _quiet: print("=" * 50) result["error"] = "Comparison of expressions failed: '{}'".format(e) return result print("[[RESULT]]") if equal and (equality_type is not EqualityType.EXACT) and ((target_expr, test_expr) not in KNOWN_PAIRS): print("INFO: Adding known pair ({0}, {1})".format(target_expr, test_expr)) KNOWN_PAIRS[(target_expr, test_expr)] = equality_type print("Equality: {}".format(equal)) if not _quiet: print("=" * 50) result["equal"] = str(equal).lower() result["equality_type"] = equality_type.value return result
40.819742
114
0.66134
import sympy from .utils import known_equal_pair, contains_incorrect_symbols from .utils import EqualityType from .parsing import logic_parser, UnsafeInputException __all__ = ["check"] KNOWN_PAIRS = dict() def parse_expression(expression_str, *, local_dict=None): """Take a string containing a mathematical expression and return a sympy expression. Wrap the parsing class function parse_expr(...) and catch any exceptions that occur. - 'local_dict' can be a dictionary of (name, sympy.Symbol(...)) pairs, where the string 'name' will not be split up and will be turned into the symbol specified. It may be None. """ try: return logic_parser.parse_expr(expression_str, local_dict=local_dict) except logic_parser.ParsingException: print("Incorrectly formatted expression.") print("Fail: '{}'.".format(expression_str)) return None def exact_match(test_expr, target_expr): """Test if the entered expression exactly matches the known expression. This performs as little simplification of the boolean expression as possible, allowing only the commutativity or AND and OR. Returns True if the sympy expressions have the same internal structure, and False if not. - 'test_expr' should be the untrusted sympy expression to check. - 'target_expr' should be the trusted sympy expression to match against. """ print("[EXACT TEST]") if test_expr == target_expr: print("Exact Match (with '==')") return True elif sympy.srepr(test_expr) == sympy.srepr(target_expr): # This is a (perfectly acceptable) hack for ordering the atoms of each # term, but a more explicit method may be preferable in the future. print("Exact Match (with 'srepr')") return True else: return False def symbolic_equality(test_expr, target_expr): """Test if two expressions are symbolically equivalent. Use the sympy 'simplify_logic' function to simplify the two boolean expressions as much as possible. Two equilvalent expressions MUST simplify to the same thing, and then they can be tested for equivalence again. Returns True if sympy can determine that the two expressions are equal, and returns False if they are not equal. - 'test_expr' should be the untrusted sympy expression to check. - 'target_expr' should be the trusted sympy expression to match against. """ print("[SYMBOLIC TEST]") try: simplified_target = sympy.simplify_logic(target_expr) simplified_test = sympy.simplify_logic(test_expr) if simplified_target == simplified_test or sympy.srepr(simplified_target) == sympy.srepr(simplified_test): print("Symbolic match.") print("INFO: Adding known pair ({0}, {1})".format(target_expr, test_expr)) KNOWN_PAIRS[(target_expr, test_expr)] = EqualityType.SYMBOLIC return True else: return False except NotImplementedError as e: print("{0}: {1} - Can't check symbolic equality!".format(type(e).__name__, str(e).capitalize())) return False def expr_equality(test_expr, target_expr): """Given two sympy expressions: test for exact, symbolic and numeric equality. Check two sympy expressions for equality, throwing a TypeError if either of the provided sympy objects is not an expression. - 'test_expr' should be the untrusted sympy expression to check. - 'target_expr' should be the trusted sympy expression to match against. """ equality_type = EqualityType.EXACT equal = exact_match(test_expr, target_expr) if not equal: # Then try checking for symbolic equality: equality_type = EqualityType.SYMBOLIC equal = symbolic_equality(test_expr, target_expr) return equal, equality_type def general_equality(test_expr, target_expr): """Given two general sympy objects: test for exact, symbolic and numeric equality. - 'test_expr' should be the untrusted sympy object to check. - 'target_expr' should be the trusted sympy object to match against. """ equal, equality_type = known_equal_pair(KNOWN_PAIRS, test_expr, target_expr) # If this is a known pair: return immediately: if equal: return equal, equality_type else: print("[[EXPRESSION CHECK]]") return expr_equality(test_expr, target_expr) def check(test_str, target_str, *, symbols=None, check_symbols=True, description=None, _quiet=False): """The main checking function, calls each of the equality checking functions as required. Returns a dict describing the equality; with important keys being 'equal', and 'equality_type'. The key 'error' is added if something went wrong, and this should always be checked for first. - 'test_str' should be the untrusted string for sympy to parse. - 'target_str' should be the trusted string to parse and match against. - 'symbols' should be a string list or comma separated string of symbols not to split during parsing. - 'check_symbols' indicates whether to verfiy the symbols used in each expression are exactly the same or not; setting this to False will allow symbols which cancel out to be included (probably don't want this in questions). - 'description' is an optional description to print before the checker's output to stdout which can be used to improve logging. - '_quiet' is an internal argument used to suppress some output when this function is called from plus_minus_checker(). """ # Suppress this output if necessary: if not _quiet: print("=" * 50) # For logging purposes, if we have a description: print it! if description is not None: print(description) print("=" * 50) print("[LOGIC]") # If nothing to parse, fail. On server, this will be caught in check_endpoint() if (target_str == "") or (test_str == ""): print("ERROR: No input provided!") if not _quiet: print("=" * 50) return dict(error="Empty string as argument.") # Cleanup the strings before anything is done to them: error_is_test = False try: target_str = logic_parser.cleanup_string(target_str, reject_unsafe_input=True) error_is_test = True test_str = logic_parser.cleanup_string(test_str, reject_unsafe_input=True) except UnsafeInputException: print("ERROR: Input contained non-whitelisted characters!") result = dict(error="Bad input provided!") if error_is_test: print("Test string: '{}'".format(test_str)) result["syntax_error"] = str(True).lower() if not _quiet: print("=" * 50) return result print("Target string: '{}'".format(target_str)) print("Test string: '{}'".format(test_str)) print("[[PARSE EXPRESSIONS]]") # Parse the trusted target expression: target_expr = parse_expression(target_str) # Parse the untrusted test expression: test_expr = parse_expression(test_str) result = dict(target=target_str, test=test_str) if target_expr is None: print("ERROR: TRUSTED EXPRESSION CANNOT BE PARSED!") if not _quiet: print("=" * 50) result["error"] = "Parsing TARGET Expression Failed!" result["code"] = 400 # This is fatal! return result if test_expr is None: print("Incorrectly formatted ToCheck expression.") if not _quiet: print("=" * 50) result["error"] = "Parsing Test Expression Failed!" result["syntax_error"] = str(True).lower() return result result["parsed_target"] = str(target_expr) result["parsed_test"] = str(test_expr) # Now check for symbol match and equality: try: print("Parsed Target: {0}\nParsed ToCheck: {1}".format(target_expr, test_expr)) if check_symbols: # Do we have same set of symbols in each? incorrect_symbols = contains_incorrect_symbols(test_expr, target_expr) if incorrect_symbols is not None: print("[[RESULT]]\nEquality: False") if not _quiet: print("=" * 50) result["equal"] = str(False).lower() result["equality_type"] = EqualityType.SYMBOLIC.value result["incorrect_symbols"] = incorrect_symbols return result # Then check for equality proper: equal, equality_type = general_equality(test_expr, target_expr) except (SyntaxError, TypeError, AttributeError) as e: print("Error when comparing expressions: '{}'.".format(e)) if not _quiet: print("=" * 50) result["error"] = "Comparison of expressions failed: '{}'".format(e) return result print("[[RESULT]]") if equal and (equality_type is not EqualityType.EXACT) and ((target_expr, test_expr) not in KNOWN_PAIRS): print("INFO: Adding known pair ({0}, {1})".format(target_expr, test_expr)) KNOWN_PAIRS[(target_expr, test_expr)] = equality_type print("Equality: {}".format(equal)) if not _quiet: print("=" * 50) result["equal"] = str(equal).lower() result["equality_type"] = equality_type.value return result
0
0
0
0
0
0
0
0
0
559890790ae2649fffcbdb6731e70ef5186638d7
222
py
Python
Kattis/How Many Digits/howmanydigits.py
DeepSpace2/Comptitive-Programming
13212d9dbc73ab87519b0596fdb0147d40c7eaa8
[ "MIT" ]
1
2021-11-12T16:39:40.000Z
2021-11-12T16:39:40.000Z
Kattis/How Many Digits/howmanydigits.py
DeepSpace2/Comptitive-Programming
13212d9dbc73ab87519b0596fdb0147d40c7eaa8
[ "MIT" ]
null
null
null
Kattis/How Many Digits/howmanydigits.py
DeepSpace2/Comptitive-Programming
13212d9dbc73ab87519b0596fdb0147d40c7eaa8
[ "MIT" ]
3
2021-07-01T11:46:19.000Z
2021-09-12T13:49:04.000Z
from math import e, log10, pi while True: try: n = int(input()) except EOFError: break if n == 0: print(1) else: print(int(n * log10(n / e) + log10(2 * pi * n) / 2) + 1)
20.181818
64
0.463964
from math import e, log10, pi while True: try: n = int(input()) except EOFError: break if n == 0: print(1) else: print(int(n * log10(n / e) + log10(2 * pi * n) / 2) + 1)
0
0
0
0
0
0
0
0
0
72eb43c27020f9c97d40a6a12b90946e9a888bc7
10,665
py
Python
game24/gameconsole.py
Adoyan-Grigor/game24
4619e953ed94248669759850b9efb812ecf54786
[ "Apache-2.0" ]
null
null
null
game24/gameconsole.py
Adoyan-Grigor/game24
4619e953ed94248669759850b9efb812ecf54786
[ "Apache-2.0" ]
null
null
null
game24/gameconsole.py
Adoyan-Grigor/game24
4619e953ed94248669759850b9efb812ecf54786
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- from __future__ import absolute_import, print_function, division try: import builtins raw_input = getattr(builtins, 'input') except ImportError: pass MSG_MENU_MAIN = '''1. Play (p) 2. Check answer (c) 3. Quit (q)''' MSG_MENU_PLAY = '''1. Definitely no solutions (n) 2. Give me a hint (h) 3. I gave up, show me the answer (s) 4. Back to the main menu (b) 5. Quit the game (q)''' MSG_MENU_SET_END = '''1. One more set (n) 2. Back to the main menu (b) 3. Quit the game (q)''' MSG_MENU_PLAY_RIGHT = '''1. Try other solutions (t) 2. Next hand (n) 3. Show me the answers (s) 4. Quit the game (q)''' MSG_SELECT = 'Your choice: ' MSG_INVALID_INPUT = 'Invalid input!' MSG_MENU_HAND_END = '''1. One more hand (n) 2. Quit this set, back to the main menu (b) 3. Quit the game (q)''' MSG_SELECT = 'Your choice: ' MSG_INVALID_INPUT = 'Invalid input!' MSG_INVALID_INTEGER = 'Invalid integer: %s' MSG_PLAY_NEW_SET = 'Set %d' MSG_PLAY_NEW_HAND = 'Hand %d: %s' MSG_PLAY_INPUT_EXPR = 'Input your solution or one of the above choices: ' MSG_PLAY_RIGHT = 'Good Job!' MSG_PLAY_FIND_BUG = '''Great Job! You not only solved the problem, but also found a bug! Please report to me with the cards and your solution if you don't mind.''' MSG_PLAY_WRONG = "Sorry! It's not correct!" MSG_PLAY_NO_ANSWER = 'Seems no solutions' MSG_PLAY_NO_CARDS = 'Set end, your result' MSG_INPUT_NUMBERS = 'Please input %d integers: ' INPUT_EOF = '\x00' if __name__ == '__main__': main()
30.913043
83
0.509048
#!/usr/bin/python # -*- coding: utf-8 -*- from __future__ import absolute_import, print_function, division import sys import argparse import readline import random import traceback try: import builtins raw_input = getattr(builtins, 'input') except ImportError: pass from game24 import calc, game MSG_MENU_MAIN = '''1. Play (p) 2. Check answer (c) 3. Quit (q)''' MSG_MENU_PLAY = '''1. Definitely no solutions (n) 2. Give me a hint (h) 3. I gave up, show me the answer (s) 4. Back to the main menu (b) 5. Quit the game (q)''' MSG_MENU_SET_END = '''1. One more set (n) 2. Back to the main menu (b) 3. Quit the game (q)''' MSG_MENU_PLAY_RIGHT = '''1. Try other solutions (t) 2. Next hand (n) 3. Show me the answers (s) 4. Quit the game (q)''' MSG_SELECT = 'Your choice: ' MSG_INVALID_INPUT = 'Invalid input!' MSG_MENU_HAND_END = '''1. One more hand (n) 2. Quit this set, back to the main menu (b) 3. Quit the game (q)''' MSG_SELECT = 'Your choice: ' MSG_INVALID_INPUT = 'Invalid input!' MSG_INVALID_INTEGER = 'Invalid integer: %s' MSG_PLAY_NEW_SET = 'Set %d' MSG_PLAY_NEW_HAND = 'Hand %d: %s' MSG_PLAY_INPUT_EXPR = 'Input your solution or one of the above choices: ' MSG_PLAY_RIGHT = 'Good Job!' MSG_PLAY_FIND_BUG = '''Great Job! You not only solved the problem, but also found a bug! Please report to me with the cards and your solution if you don't mind.''' MSG_PLAY_WRONG = "Sorry! It's not correct!" MSG_PLAY_NO_ANSWER = 'Seems no solutions' MSG_PLAY_NO_CARDS = 'Set end, your result' MSG_INPUT_NUMBERS = 'Please input %d integers: ' INPUT_EOF = '\x00' class GameConsole(game.Game): def __init__(self, target=24, count=4, face2ten=False, showcard=False): super(GameConsole, self).__init__(target, count, face2ten) self.showcard = showcard @staticmethod def raw_input_ex(prompt='', default=''): '''enhance raw_input to support default input and also flat EOF''' try: readline.set_startup_hook(lambda: readline.insert_text(default)) try: return input(prompt) finally: readline.set_startup_hook() except EOFError: return INPUT_EOF @staticmethod def print_title(title, dechar='', delen=50): print(dechar * delen) print(title) print(dechar * delen) @staticmethod def ui_menu(menu, choices, eof=True): '''show a menu, and return the selection''' GameConsole.print_title(menu, dechar='-') while True: r = GameConsole.raw_input_ex(MSG_SELECT).strip() if r == '' or (r in choices and len(r) > 1): print(MSG_INVALID_INPUT) continue elif r in choices or (eof and r == INPUT_EOF): print() return r print(MSG_INVALID_INPUT) def ui_check_answer(self): '''show answers for user provided integers''' while True: r = self.raw_input_ex(MSG_INPUT_NUMBERS % self.count).strip() try: integers = [int(s) for s in r.strip().split()] except ValueError: print(MSG_INVALID_INPUT) continue if len(integers) != self.count: print(MSG_INVALID_INPUT) continue break answers = calc.solve(integers, self.target) if answers: s = '\n'.join([str(expr) for expr in answers]) else: s = MSG_PLAY_NO_ANSWER self.print_title(s) def main(self): '''the main entry of the game console''' choices = '1p2c3q' while True: r = self.ui_menu(MSG_MENU_MAIN, choices) if r in '1p': self.play() elif r in '2c': self.ui_check_answer() elif r in ('3q' + INPUT_EOF): return def print_result(self): solved = 0 failed = 0 hinted = 0 for hand in self.hands: if hand.result == game.HAND_RESULT_SOLVED: solved += 1 elif hand.result == game.HAND_RESULT_HINTED: hinted += 1 elif hand.result == game.HAND_RESULT_FAILED: failed += 1 print() print('Total %d hands solved' % solved) print('Total %d hands solved with hint' % hinted) print('Total %d hands failed to solve' % failed) print() def ui_menu_and_expr(self, menu, choices, eof=True): hand_ints = self.hands[-1].integers self.print_title(menu, dechar='-') while True: r = self.raw_input_ex(MSG_PLAY_INPUT_EXPR).strip() if r == '' or (r in choices and len(r) > 1): print(MSG_INVALID_INPUT) continue elif r in choices or (eof and r == INPUT_EOF): print() return r try: expr = calc.parse(r) except ValueError as e: print(str(e)) continue integers = expr.get_integers() for i in integers: if i not in hand_ints: print(MSG_INVALID_INTEGER % i) break else: return expr def play(self): while True: if not self.hands: self.print_title(MSG_PLAY_NEW_SET % self.seti, dechar='*') hand = self.new_hand() if not hand: # no enough cards for a new hand self.print_title(MSG_PLAY_NO_CARDS, dechar='*') self.print_result() choices = '1n2b3q' r = self.ui_menu(MSG_MENU_SET_END, choices) if r in '1n': # renew the set self.reset() continue elif r in ('2b' + INPUT_EOF): # back to the main menu return elif r in '3q': sys.exit(0) print() if self.showcard: sc = hand.str_cards() else: sc = ' '.join([str(i) for i in hand.integers]) self.print_title(MSG_PLAY_NEW_HAND % (len(self.hands), sc), dechar='+') print() while True: choices = '1n2h3s4b5q' r = self.ui_menu_and_expr(MSG_MENU_PLAY, choices) if isinstance(r, calc.Expr): expr = r check_r = str(r) if expr.value == self.target: hand.solved() if not self.calculating_the_number_of_numbers(check_r, sc): print(MSG_INVALID_INPUT) continue s = MSG_PLAY_RIGHT self.print_title(s) choices = '1t2n3s4q' r = self.ui_menu(MSG_MENU_PLAY_RIGHT, choices, eof=False) if r in '1t': continue elif r in '2n': break elif r in '3s': self.print_title(hand.str_answer()) elif r in '4q': sys.exit(0) else: self.print_title(MSG_PLAY_WRONG) continue elif r in '1n': # no answer if hand.answers: self.print_title(MSG_PLAY_WRONG) continue else: hand.solved() self.print_title(MSG_PLAY_RIGHT) elif r in '2h': # show a hint if hand.answers: hand.hinted() self.print_title(hand.str_hint()) continue else: self.print_title(MSG_PLAY_NO_ANSWER) elif r in '3s': # show the answer if hand.answers: s = hand.str_answer() else: s = MSG_PLAY_NO_ANSWER self.print_title(s) elif r in ('4b' + INPUT_EOF): # back to the main menu return elif r in '5q': sys.exit(0) # this hand is end break def calculating_the_number_of_numbers(self, r, sc): """calculates how many numbers are in the user input""" numb = '' check_list = [] choices = '1234567890' r = r.split() sc = sc.split() for i in r: if i in '+-*×/÷': r.remove(i) if len(r) != len(sc): return False return True def arg_parse(): parser = argparse.ArgumentParser(description='Play the 24 Game') parser.add_argument('-c', type=int, default=4, dest='count', help='the number of integers to play with, default=4') parser.add_argument('-C', action='store_true', dest='showcard', help='show cards instead of integers under interactive mode') parser.add_argument('-d', action='store_true', dest='debug', help='enable debug output') parser.add_argument('-i', action='store_true', dest='interactive', help='interactive mode, all positional integers arguments omitted') parser.add_argument('-N', action='store_true', dest='face2ten', help='under interactive mode, set J Q K to 10, default=11,12,13') parser.add_argument('-t', type=int, default=24, dest='target', help='the game target, default=24') parser.add_argument('integers', nargs='*') r = parser.parse_args() if not r.interactive and len(r.integers) == 0: r.interactive = True return r def main(): args = arg_parse() try: if args.interactive: gc = GameConsole(args.target, args.count, args.face2ten, args.showcard) gc.main() sys.exit(0) except KeyboardInterrupt: sys.exit(1) except Exception as e: if args.debug: traceback.print_exc() else: print(str(e), file=sys.stderr) sys.exit(3) if __name__ == '__main__': main()
4
983
0
6,546
0
1,440
0
-28
203
ce74a3c506ce96d7da83678be3ac5f3605bd112f
839
py
Python
dynamodb-serverless/functions/put/handler.py
koki-nakamura22/serverless-framework-practice
b6fb96cc97ecb7a1fa167c7cccb143510466d350
[ "MIT" ]
null
null
null
dynamodb-serverless/functions/put/handler.py
koki-nakamura22/serverless-framework-practice
b6fb96cc97ecb7a1fa167c7cccb143510466d350
[ "MIT" ]
null
null
null
dynamodb-serverless/functions/put/handler.py
koki-nakamura22/serverless-framework-practice
b6fb96cc97ecb7a1fa167c7cccb143510466d350
[ "MIT" ]
null
null
null
import os import boto3 # DynamoDB object dynamodb = boto3.resource('dynamodb') table = dynamodb.Table(f"TestUsersTable-{os.environ['STAGE']}")
20.463415
95
0.588796
import json import os import boto3 from faker import Faker # DynamoDB object dynamodb = boto3.resource('dynamodb') table = dynamodb.Table(f"TestUsersTable-{os.environ['STAGE']}") def __truncate(): response = table.scan() key_names = [ x["AttributeName"] for x in table.key_schema ] delete_keys = [ { k:v for k,v in x.items() if k in key_names } for x in response["Items"] ] with table.batch_writer() as batch: for key in delete_keys: batch.delete_item(Key = key) def __put(id, name): table.put_item( Item = { "id" : id, "name" : name, } ) def put(event, context): __truncate() fake = Faker() for n in range(1, 10 + 1): __put(str(n).zfill(3), fake.name()) response = { "statusCode": 200, } return response
0
0
0
0
0
586
0
-8
113
8411765f0f08514141bd4c621bce5644bb0156cd
398
py
Python
Chapter07/4985_07_01-logs.py
mapenthusiast/QGIS-Python-Programming-Cookbook-Second-Edition
1b2fefdb09f614a2005976a451f882a198c6c9c5
[ "MIT" ]
43
2017-03-27T18:58:26.000Z
2022-03-25T15:29:45.000Z
Chapter07/4985_07_01-logs.py
mapenthusiast/QGIS-Python-Programming-Cookbook-Second-Edition
1b2fefdb09f614a2005976a451f882a198c6c9c5
[ "MIT" ]
2
2018-07-02T09:23:47.000Z
2018-08-23T13:57:41.000Z
Chapter07/4985_07_01-logs.py
mapenthusiast/QGIS-Python-Programming-Cookbook-Second-Edition
1b2fefdb09f614a2005976a451f882a198c6c9c5
[ "MIT" ]
31
2017-03-08T06:37:22.000Z
2021-12-17T21:51:30.000Z
# Using Log Files # Settings/Options/System/Environment (use custom variables) # QGIS_LOG_FILE=/qgis_data/log.txt # Restart QGIS # Message to log file: QgsLogger.logMessageToFile("This is a message to a log file.") # Message to QGIS Log Window ( yellow triangle icon in the lower right) QgsMessageLog.logMessage("This is a message from the Python Console", "Python Console", QgsMessageLog.INFO)
36.181818
107
0.776382
# Using Log Files # Settings/Options/System/Environment (use custom variables) # QGIS_LOG_FILE=/qgis_data/log.txt # Restart QGIS # Message to log file: QgsLogger.logMessageToFile("This is a message to a log file.") # Message to QGIS Log Window ( yellow triangle icon in the lower right) QgsMessageLog.logMessage("This is a message from the Python Console", "Python Console", QgsMessageLog.INFO)
0
0
0
0
0
0
0
0
0
fad016a754f61df9c72c04956901d978db0b6df6
1,500
py
Python
paddleslim/nas/ofa/utils/utils.py
zhuguiqian/PaddleSlim
c363c91c36bb9ada41f755c0ec4df3282ccdd6f0
[ "Apache-2.0" ]
null
null
null
paddleslim/nas/ofa/utils/utils.py
zhuguiqian/PaddleSlim
c363c91c36bb9ada41f755c0ec4df3282ccdd6f0
[ "Apache-2.0" ]
null
null
null
paddleslim/nas/ofa/utils/utils.py
zhuguiqian/PaddleSlim
c363c91c36bb9ada41f755c0ec4df3282ccdd6f0
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
31.914894
74
0.692667
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def compute_start_end(kernel_size, sub_kernel_size): center = kernel_size // 2 sub_center = sub_kernel_size // 2 start = center - sub_center end = center + sub_center + 1 assert end - start == sub_kernel_size return start, end def get_same_padding(kernel_size): assert isinstance(kernel_size, int) assert kernel_size % 2 > 0, "kernel size must be odd number" return kernel_size // 2 def convert_to_list(value, n): return [value, ] * n def search_idx(num, sorted_nestlist): max_num = -1 max_idx = -1 for idx in range(len(sorted_nestlist)): task_ = sorted_nestlist[idx] max_num = task_[-1] max_idx = len(task_) - 1 for phase_idx in range(len(task_)): if num <= task_[phase_idx]: return idx, phase_idx assert num > max_num return len(sorted_nestlist) - 1, max_idx
0
0
0
0
0
793
0
0
92
9e42668859a3e942dd8cf341d42cb36a048ac54f
3,715
py
Python
backend/openbd.py
n-yU/shisho
dc99a2d90dde3599af62a6a59a4aabf6b5a72011
[ "MIT" ]
1
2021-08-20T05:34:31.000Z
2021-08-20T05:34:31.000Z
backend/openbd.py
n-yU/shisho
dc99a2d90dde3599af62a6a59a4aabf6b5a72011
[ "MIT" ]
null
null
null
backend/openbd.py
n-yU/shisho
dc99a2d90dde3599af62a6a59a4aabf6b5a72011
[ "MIT" ]
null
null
null
from logging import getLogger, StreamHandler, DEBUG, Formatter # logger = getLogger(__name__) handler = StreamHandler() handler.setLevel(DEBUG) logger.setLevel(DEBUG) logger.addHandler(handler) logger.propagate = False handler.setFormatter(Formatter('[openBD] %(asctime)s - %(message)s'))
35.04717
155
0.602692
from logging import getLogger, StreamHandler, DEBUG, Formatter from typing import Dict, Union import re import json import requests import MeCab from neologdn import normalize # ロガー設定 logger = getLogger(__name__) handler = StreamHandler() handler.setLevel(DEBUG) logger.setLevel(DEBUG) logger.addHandler(handler) logger.propagate = False handler.setFormatter(Formatter('[openBD] %(asctime)s - %(message)s')) class OpenBD: # openBD: https://openbd.jp/ def __init__(self, isbn10: int, mecab: MeCab.Tagger): """"インスタンス生成時の初期化処理 Args: isbn10 (int): OpenBDへリクエストする書籍のISBN-10 mecab (MeCab.Tagger): MeCab設定(辞書等) """ self.isbn10 = isbn10 # 書籍のISBN-10 self.result = self.get_json_from_openbd() # openBDへのリクエスト結果 self.mecab = mecab # MeCab設定 def get_json_from_openbd(self) -> str: """openBDから書籍情報取得 Returns: str: openBDリクエスト結果 """ # 指定ISBN-10の書籍情報を取得する, openBDエンドポイント openbd_endpoint = 'https://api.openbd.jp/v1/get?isbn={0}'.format(self.isbn10) try: response = requests.get(openbd_endpoint) response.raise_for_status() except requests.RequestException as e: # ステータスコード200番台以外 -> エラーログ出力 logger.debug(e) return 'FAILED' openbd = json.loads(response.text)[0] # 書籍情報 from openBD # openBDで書籍情報が見つからないケース if openbd is None: return 'NOT FOUND' self.openbd = openbd return 'OK' def get_std_info(self) -> Union[Dict[str, str], bool]: if self.result != 'OK': logger.debug('openBDからの書籍情報取得に失敗しているため基本情報を取得できません') return False # 基本情報取得 title = self.openbd['summary']['title'] # タイトル publisher = self.openbd['summary']['publisher'] # 出版社 authors = self.openbd['summary']['author'] # 著者 cover = self.openbd['summary']['cover'] # 表紙画像URL # ISBN-10ベース情報 isbn10 = self.isbn10 amazon = 'https://www.amazon.co.jp/dp/{0}'.format(isbn10) # 出版日: 形式が異なるため一時変数に代入後処理 tmp_pubdate = self.openbd['summary']['pubdate'] if len(tmp_pubdate) == 8: # pubdate: yyyyMMdd pubdate = '{0}-{1}-{2}'.format(tmp_pubdate[:4], tmp_pubdate[4:6], tmp_pubdate[6:]) else: # pubdare: yyyy-MM pubdate = '{0}-01'.format(tmp_pubdate) # 書籍詳細(目次や概要など)の取得 if self.openbd['onix']['CollateralDetail'].get('TextContent'): # 複数ある場合は連結 detail = ' '.join([text_content['Text'].replace('\n', ' ') for text_content in self.openbd['onix']['CollateralDetail']['TextContent']]) else: # 詳細が存在しない場合 -> 未登録とする detail = '未登録' # 書籍説明(タイトル,出版社,著者,詳細を連結した文章)テキスト(処理前) # neologdnによる正規化 -> 数字削除(目次対策) tmp_description = re.sub(r'[0-9]+', ' ', normalize('{0} {1} {2} {3}'.format(title, publisher, authors, detail))) # 書籍説明テキストの分かち書きと品詞フィルタリング description_word_list = [] # 書籍説明テキスト対象単語 for line in self.mecab.parse(tmp_description).splitlines(): chunks = line.split('\t') if len(chunks) > 3 and (chunks[3].startswith('動詞') or chunks[3].startswith('形容詞') or chunks[3].startswith('名詞')): # 動詞or形容詞or名詞 -> 訓練対象 description_word_list.append(chunks[0]) # 書籍説明テキスト(処理後): Doc2Vec訓練時に書籍を表す文章として使用 description = ' '.join(description_word_list) info = dict(amazon=amazon, isbn10=isbn10, cover=cover, title=title, publisher=publisher, authors=authors, pubdate=pubdate, description=description) return info
1,134
0
0
2,909
0
0
0
-19
155
f7fe38c9a4b8c5796670a8aa33b5cb1b8bbd7c39
5,246
py
Python
src/jetson/Sensors/sensors_simple.py
ichalkiad/VW_challenge
333222010ecf3d1ca4a0e181239f761c975453e9
[ "Apache-2.0" ]
1
2017-08-16T08:42:49.000Z
2017-08-16T08:42:49.000Z
src/jetson/Sensors/sensors_simple.py
ichalkiad/VW_challenge
333222010ecf3d1ca4a0e181239f761c975453e9
[ "Apache-2.0" ]
4
2017-08-09T23:01:30.000Z
2017-08-24T16:44:13.000Z
src/jetson/Sensors/sensors_simple.py
yhalk/vw_challenge_ECR
c1ff50070d0f7367ccfbf473c69e90fd2be5e85e
[ "Apache-2.0" ]
null
null
null
import ev3dev.ev3 as ev3 import sys #Create camera sensor object camera = OnBoardCamera()
43
280
0.609989
import paho.mqtt.client as mqtt import ev3dev.ev3 as ev3 import ctypes import numpy as np import sys import cv2 from Sensors.mpu6050.mpu6050 import MPU6050 import smbus from Sensors.odometry import Odometry import sys, serial from serial.tools import list_ports class Sensor(object): def __init__(self, *args, **kwargs): pass def read(self): raise ValueError('This function must be implemented by ') class IR_teensy(Sensor): def __init__(self): self.ports = list(list_ports.comports()) # get all the connected serial devices self.serial_port = serial.Serial('/dev/'+self.ports[0].name) # connect to the first def debug(self): ''' Use if cannot connect to the port This function will print all found serial devices and prints the name and index of the port ''' for i, item in enumerate(self.ports): print(i + ' : ' + item.name) def read(self): ''' Reads the current value from the teensy Returns: Distance in cm ''' measurement = self.serial_port.readline() # read the measurement measurement = measurement.decode('utf-8').split('\r') # change it to utf and split it on funny characters return measurement[0] # only return the actual measurment class IMU2(Sensor): def __init__(self, bus='/dev/i2c-1', address=0x68): self.bus = smbus.SMBus(1) self.address = address self.mpu = MPU6050(self.bus,self.address, 'IMU') def read(self): ''' Reads the current values from the IMU using the mpu library Returns: tuple containing: pitch, roll, gyro x,y,z, accel x,y,z these values are scaled and NOT raw ''' return self.mpu.read_all() class IMU(Sensor): def __init__(self, path_to_shared_lib_mpu='/home/nvidia/jetson-robot/IOInterface/jetson/Sensors/mpu/libmpu.so', bus_filename='/dev/i2c-1', bus_adresses=[0x68, 0x69]): bus_filename = bus_filename.encode('ascii') self.libmpu = ctypes.cdll.LoadLibrary(path_to_shared_lib_mpu) self.file_descriptors = [self.libmpu.initIMU(bus_filename, bus_adress) for bus_adress in bus_adresses] self.data_c_arrays = [(ctypes.c_int16*7)() for _ in range(len(bus_adresses))] self.name = 'imu' self.data_sources = ["temperature", "acceleration", "gyro"] def read(self): data_dict = {} for idx, (file_descriptor, data_c_array) in enumerate(zip(self.file_descriptors, self.data_c_arrays)): self.libmpu.readIMU(file_descriptor, data_c_array) data_np_array = np.array(data_c_array) data_dict['temperature_{}'.format(idx)] = data_np_array[0] / 340.0 + 36.53 data_dict['acceleration_{}'.format(idx)] = np.array([int(data_np_array[1]), int(data_np_array[2]), int(data_np_array[3]), ]) data_dict['gyro_{}'.format(idx)] = np.array([int(data_np_array[4]), int(data_np_array[5]), int(data_np_array[6]), ]) return data_dict def read_sensor_nr(self, sensor_nr): # TODO: Ask Max, if the magic values for temperature conversion are correct. data_dict = {} self.libmpu.readIMU(self.file_descriptors[sensor_nr], self.data_c_arrays[sensor_nr]) data_np_array = np.array(self.data_c_arrays[sensor_nr]) data_dict['temperature'] = data_np_array[0] / 340.0 + 36.53 data_dict['acceleration'] = np.array([int(data_np_array[1]), int(data_np_array[2]), int(data_np_array[3])]) data_dict['gyro'] = np.array([int(data_np_array[4]), int(data_np_array[5]), int(data_np_array[6])]) return data_dict def get_data_sources(self): return self.data_sources class OnBoardCamera(Sensor): def __init__(self): self.name = 'onBoardCamera' self.cap = cv2.VideoCapture("nvcamerasrc ! video/x-raw(memory:NVMM), width=(int)160, height=(int)120, format=(string)I420, framerate=(fraction)30/1 ! nvvidconv flip-method=2 ! video/x-raw, format=(string)I420 ! videoconvert ! video/x-raw, format=(string)BGR ! appsink") #self.cap = cv2.VideoCapture("nvcamerasrc ! video/x-raw(memory:NVMM), width=(int)(160), height=(int)(120),format=(string)I420, framerate=(fraction)2/1 ! nvvidconv flip-method=0 ! video/x-raw, format=(string)BGRx ! videoconvert ! video/x-raw, format=(string)BGR ! appsink") def read(self): if self.cap.isOpened(): ret_val, frame = self.cap.read(); frame = cv2.flip(frame,0) frame = cv2.flip(frame,1) else: raise ValueError('Camera not opened. Sorry this message is not really helpful, blame openCV :-) ') return {'onBoardCamera':frame} def clean_buf(self): for i in range(5): self.cap.grab() #Create camera sensor object camera = OnBoardCamera()
0
0
0
4,810
0
0
0
28
313
790f64346cac505157953135acdaf67a66ffe6fe
23,905
py
Python
mphys/integrated_forces.py
timryanb/mphys
74560a163034a0006a17811ba1206bab00f1f775
[ "Apache-2.0" ]
8
2022-02-22T18:08:56.000Z
2022-03-14T13:32:46.000Z
mphys/integrated_forces.py
timryanb/mphys
74560a163034a0006a17811ba1206bab00f1f775
[ "Apache-2.0" ]
15
2022-02-22T15:10:15.000Z
2022-03-23T16:15:09.000Z
mphys/integrated_forces.py
timryanb/mphys
74560a163034a0006a17811ba1206bab00f1f775
[ "Apache-2.0" ]
8
2022-02-22T18:08:35.000Z
2022-03-17T16:21:08.000Z
if __name__ == '__main__': check_integrated_surface_force_partials()
53.004435
110
0.474001
import numpy as np import openmdao.api as om class IntegratedSurfaceForces(om.ExplicitComponent): def setup(self): self.add_input('aoa',desc = 'angle of attack', units='rad',tags=['mphys_input']) self.add_input('yaw',desc = 'yaw angle',units='rad',tags=['mphys_input']) self.add_input('ref_area', val = 1.0,tags=['mphys_input']) self.add_input('moment_center',shape=3,tags=['mphys_input']) self.add_input('ref_length', val = 1.0,tags=['mphys_input']) self.add_input('q_inf', val = 1.0,tags=['mphys_input']) self.add_input('x_aero', shape_by_conn=True, distributed=True, desc = 'surface coordinates', tags=['mphys_coupling']) self.add_input('f_aero', shape_by_conn=True, distributed=True, desc = 'dimensional forces at nodes', tags=['mphys_coupling']) self.add_output('C_L', desc = 'Lift coefficient', tags=['mphys_result']) self.add_output('C_D', desc = 'Drag coefficient', tags=['mphys_result']) self.add_output('C_X', desc = 'X Force coefficient', tags=['mphys_result']) self.add_output('C_Y', desc = 'Y Force coefficient', tags=['mphys_result']) self.add_output('C_Z', desc = 'Z Force coefficient', tags=['mphys_result']) self.add_output('CM_X', desc = 'X Moment coefficient', tags=['mphys_result']) self.add_output('CM_Y', desc = 'Y Moment coefficient', tags=['mphys_result']) self.add_output('CM_Z', desc = 'Z Moment coefficient', tags=['mphys_result']) self.add_output('Lift', desc = 'Total Lift', tags=['mphys_result']) self.add_output('Drag', desc = 'Total Drag', tags=['mphys_result']) self.add_output('F_X', desc = 'Total X Force', tags=['mphys_result']) self.add_output('F_Y', desc = 'Total Y Force', tags=['mphys_result']) self.add_output('F_Z', desc = 'Total Z Force', tags=['mphys_result']) self.add_output('M_X', desc = 'Total X Moment', tags=['mphys_result']) self.add_output('M_Y', desc = 'Total Y Moment', tags=['mphys_result']) self.add_output('M_Z', desc = 'Total Z Moment', tags=['mphys_result']) def compute(self,inputs,outputs): aoa = inputs['aoa'] yaw = inputs['yaw'] area = inputs['ref_area'] q_inf = inputs['q_inf'] xc = inputs['moment_center'][0] yc = inputs['moment_center'][1] zc = inputs['moment_center'][2] c = inputs['ref_length'] x = inputs['x_aero'][0::3] y = inputs['x_aero'][1::3] z = inputs['x_aero'][2::3] fx = inputs['f_aero'][0::3] fy = inputs['f_aero'][1::3] fz = inputs['f_aero'][2::3] fx_total = self.comm.allreduce(np.sum(fx)) fy_total = self.comm.allreduce(np.sum(fy)) fz_total = self.comm.allreduce(np.sum(fz)) outputs['F_X'] = fx_total outputs['F_Y'] = fy_total outputs['F_Z'] = fz_total outputs['C_X'] = fx_total / (q_inf * area) outputs['C_Y'] = fy_total / (q_inf * area) outputs['C_Z'] = fz_total / (q_inf * area) outputs['Lift'] = -fx_total * np.sin(aoa) + fz_total * np.cos(aoa) outputs['Drag'] = ( fx_total * np.cos(aoa) * np.cos(yaw) - fy_total * np.sin(yaw) + fz_total * np.sin(aoa) * np.cos(yaw) ) outputs['C_L'] = outputs['Lift'] / (q_inf * area) outputs['C_D'] = outputs['Drag'] / (q_inf * area) m_x = self.comm.allreduce( np.dot(fz,(y-yc)) - np.dot(fy,(z-zc))) m_y = self.comm.allreduce(-np.dot(fz,(x-xc)) + np.dot(fx,(z-zc))) m_z = self.comm.allreduce( np.dot(fy,(x-xc)) - np.dot(fx,(y-yc))) outputs['M_X'] = m_x outputs['M_Y'] = m_y outputs['M_Z'] = m_z outputs['CM_X'] = m_x / (q_inf * area * c) outputs['CM_Y'] = m_y / (q_inf * area * c) outputs['CM_Z'] = m_z / (q_inf * area * c) def compute_jacvec_product(self, inputs, d_inputs, d_outputs, mode): aoa = inputs['aoa'] yaw = inputs['yaw'] area = inputs['ref_area'] q_inf = inputs['q_inf'] xc = inputs['moment_center'][0] yc = inputs['moment_center'][1] zc = inputs['moment_center'][2] c = inputs['ref_length'] x = inputs['x_aero'][0::3] y = inputs['x_aero'][1::3] z = inputs['x_aero'][2::3] fx = inputs['f_aero'][0::3] fy = inputs['f_aero'][1::3] fz = inputs['f_aero'][2::3] fx_total = self.comm.allreduce(np.sum(fx)) fy_total = self.comm.allreduce(np.sum(fy)) fz_total = self.comm.allreduce(np.sum(fz)) lift = -fx_total * np.sin(aoa) + fz_total * np.cos(aoa) drag = ( fx_total * np.cos(aoa) * np.cos(yaw) - fy_total * np.sin(yaw) + fz_total * np.sin(aoa) * np.cos(yaw) ) m_x = self.comm.allreduce( np.dot(fz,(y-yc)) - np.dot(fy,(z-zc))) m_y = self.comm.allreduce(-np.dot(fz,(x-xc)) + np.dot(fx,(z-zc))) m_z = self.comm.allreduce( np.dot(fy,(x-xc)) - np.dot(fx,(y-yc))) if mode == 'fwd': if 'aoa' in d_inputs: daoa_rad = d_inputs['aoa'] if 'Lift' in d_outputs or 'C_L' in d_outputs: d_lift_d_aoa = ( - fx_total * np.cos(aoa) * daoa_rad - fz_total * np.sin(aoa) * daoa_rad ) if 'Lift' in d_outputs: d_outputs['Lift'] += d_lift_d_aoa if 'C_L' in d_outputs: d_outputs['C_L'] += d_lift_d_aoa / (q_inf * area) if 'Drag' in d_outputs or 'C_D' in d_outputs: d_drag_d_aoa = ( fx_total * (-np.sin(aoa) * daoa_rad) * np.cos(yaw) + fz_total * ( np.cos(aoa) * daoa_rad) * np.cos(yaw)) if 'Drag' in d_outputs: d_outputs['Drag'] += d_drag_d_aoa if 'C_D' in d_outputs: d_outputs['C_D'] += d_drag_d_aoa / (q_inf * area) if 'yaw' in d_inputs: dyaw_rad = d_inputs['yaw'] if 'Drag' in d_outputs or 'C_D' in d_outputs: d_drag_d_yaw = ( fx_total * np.cos(aoa) * (-np.sin(yaw) * dyaw_rad) - fy_total * np.cos(yaw) * dyaw_rad + fz_total * np.sin(aoa) * (-np.sin(yaw) * dyaw_rad) ) if 'Drag' in d_outputs: d_outputs['Drag'] += d_drag_d_yaw if 'C_D' in d_outputs: d_outputs['C_D'] += d_drag_d_yaw / (q_inf * area) if 'ref_area' in d_inputs: d_nondim = - d_inputs['ref_area'] / (q_inf * area**2.0) if 'C_X' in d_outputs: d_outputs['C_X'] += fx_total * d_nondim if 'C_Y' in d_outputs: d_outputs['C_Y'] += fy_total * d_nondim if 'C_Z' in d_outputs: d_outputs['C_Z'] += fz_total * d_nondim if 'C_L' in d_outputs: d_outputs['C_L'] += lift * d_nondim if 'C_D' in d_outputs: d_outputs['C_D'] += drag * d_nondim if 'CM_X' in d_outputs: d_outputs['CM_X'] += m_x * d_nondim / c if 'CM_X' in d_outputs: d_outputs['CM_Y'] += m_y * d_nondim / c if 'CM_Z' in d_outputs: d_outputs['CM_Z'] += m_z * d_nondim / c if 'moment_center' in d_inputs: dxc = d_inputs['moment_center'][0] dyc = d_inputs['moment_center'][1] dzc = d_inputs['moment_center'][2] if 'M_X' in d_outputs: d_outputs['M_X'] += -fz_total * dyc + fy_total * dzc if 'M_Y' in d_outputs: d_outputs['M_Y'] += fz_total * dxc - fx_total * dzc if 'M_Z' in d_outputs: d_outputs['M_Z'] += -fy_total * dxc + fx_total * dyc if 'CM_X' in d_outputs: d_outputs['CM_X'] += (-fz_total * dyc + fy_total * dzc) / (q_inf * area * c) if 'CM_Y' in d_outputs: d_outputs['CM_Y'] += ( fz_total * dxc - fx_total * dzc) / (q_inf * area * c) if 'CM_Z' in d_outputs: d_outputs['CM_Z'] += (-fy_total * dxc + fx_total * dyc) / (q_inf * area * c) if 'ref_length' in d_inputs: d_nondim = - d_inputs['ref_length'] / (q_inf * area * c**2.0) if 'CM_X' in d_outputs: d_outputs['CM_X'] += m_x * d_nondim if 'CM_X' in d_outputs: d_outputs['CM_Y'] += m_y * d_nondim if 'CM_Z' in d_outputs: d_outputs['CM_Z'] += m_z * d_nondim if 'q_inf' in d_inputs: d_nondim = - d_inputs['q_inf'] / (q_inf**2.0 * area) if 'C_X' in d_outputs: d_outputs['C_X'] += fx_total * d_nondim if 'C_Y' in d_outputs: d_outputs['C_Y'] += fy_total * d_nondim if 'C_Z' in d_outputs: d_outputs['C_Z'] += fz_total * d_nondim if 'C_L' in d_outputs: d_outputs['C_L'] += lift * d_nondim if 'C_D' in d_outputs: d_outputs['C_D'] += drag * d_nondim if 'CM_X' in d_outputs: d_outputs['CM_X'] += m_x * d_nondim / c if 'CM_X' in d_outputs: d_outputs['CM_Y'] += m_y * d_nondim / c if 'CM_Z' in d_outputs: d_outputs['CM_Z'] += m_z * d_nondim / c if 'x_aero' in d_inputs: dx = d_inputs['x_aero'][0::3] dy = d_inputs['x_aero'][1::3] dz = d_inputs['x_aero'][2::3] if 'M_X' in d_outputs: d_outputs['M_X'] += np.dot(fz,dy) - np.dot(fy,dz) if 'M_Y' in d_outputs: d_outputs['M_Y'] += -np.dot(fz,dx) + np.dot(fx,dz) if 'M_Z' in d_outputs: d_outputs['M_Z'] += np.dot(fy,dx) - np.dot(fx,dy) if 'CM_X' in d_outputs: d_outputs['CM_X'] += ( np.dot(fz,dy) - np.dot(fy,dz)) / (q_inf * area * c) if 'CM_Y' in d_outputs: d_outputs['CM_Y'] += (-np.dot(fz,dx) + np.dot(fx,dz)) / (q_inf * area * c) if 'CM_Z' in d_outputs: d_outputs['CM_Z'] += ( np.dot(fy,dx) - np.dot(fx,dy)) / (q_inf * area * c) if 'f_aero' in d_inputs: dfx = d_inputs['f_aero'][0::3] dfy = d_inputs['f_aero'][1::3] dfz = d_inputs['f_aero'][2::3] dfx_total = np.sum(dfx) dfy_total = np.sum(dfy) dfz_total = np.sum(dfz) if 'F_X' in d_outputs: d_outputs['F_X'] += dfx_total if 'F_Y' in d_outputs: d_outputs['F_Y'] += dfy_total if 'F_Z' in d_outputs: d_outputs['F_Z'] += dfz_total if 'C_X' in d_outputs: d_outputs['C_X'] += dfx_total / (q_inf * area) if 'C_Y' in d_outputs: d_outputs['C_Y'] += dfy_total / (q_inf * area) if 'C_Z' in d_outputs: d_outputs['C_Z'] += dfz_total / (q_inf * area) if 'Lift' in d_outputs: d_outputs['Lift'] += -dfx_total * np.sin(aoa) + dfz_total * np.cos(aoa) if 'Drag' in d_outputs: d_outputs['Drag'] += ( dfx_total * np.cos(aoa) * np.cos(yaw) - dfy_total * np.sin(yaw) + dfz_total * np.sin(aoa) * np.cos(yaw) ) if 'C_L' in d_outputs: d_outputs['C_L'] += (-dfx_total * np.sin(aoa) + dfz_total * np.cos(aoa)) / (q_inf * area) if 'C_D' in d_outputs: d_outputs['C_D'] += ( dfx_total * np.cos(aoa) * np.cos(yaw) - dfy_total * np.sin(yaw) + dfz_total * np.sin(aoa) * np.cos(yaw) ) / (q_inf * area) if 'M_X' in d_outputs: d_outputs['M_X'] += np.dot(dfz,(y-yc)) - np.dot(dfy,(z-zc)) if 'M_Y' in d_outputs: d_outputs['M_Y'] += -np.dot(dfz,(x-xc)) + np.dot(dfx,(z-zc)) if 'M_Z' in d_outputs: d_outputs['M_Z'] += np.dot(dfy,(x-xc)) - np.dot(dfx,(y-yc)) if 'CM_X' in d_outputs: d_outputs['CM_X'] += ( np.dot(dfz,(y-yc)) - np.dot(dfy,(z-zc))) / (q_inf * area * c) if 'CM_Y' in d_outputs: d_outputs['CM_Y'] += (-np.dot(dfz,(x-xc)) + np.dot(dfx,(z-zc))) / (q_inf * area * c) if 'CM_Z' in d_outputs: d_outputs['CM_Z'] += ( np.dot(dfy,(x-xc)) - np.dot(dfx,(y-yc))) / (q_inf * area * c) elif mode == 'rev': if 'aoa' in d_inputs: if 'Lift' in d_outputs or 'C_L' in d_outputs: d_lift = d_outputs['Lift'] if 'Lift' in d_outputs else 0.0 d_cl = d_outputs['C_L'] if 'C_L' in d_outputs else 0.0 d_inputs['aoa'] += ( - fx_total * np.cos(aoa) - fz_total * np.sin(aoa) ) * (d_lift + d_cl / (q_inf * area)) if 'Drag' in d_outputs or 'C_D' in d_outputs: d_drag = d_outputs['Drag'] if 'Drag' in d_outputs else 0.0 d_cd = d_outputs['C_D'] if 'C_D' in d_outputs else 0.0 d_inputs['aoa'] += ( fx_total * (-np.sin(aoa)) * np.cos(yaw) + fz_total * ( np.cos(aoa)) * np.cos(yaw) ) * (d_drag + d_cd / (q_inf * area)) if 'yaw' in d_inputs: if 'Drag' in d_outputs or 'C_D' in d_outputs: d_drag = d_outputs['Drag'] if 'Drag' in d_outputs else 0.0 d_cd = d_outputs['C_D'] if 'C_D' in d_outputs else 0.0 d_inputs['yaw'] += ( fx_total * np.cos(aoa) * (-np.sin(yaw)) - fy_total * np.cos(yaw) + fz_total * np.sin(aoa) * (-np.sin(yaw)) ) * (d_drag + d_cd / (q_inf * area)) if 'ref_area' in d_inputs: d_nondim = - 1.0 / (q_inf * area**2.0) if 'C_X' in d_outputs: d_inputs['ref_area'] += d_outputs['C_X'] * fx_total * d_nondim if 'C_Y' in d_outputs: d_inputs['ref_area'] += d_outputs['C_Y'] * fy_total * d_nondim if 'C_Z' in d_outputs: d_inputs['ref_area'] += d_outputs['C_Z'] * fz_total * d_nondim if 'C_L' in d_outputs: d_inputs['ref_area'] += d_outputs['C_L'] * lift * d_nondim if 'C_D' in d_outputs: d_inputs['ref_area'] += d_outputs['C_D'] * drag * d_nondim if 'CM_X' in d_outputs: d_inputs['ref_area'] += d_outputs['CM_X'] * m_x * d_nondim / c if 'CM_X' in d_outputs: d_inputs['ref_area'] += d_outputs['CM_Y'] * m_y * d_nondim / c if 'CM_Z' in d_outputs: d_inputs['ref_area'] += d_outputs['CM_Z'] * m_z * d_nondim / c if 'moment_center' in d_inputs: if 'M_X' in d_outputs: d_inputs['moment_center'][1] += -fz_total * d_outputs['M_X'] d_inputs['moment_center'][2] += fy_total * d_outputs['M_X'] if 'M_Y' in d_outputs: d_inputs['moment_center'][0] += fz_total * d_outputs['M_Y'] d_inputs['moment_center'][2] += -fx_total * d_outputs['M_Y'] if 'M_Z' in d_outputs: d_inputs['moment_center'][0] += -fy_total * d_outputs['M_Z'] d_inputs['moment_center'][1] += fx_total * d_outputs['M_Z'] if 'CM_X' in d_outputs: d_inputs['moment_center'][1] += -fz_total * d_outputs['CM_X'] / (q_inf * area * c) d_inputs['moment_center'][2] += fy_total * d_outputs['CM_X'] / (q_inf * area * c) if 'CM_Y' in d_outputs: d_inputs['moment_center'][0] += fz_total * d_outputs['CM_Y'] / (q_inf * area * c) d_inputs['moment_center'][2] += -fx_total * d_outputs['CM_Y'] / (q_inf * area * c) if 'CM_Z' in d_outputs: d_inputs['moment_center'][0] += -fy_total * d_outputs['CM_Z'] / (q_inf * area * c) d_inputs['moment_center'][1] += fx_total * d_outputs['CM_Z'] / (q_inf * area * c) if 'ref_length' in d_inputs: d_nondim = - 1.0 / (q_inf * area * c**2.0) if 'CM_X' in d_outputs: d_inputs['ref_length'] += m_x * d_nondim * d_outputs['CM_X'] if 'CM_X' in d_outputs: d_inputs['ref_length'] += m_y * d_nondim * d_outputs['CM_Y'] if 'CM_Z' in d_outputs: d_inputs['ref_length'] += m_z * d_nondim * d_outputs['CM_Z'] if 'q_inf' in d_inputs: d_nondim = - 1.0 / (q_inf**2.0 * area) if 'C_X' in d_outputs: d_inputs['q_inf'] += d_outputs['C_X'] * fx_total * d_nondim if 'C_Y' in d_outputs: d_inputs['q_inf'] += d_outputs['C_Y'] * fy_total * d_nondim if 'C_Z' in d_outputs: d_inputs['q_inf'] += d_outputs['C_Z'] * fz_total * d_nondim if 'C_L' in d_outputs: d_inputs['q_inf'] += d_outputs['C_L'] * lift * d_nondim if 'C_D' in d_outputs: d_inputs['q_inf'] += d_outputs['C_D'] * drag * d_nondim if 'CM_X' in d_outputs: d_inputs['q_inf'] += d_outputs['CM_X'] * m_x * d_nondim / c if 'CM_X' in d_outputs: d_inputs['q_inf'] += d_outputs['CM_Y'] * m_y * d_nondim / c if 'CM_Z' in d_outputs: d_inputs['q_inf'] += d_outputs['CM_Z'] * m_z * d_nondim / c if 'x_aero' in d_inputs: nondim = 1.0 / (q_inf * area * c) dm_x = d_outputs['M_X'] if 'M_X' in d_outputs else 0.0 dm_y = d_outputs['M_Y'] if 'M_Y' in d_outputs else 0.0 dm_z = d_outputs['M_Z'] if 'M_Z' in d_outputs else 0.0 dcm_x = d_outputs['CM_X']*nondim if 'CM_X' in d_outputs else 0.0 dcm_y = d_outputs['CM_Y']*nondim if 'CM_Y' in d_outputs else 0.0 dcm_z = d_outputs['CM_Z']*nondim if 'CM_Z' in d_outputs else 0.0 d_inputs['x_aero'][0::3] += -fz * (dm_y + dcm_y) + fy * (dm_z + dcm_z) d_inputs['x_aero'][1::3] += fz * (dm_x + dcm_x) - fx * (dm_z + dcm_z) d_inputs['x_aero'][2::3] += -fy * (dm_x + dcm_x) + fx * (dm_y + dcm_y) if 'f_aero' in d_inputs: if 'F_X' in d_outputs: d_inputs['f_aero'][0::3] += d_outputs['F_X'] if 'F_Y' in d_outputs: d_inputs['f_aero'][1::3] += d_outputs['F_Y'] if 'F_Z' in d_outputs: d_inputs['f_aero'][2::3] += d_outputs['F_Z'] if 'C_X' in d_outputs: d_inputs['f_aero'][0::3] += d_outputs['C_X'] / (q_inf * area) if 'C_Y' in d_outputs: d_inputs['f_aero'][1::3] += d_outputs['C_Y'] / (q_inf * area) if 'C_Z' in d_outputs: d_inputs['f_aero'][2::3] += d_outputs['C_Z'] / (q_inf * area) if 'Lift' in d_outputs: d_inputs['f_aero'][0::3] += -np.sin(aoa) * d_outputs['Lift'] d_inputs['f_aero'][2::3] += np.cos(aoa) * d_outputs['Lift'] if 'Drag' in d_outputs: d_inputs['f_aero'][0::3] += np.cos(aoa) * np.cos(yaw) * d_outputs['Drag'] d_inputs['f_aero'][1::3] += -np.sin(yaw) * d_outputs['Drag'] d_inputs['f_aero'][2::3] += np.sin(aoa) * np.cos(yaw) * d_outputs['Drag'] if 'C_L' in d_outputs: d_inputs['f_aero'][0::3] += -np.sin(aoa) * d_outputs['C_L'] / (q_inf * area) d_inputs['f_aero'][2::3] += np.cos(aoa) * d_outputs['C_L'] / (q_inf * area) if 'C_D' in d_outputs: d_inputs['f_aero'][0::3] += np.cos(aoa) * np.cos(yaw) * d_outputs['C_D'] / (q_inf * area) d_inputs['f_aero'][1::3] += -np.sin(yaw) * d_outputs['C_D'] / (q_inf * area) d_inputs['f_aero'][2::3] += np.sin(aoa) * np.cos(yaw) * d_outputs['C_D'] / (q_inf * area) if 'M_X' in d_outputs: d_inputs['f_aero'][1::3] += -(z-zc) * d_outputs['M_X'] d_inputs['f_aero'][2::3] += (y-yc) * d_outputs['M_X'] if 'M_Y' in d_outputs: d_inputs['f_aero'][0::3] += (z-zc) * d_outputs['M_Y'] d_inputs['f_aero'][2::3] += -(x-xc) * d_outputs['M_Y'] if 'M_Z' in d_outputs: d_inputs['f_aero'][0::3] += -(y-yc) * d_outputs['M_Z'] d_inputs['f_aero'][1::3] += (x-xc) * d_outputs['M_Z'] if 'CM_X' in d_outputs: d_inputs['f_aero'][1::3] += -(z-zc) * d_outputs['CM_X'] / (q_inf * area * c) d_inputs['f_aero'][2::3] += (y-yc) * d_outputs['CM_X'] / (q_inf * area * c) if 'CM_Y' in d_outputs: d_inputs['f_aero'][0::3] += (z-zc) * d_outputs['CM_Y'] / (q_inf * area * c) d_inputs['f_aero'][2::3] += -(x-xc) * d_outputs['CM_Y'] / (q_inf * area * c) if 'CM_Z' in d_outputs: d_inputs['f_aero'][0::3] += -(y-yc) * d_outputs['CM_Z'] / (q_inf * area * c) d_inputs['f_aero'][1::3] += (x-xc) * d_outputs['CM_Z'] / (q_inf * area * c) def check_integrated_surface_force_partials(): nnodes = 3 prob = om.Problem() ivc = om.IndepVarComp() ivc.add_output('aoa',val=45.0, units='deg') ivc.add_output('yaw',val=135.0, units='deg') ivc.add_output('ref_area',val=0.2) ivc.add_output('moment_center',shape=3,val=np.zeros(3)) ivc.add_output('ref_length', val = 3.0) ivc.add_output('q_inf',val=10.0) ivc.add_output('x_aero',shape=3*nnodes,val=np.random.rand(3*nnodes),distributed=True) ivc.add_output('f_aero',shape=3*nnodes,val=np.random.rand(3*nnodes),distributed=True) prob.model.add_subsystem('ivc',ivc,promotes_outputs=['*']) prob.model.add_subsystem('forces',IntegratedSurfaceForces(), promotes_inputs=['*']) prob.setup(force_alloc_complex=True) prob.run_model() prob.check_partials(compact_print=True, method='cs') if __name__ == '__main__': check_integrated_surface_force_partials()
0
0
0
22,882
0
858
0
1
90
7c3b77cba219a97b12762ac1a37f632c5f68d380
11,331
py
Python
platformio/project/commands/init.py
ufo2011/platformio-core
0ceae62701731f8b32c34d7993a34dea34aea59c
[ "Apache-2.0" ]
null
null
null
platformio/project/commands/init.py
ufo2011/platformio-core
0ceae62701731f8b32c34d7993a34dea34aea59c
[ "Apache-2.0" ]
null
null
null
platformio/project/commands/init.py
ufo2011/platformio-core
0ceae62701731f8b32c34d7993a34dea34aea59c
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2014-present PlatformIO <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=line-too-long,too-many-arguments,too-many-locals
31.828652
119
0.662519
# Copyright (c) 2014-present PlatformIO <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=line-too-long,too-many-arguments,too-many-locals import json import os import click from platformio import fs from platformio.package.commands.install import install_project_dependencies from platformio.package.manager.platform import PlatformPackageManager from platformio.platform.exception import UnknownBoard from platformio.project.config import ProjectConfig from platformio.project.generator import ProjectGenerator from platformio.project.helpers import is_platformio_project def validate_boards(ctx, param, value): # pylint: disable=W0613 pm = PlatformPackageManager() for id_ in value: try: pm.board_config(id_) except UnknownBoard: raise click.BadParameter( "`%s`. Please search for board ID using `platformio boards` " "command" % id_ ) return value @click.command("init", short_help="Initialize a project or update existing") @click.option( "--project-dir", "-d", default=os.getcwd, type=click.Path( exists=True, file_okay=False, dir_okay=True, writable=True, resolve_path=True ), ) @click.option("-b", "--board", multiple=True, metavar="ID", callback=validate_boards) @click.option("--ide", type=click.Choice(ProjectGenerator.get_supported_ides())) @click.option("-e", "--environment", help="Update existing environment") @click.option("-O", "--project-option", multiple=True) @click.option("--env-prefix", default="") @click.option("--no-install-dependencies", is_flag=True) @click.option("-s", "--silent", is_flag=True) def project_init_cmd( project_dir, board, ide, environment, project_option, env_prefix, no_install_dependencies, silent, ): is_new_project = not is_platformio_project(project_dir) if is_new_project: if not silent: print_header(project_dir) init_base_project(project_dir) if environment: update_project_env(project_dir, environment, project_option) elif board: update_board_envs(project_dir, board, project_option, env_prefix) # resolve project dependencies if not no_install_dependencies and (environment or board): install_project_dependencies( options=dict( project_dir=project_dir, environments=[environment] if environment else [], silent=silent, ) ) if ide: if not silent: click.echo( "Updating metadata for the %s IDE..." % click.style(ide, fg="cyan") ) with fs.cd(project_dir): config = ProjectConfig.get_instance( os.path.join(project_dir, "platformio.ini") ) config.validate() ProjectGenerator(config, environment, ide, board).generate() if is_new_project: init_cvs_ignore(project_dir) if not silent: print_footer(is_new_project) def print_header(project_dir): if project_dir == os.getcwd(): click.secho("\nThe current working directory ", fg="yellow", nl=False) try: click.secho(project_dir, fg="cyan", nl=False) except UnicodeEncodeError: click.secho(json.dumps(project_dir), fg="cyan", nl=False) click.secho(" will be used for the project.", fg="yellow") click.echo("") click.echo("The next files/directories have been created in ", nl=False) try: click.secho(project_dir, fg="cyan") except UnicodeEncodeError: click.secho(json.dumps(project_dir), fg="cyan") click.echo("%s - Put project header files here" % click.style("include", fg="cyan")) click.echo( "%s - Put here project specific (private) libraries" % click.style("lib", fg="cyan") ) click.echo("%s - Put project source files here" % click.style("src", fg="cyan")) click.echo( "%s - Project Configuration File" % click.style("platformio.ini", fg="cyan") ) def print_footer(is_new_project): if is_new_project: return click.secho( "\nProject has been successfully initialized! Useful commands:\n" "`pio run` - process/build project from the current directory\n" "`pio run --target upload` or `pio run -t upload` " "- upload firmware to a target\n" "`pio run --target clean` - clean project (remove compiled files)" "\n`pio run --help` - additional information", fg="green", ) return click.secho( "Project has been successfully updated!", fg="green", ) def init_base_project(project_dir): with fs.cd(project_dir): config = ProjectConfig() config.save() dir_to_readme = [ (config.get("platformio", "src_dir"), None), (config.get("platformio", "include_dir"), init_include_readme), (config.get("platformio", "lib_dir"), init_lib_readme), (config.get("platformio", "test_dir"), init_test_readme), ] for (path, cb) in dir_to_readme: if os.path.isdir(path): continue os.makedirs(path) if cb: cb(path) def init_include_readme(include_dir): with open(os.path.join(include_dir, "README"), mode="w", encoding="utf8") as fp: fp.write( """ This directory is intended for project header files. A header file is a file containing C declarations and macro definitions to be shared between several project source files. You request the use of a header file in your project source file (C, C++, etc) located in `src` folder by including it, with the C preprocessing directive `#include'. ```src/main.c #include "header.h" int main (void) { ... } ``` Including a header file produces the same results as copying the header file into each source file that needs it. Such copying would be time-consuming and error-prone. With a header file, the related declarations appear in only one place. If they need to be changed, they can be changed in one place, and programs that include the header file will automatically use the new version when next recompiled. The header file eliminates the labor of finding and changing all the copies as well as the risk that a failure to find one copy will result in inconsistencies within a program. In C, the usual convention is to give header files names that end with `.h'. It is most portable to use only letters, digits, dashes, and underscores in header file names, and at most one dot. Read more about using header files in official GCC documentation: * Include Syntax * Include Operation * Once-Only Headers * Computed Includes https://gcc.gnu.org/onlinedocs/cpp/Header-Files.html """, ) def init_lib_readme(lib_dir): with open(os.path.join(lib_dir, "README"), mode="w", encoding="utf8") as fp: fp.write( """ This directory is intended for project specific (private) libraries. PlatformIO will compile them to static libraries and link into executable file. The source code of each library should be placed in a an own separate directory ("lib/your_library_name/[here are source files]"). For example, see a structure of the following two libraries `Foo` and `Bar`: |--lib | | | |--Bar | | |--docs | | |--examples | | |--src | | |- Bar.c | | |- Bar.h | | |- library.json (optional, custom build options, etc) https://docs.platformio.org/page/librarymanager/config.html | | | |--Foo | | |- Foo.c | | |- Foo.h | | | |- README --> THIS FILE | |- platformio.ini |--src |- main.c and a contents of `src/main.c`: ``` #include <Foo.h> #include <Bar.h> int main (void) { ... } ``` PlatformIO Library Dependency Finder will find automatically dependent libraries scanning project source files. More information about PlatformIO Library Dependency Finder - https://docs.platformio.org/page/librarymanager/ldf.html """, ) def init_test_readme(test_dir): with open(os.path.join(test_dir, "README"), mode="w", encoding="utf8") as fp: fp.write( """ This directory is intended for PlatformIO Test Runner and project tests. Unit Testing is a software testing method by which individual units of source code, sets of one or more MCU program modules together with associated control data, usage procedures, and operating procedures, are tested to determine whether they are fit for use. Unit testing finds problems early in the development cycle. More information about PlatformIO Unit Testing: - https://docs.platformio.org/en/latest/advanced/unit-testing/index.html """, ) def init_cvs_ignore(project_dir): conf_path = os.path.join(project_dir, ".gitignore") if os.path.isfile(conf_path): return with open(conf_path, mode="w", encoding="utf8") as fp: fp.write(".pio\n") def update_board_envs(project_dir, board_ids, project_option, env_prefix): config = ProjectConfig( os.path.join(project_dir, "platformio.ini"), parse_extra=False ) used_boards = [] for section in config.sections(): cond = [section.startswith("env:"), config.has_option(section, "board")] if all(cond): used_boards.append(config.get(section, "board")) pm = PlatformPackageManager() modified = False for id_ in board_ids: board_config = pm.board_config(id_) if id_ in used_boards: continue used_boards.append(id_) modified = True envopts = {"platform": board_config["platform"], "board": id_} # find default framework for board frameworks = board_config.get("frameworks") if frameworks: envopts["framework"] = frameworks[0] for item in project_option: if "=" not in item: continue _name, _value = item.split("=", 1) envopts[_name.strip()] = _value.strip() section = "env:%s%s" % (env_prefix, id_) config.add_section(section) for option, value in envopts.items(): config.set(section, option, value) if modified: config.save() def update_project_env(project_dir, environment, project_option): if not project_option: return config = ProjectConfig( os.path.join(project_dir, "platformio.ini"), parse_extra=False ) section = "env:%s" % environment if not config.has_section(section): config.add_section(section) for item in project_option: if "=" not in item: continue _name, _value = item.split("=", 1) config.set(section, _name.strip(), _value.strip()) config.save()
0
2,060
0
0
0
7,890
0
215
476
c91b624711d1778d78556d13356f05fa1dcaaef7
701
py
Python
exercise_monitoring_camera.py
Guvalif/aidor-acceleration-02
afa7aa45bf26f1c2b7f189b6320599357f1e17d3
[ "MIT" ]
1
2018-08-20T02:14:24.000Z
2018-08-20T02:14:24.000Z
exercise_monitoring_camera.py
Guvalif/imedio_0801
afa7aa45bf26f1c2b7f189b6320599357f1e17d3
[ "MIT" ]
null
null
null
exercise_monitoring_camera.py
Guvalif/imedio_0801
afa7aa45bf26f1c2b7f189b6320599357f1e17d3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- __author__ = 'Kazuyuki TAKASE' __copyright__ = 'PLEN Project Company Inc, and all authors.' __license__ = 'The MIT License (http://opensource.org/licenses/mit-license.php)' # # ============================================================================= from cv2 import VideoCapture # # ============================================================================= CAMERA_INDEX = 0 MOTION_PIN = 26 camera = VideoCapture(CAMERA_INDEX) wiringPiSetupGpio() # # ============================================================================= while True: # pass
23.366667
82
0.476462
# -*- coding: utf-8 -*- __author__ = 'Kazuyuki TAKASE' __copyright__ = 'PLEN Project Company Inc, and all authors.' __license__ = 'The MIT License (http://opensource.org/licenses/mit-license.php)' # 外部プログラムの読み込み # ============================================================================= from time import sleep from cv2 import VideoCapture, imwrite from wiringpi import * # 定数定義・初期化処理 # ============================================================================= CAMERA_INDEX = 0 MOTION_PIN = 26 camera = VideoCapture(CAMERA_INDEX) wiringPiSetupGpio() # メインループ # ============================================================================= while True: # これ以降を自分で作成 pass
114
0
0
0
0
0
0
11
44
4cc967e9e9d1ac88abda9c1076b57abe84fc47bc
32,902
py
Python
src/timeseries.py
AmberCrafter/pythonlib_statistic
0fd49283c8dd75c5d1ade064be3318eabf74bdfe
[ "MIT" ]
null
null
null
src/timeseries.py
AmberCrafter/pythonlib_statistic
0fd49283c8dd75c5d1ade064be3318eabf74bdfe
[ "MIT" ]
null
null
null
src/timeseries.py
AmberCrafter/pythonlib_statistic
0fd49283c8dd75c5d1ade064be3318eabf74bdfe
[ "MIT" ]
null
null
null
#!/bin/python3 # if used ubuntu 20.10 or later, interpreter set as #!/bin/python and use pip instead of pip3 # =================================================================== # # platfrom check # dateutil check and import try: from dateutil.relativedelta import relativedelta except: import os, sys, subprocess if os.name=='nt': subprocess.check_call([sys.executable, "-m", "pip", "install", "dateutil"]) elif os.name=='posix': subprocess.check_call([sys.executable, "-m", "pip3", "install", "dateutil"]) else: raise "Unknow platform, please install 'dateutil' by yourself." # =================================================================== # # platfrom check # numpy check and import try: import numpy as np except: import os, sys, subprocess if os.name=='nt': subprocess.check_call([sys.executable, "-m", "pip", "install", "numpy"]) elif os.name=='posix': subprocess.check_call([sys.executable, "-m", "pip3", "install", "numpy"]) else: raise "Unknow platform, please install 'numpy' by yourself." # =================================================================== # import datetime if __name__ == "__main__": # Implement the object myobj = Time() # Input data import datetime, random st = datetime.datetime(2020,1,1) number = 50000 time = [st+datetime.timedelta(hours=val) for val in range(number)] data = [[random.gauss(10,5) for _ in range(4)] for _ in range(number)] myobj.input(time,data,header=['a','b','c','d']) # Calculate and Get result # myobj.hour(1,500) myobj.set_config(outputPara_list=['mean','std','max','quartile']) myobj.season() myobj.set_config(asDict=True) result = myobj.get() print(result)
43.578808
159
0.554951
#!/bin/python3 # if used ubuntu 20.10 or later, interpreter set as #!/bin/python and use pip instead of pip3 # =================================================================== # # platfrom check # dateutil check and import try: from dateutil.relativedelta import relativedelta except: import os,sys,subprocess if os.name=='nt': subprocess.check_call([sys.executable, "-m", "pip", "install", "dateutil"]) elif os.name=='posix': subprocess.check_call([sys.executable, "-m", "pip3", "install", "dateutil"]) else: raise "Unknow platform, please install 'dateutil' by yourself." from dateutil.relativedelta import relativedelta # =================================================================== # # platfrom check # numpy check and import try: import numpy as np except: import os,sys,subprocess if os.name=='nt': subprocess.check_call([sys.executable, "-m", "pip", "install", "numpy"]) elif os.name=='posix': subprocess.check_call([sys.executable, "-m", "pip3", "install", "numpy"]) else: raise "Unknow platform, please install 'numpy' by yourself." import numpy as np # =================================================================== # import datetime from typing import Union class Time(object): ''' storageForward: True -> storage value in starttime <br> storageForward: False -> storage value in endtime ''' def __init__(self): self.set_config(init=True) def _check_data(self): if not "self.time" in locals(): raise "Please check input time." if not "self.data" in locals(): raise "Please check input data." return True @staticmethod def _set_ndarray(data): if isinstance(data,dict): for key in data.keys(): data[key]=np.array(data[key]) else: data=np.array(data) return data @staticmethod def _set_header(data,header=None): ''' only used to format output data ''' # ----------------------------------------------------------- # # here i'm not sure what data type i need to use. # thus, if data=np.array(obj(dict)), then we need # to use data.item() to get the data try: data=data.item() except: pass # ----------------------------------------------------------- # if header!=None: dummy={} for i,head in enumerate(header): if isinstance(data,dict): for key in data.keys(): if i==0: dummy[key]={} dummy[key][head]=data[key][:,i] else: dummy[head]=data[:,i] return dummy return data @staticmethod def _fixTime(time,data,timeStep:dict,zeroPara:dict,storageForward:bool,outputPara_list:list, starttime:datetime.datetime=None,endtime:datetime.datetime=None): # def _fixTime(time,data,timeStep:dict,ratio:int,zeroPara:dict,storageForward:bool,starttime:datetime.datetime=None,endtime:datetime.datetime=None): ''' zeroPara: set start datetime para season enum: 1: spring 2: summer 3: autumn 4: winter ''' minTime = np.nanmin(time) if starttime==None else starttime maxTime = np.nanmax(time) if endtime==None else endtime # get data_value if isinstance(data,dict): if 'mean' in data.keys(): data=data['mean'] if 'season' in timeStep.keys(): dt = relativedelta(months=3) if not storageForward: time+=dt; time+=datetime.timedelta(microseconds=-1) maxTime+=dt if zeroPara!=None: minTime=minTime.replace(**zeroPara) dummy={} for para in outputPara_list: if para=='quartile': dummy['lower']=[] dummy['median']=[] dummy['upper']=[] else: dummy[para]=[] tummy = [] count = [] # deal with perfix date before a new start i = Time._get_season(minTime.month) year = minTime.year if minTime.month!=12 else minTime.year+1 mask=np.where(time<datetime.datetime(year,3*i,1))[0] t,d,c = Time._nofixTime(time[mask],data[mask],parameter='season',outputPara_list=outputPara_list) tummy+=list(t); count+=list(c) for key in dummy.keys(): dummy[key]+=list(d[key]) minTime=datetime.datetime(year,3*i,1) while minTime<=maxTime: if minTime>max(time): break mask=np.where((time>=minTime) & (time<minTime+dt))[0] t,d,c = Time._nofixTime(time[mask],data[mask],parameter='season',outputPara_list=outputPara_list) tummy+=list(t); count+=list(c) for key in dummy.keys(): dummy[key]+=list(d[key]) minTime+=dt else: dt = relativedelta(**timeStep) if not storageForward: time+=dt; time+=datetime.timedelta(microseconds=-1) maxTime+=dt if zeroPara!=None: minTime=minTime.replace(**zeroPara) # if ratio==None: ratio=0 dummy = {} for para in outputPara_list: if para=='quartile': dummy['lower']=[] dummy['median']=[] dummy['upper']=[] else: dummy[para]=[] tummy = [] count = [] while minTime<=maxTime: mask = np.where((time>=minTime) & (time<minTime+dt))[0] if mask.size==0: minTime+=dt; continue tummy.append(minTime) count.append(np.sum(np.isfinite(data[mask]))) if 'mean' in outputPara_list: dummy['mean'].append(np.nanmean(data[mask],axis=0)) if 'std' in outputPara_list: dummy['std'].append(np.nanstd(data[mask],axis=0)) if 'max' in outputPara_list: dummy['max'].append(np.nanmax(data[mask],axis=0)) if 'min' in outputPara_list: dummy['min'].append(np.nanmin(data[mask],axis=0)) if 'maxTime' in outputPara_list: dummy['maxTime'].append(time[mask][np.argmax(data[mask],axis=0)]) if 'maxTime' in outputPara_list: dummy['minTime'].append(time[mask][np.argmin(data[mask],axis=0)]) if 'quartile' in outputPara_list: dummy['lower'].append(np.nanpercentile(data[mask],25,axis=0)) if ('quartile' in outputPara_list) | ('median' in outputPara_list): dummy['median'].append(np.nanpercentile(data[mask],50,axis=0)) if 'quartile' in outputPara_list: dummy['upper'].append(np.nanpercentile(data[mask],75,axis=0)) # dummy.append(np.nanmean(data[mask],axis=0) if count[-1]>=ratio else np.array([np.nan]*len(data[0]))) minTime+=dt dummy = Time._set_ndarray(dummy) return tummy,dummy,count @staticmethod def _nofixTime(time,data,parameter:str,outputPara_list:list): # def _nofixTime(time,data,parameter:str,ratio:int): ''' parameter: set the datetime parameter (second, minute ...etc) will be used to calculate season enum: 1: winter 2: spring 3: summer 4: autumn ''' season_dict = { 1: 'Winter', 2: 'Spring', 3: 'Summer', 4: 'Autumn', } if parameter.lower()=='season': time_para_list = [Time._get_season(val.month) for val in time] else: time_para_list = [eval(f"val.{parameter}") for val in time] time_para_list = np.array(time_para_list) if time_para_list.size==0: return np.array(np.nan),np.array(np.nan),np.array(np.nan) minTime = np.nanmin(time_para_list) maxTime = np.nanmax(time_para_list) # if ratio==None: ratio=0 # get data_value if isinstance(data,dict): if 'mean' in data.keys(): data=data['mean'] dummy = {} for para in outputPara_list: if para=='quartile': dummy['lower']=[] dummy['median']=[] dummy['upper']=[] else: dummy[para]=[] tummy = [] count = [] for i in range(minTime,maxTime+1): mask = np.where(time_para_list==i)[0] tummy.append(i if parameter.lower()!='season' else [time[mask[0]].year,season_dict[i]]) count.append(np.sum(np.isfinite(data[mask]))) if 'mean' in outputPara_list: dummy['mean'].append(np.nanmean(data[mask],axis=0)) if 'std' in outputPara_list: dummy['std'].append(np.nanstd(data[mask],axis=0)) if 'max' in outputPara_list: dummy['max'].append(np.nanmax(data[mask],axis=0)) if 'min' in outputPara_list: dummy['min'].append(np.nanmin(data[mask],axis=0)) if 'maxTime' in outputPara_list: dummy['maxTime'].append(time[mask][np.argmax(data[mask],axis=0)]) if 'maxTime' in outputPara_list: dummy['minTime'].append(time[mask][np.argmin(data[mask],axis=0)]) if 'quartile' in outputPara_list: dummy['lower'].append(np.nanpercentile(data[mask],25,axis=0)) if ('quartile' in outputPara_list) | ('median' in outputPara_list): dummy['median'].append(np.nanpercentile(data[mask],50,axis=0)) if 'quartile' in outputPara_list: dummy['upper'].append(np.nanpercentile(data[mask],75,axis=0)) # dummy.append(np.nanmean(data[mask],axis=0) if count[-1]>=ratio else np.array([np.nan]*len(data[0]))) dummy = Time._set_ndarray(dummy) return tummy,dummy,count @staticmethod def _get_season(month): ''' enum: 1: winter 2: spring 3: summer 4: autumn ''' return (month%12+3)//3 @staticmethod def _QC_numbers(data,count,threshold): if threshold==None: return data count = np.array(count) data = np.array(data) mask = np.where(count<threshold)[0] data[mask,:]=np.nan return data def set_config(self,init:bool=False,**kwargs) -> None: ''' config['storageForward']: save the value at the start time or not<br> config['outputPara_list]: select output parameter [mean,std,max,min] Arguments: init: Is the initialize status? Default is False If set True, will using the init state. **kwargs: Optional, this work only init set false. config: { asDict: bool, storage: bool, fixTime: bool, zeroStart: bool, selfUpdate: bool, outputPara_list: list = [ mean, std, max, min, maxTime, minTime, quartile, median ] } ''' if init==True: self.config = dict( asDict=False, storageForward=True, fixTime=True, zeroStart=True, selfUpdate=True, outputPara_list=['mean','std','mean'] # ['mean','std','max','min','maxTime','minTime','quartile','median'], ) else: for key in kwargs.keys(): self.config[key] = kwargs[key] def input(self,time: Union[list, np.ndarray],data: Union[list, np.ndarray],dtype:object =float, ratio: Union[int, float]=None,header: list=None,starttime:datetime.datetime=None,endtime:datetime.datetime=None) -> str: ''' time <datetime> : input timelist of data <br> data <numerical>: input data array Arguments: time: list of time series data: list of data set depend on time series dtype: convert type of data elements ratio: require of the data numbers(int) or ratio(float) header: export tag of data header starttime: start of the time endtime: end of the time Returns: return 'Successfully' when process success. ''' self.time = np.array(time) self.data = np.array(data,dtype=dtype) self.ratio = ratio self.header = header self.starttime = starttime self.endtime = endtime self.counts = [] return "Successfully" def isrepeat(self) -> bool: ''' Check weather data repeat depend on time. Returns: check there has repeat datetime in the data set. ''' if len(self.time.reshape(-1))==len(set(self.time)): return False else: return True def second(self,ratio: Union[int, float]=None,base: int=1000) -> Union[None, tuple, list, dict]: ''' Do statistic method base on config setting. Arguments: ratio: require of the data numbers(int) or ratio(float) base: base number of required data, use on ratio<=1 Returns: structure of return data None: if config.selfUpdate==True, then export data by self.get() tuple or list: if config.selfUpdate==False & config.asDict==False, then return the data as tuple. ( time, data, count ) dict: if config.selfUpdate==False & config.asDict==True, then return the data as dictionary. { time: np.ndarray, data: np.ndarray, count: np.ndarray } ''' if ratio!=None: ratio=int(base*ratio) if ratio<=1 else int(ratio) else: if self.ratio!=None: ratio=int(base*self.ratio) if self.ratio<=1 else int(self.ratio) if self.config['fixTime']: if self.config['zeroStart']: tummy,dummy,count = self._fixTime(self.time,self.data,timeStep=dict(seconds=1), zeroPara=dict(microsecond=0),storageForward=self.config['storageForward'], outputPara_list=self.config['outputPara_list'],starttime=self.starttime,endtime=self.endtime) else: tummy,dummy,count = self._fixTime(self.time,self.data,timeStep=dict(seconds=1), outputPara_list=self.config['outputPara_list'],starttime=self.starttime,endtime=self.endtime) else: # self.config['fixTime']==False tummy,dummy,count = self._nofixTime(self.time,self.data,parameter='second',outputPara_list=self.config['outputPara_list']) dummy = self._QC_numbers(dummy,count,ratio) if self.config['selfUpdate']: self.data = np.array(dummy) self.time = np.array(tummy) self.counts = np.array(count) else: print("This is not object standard operation!") print("You need to set config[selfUpdate]=True and use get method to get the result.") dummy = Time._set_header(dummy,header=self.header) if self.config['asDict']: return dict(time=tummy,data=dummy,counts=count) else: return tummy,dummy,count def minute(self,ratio: Union[int, float]=None,base: int=60) -> Union[None, tuple, list, dict]: ''' Do statistic method base on config setting. Arguments: ratio: require of the data numbers(int) or ratio(float) base: base number of required data, use on ratio<=1 Returns: structure of return data None: if config.selfUpdate==True, then export data by self.get() tuple or list: if config.selfUpdate==False & config.asDict==False, then return the data as tuple. ( time, data, count ) dict: if config.selfUpdate==False & config.asDict==True, then return the data as dictionary. { time: np.ndarray, data: np.ndarray, count: np.ndarray } ''' if ratio!=None: ratio=int(base*ratio) if ratio<=1 else int(ratio) else: if self.ratio!=None: ratio=int(base*self.ratio) if self.ratio<=1 else int(self.ratio) if self.config['fixTime']: if self.config['zeroStart']: tummy,dummy,count = self._fixTime(self.time,self.data,timeStep=dict(minutes=1), zeroPara=dict(second=0,microsecond=0),storageForward=self.config['storageForward'], outputPara_list=self.config['outputPara_list'],starttime=self.starttime,endtime=self.endtime) else: tummy,dummy,count = self._fixTime(self.time,self.data,timeStep=dict(minutes=1), outputPara_list=self.config['outputPara_list'],starttime=self.starttime,endtime=self.endtime) else: # self.config['fixTime']==False tummy,dummy,count = self._nofixTime(self.time,self.data,parameter='minute',outputPara_list=self.config['outputPara_list']) dummy = self._QC_numbers(dummy,count,ratio) if self.config['selfUpdate']: self.data = np.array(dummy) self.time = np.array(tummy) self.counts = np.array(count) else: print("This is not object standard operation!") print("You need to set config[selfUpdate]=True and use get method to get the result.") dummy = Time._set_header(dummy,header=self.header) if self.config['asDict']: return dict(time=tummy,data=dummy,counts=count) else: return tummy,dummy,count def hour(self,ratio: Union[int, float]=None,base: int=60) -> Union[None, tuple, list, dict]: ''' Do statistic method base on config setting. Arguments: ratio: require of the data numbers(int) or ratio(float) base: base number of required data, use on ratio<=1 Returns: structure of return data None: if config.selfUpdate==True, then export data by self.get() tuple or list: if config.selfUpdate==False & config.asDict==False, then return the data as tuple. ( time, data, count ) dict: if config.selfUpdate==False & config.asDict==True, then return the data as dictionary. { time: np.ndarray, data: np.ndarray, count: np.ndarray } ''' if ratio!=None: ratio=int(base*ratio) if ratio<=1 else int(ratio) else: if self.ratio!=None: ratio=int(base*self.ratio) if self.ratio<=1 else int(self.ratio) if self.config['fixTime']: if self.config['zeroStart']: tummy,dummy,count = self._fixTime(self.time,self.data,timeStep=dict(hours=1) ,zeroPara=dict(minute=0,second=0,microsecond=0),storageForward=self.config['storageForward'], outputPara_list=self.config['outputPara_list'],starttime=self.starttime,endtime=self.endtime) else: tummy,dummy,count = self._fixTime(self.time,self.data,timeStep=dict(hours=1), outputPara_list=self.config['outputPara_list'],starttime=self.starttime,endtime=self.endtime) else: # self.config['fixTime']==False tummy,dummy,count = self._nofixTime(self.time,self.data,parameter='hour',outputPara_list=self.config['outputPara_list']) dummy = self._QC_numbers(dummy,count,ratio) if self.config['selfUpdate']: self.data = np.array(dummy) self.time = np.array(tummy) self.counts = np.array(count) else: print("This is not object standard operation!") print("You need to set config[selfUpdate]=True and use get method to get the result.") dummy = Time._set_header(dummy,header=self.header) if self.config['asDict']: return dict(time=tummy,data=dummy,counts=count) else: return tummy,dummy,count def day(self,ratio: Union[int, float]=None,base: int=24) -> Union[None, tuple, list, dict]: ''' Do statistic method base on config setting. Arguments: ratio: require of the data numbers(int) or ratio(float) base: base number of required data, use on ratio<=1 Returns: structure of return data None: if config.selfUpdate==True, then export data by self.get() tuple or list: if config.selfUpdate==False & config.asDict==False, then return the data as tuple. ( time, data, count ) dict: if config.selfUpdate==False & config.asDict==True, then return the data as dictionary. { time: np.ndarray, data: np.ndarray, count: np.ndarray } ''' if ratio!=None: ratio=int(base*ratio) if ratio<=1 else int(ratio) else: if self.ratio!=None: ratio=int(base*self.ratio) if self.ratio<=1 else int(self.ratio) if self.config['fixTime']: if self.config['zeroStart']: tummy,dummy,count = self._fixTime(self.time,self.data,timeStep=dict(days=1), zeroPara=dict(hour=0,minute=0,second=0,microsecond=0),storageForward=self.config['storageForward'], outputPara_list=self.config['outputPara_list'],starttime=self.starttime,endtime=self.endtime) else: tummy,dummy,count = self._fixTime(self.time,self.data,timeStep=dict(days=1), outputPara_list=self.config['outputPara_list'],starttime=self.starttime,endtime=self.endtime) else: # self.config['fixTime']==False tummy,dummy,count = self._nofixTime(self.time,self.data,parameter='day',outputPara_list=self.config['outputPara_list']) dummy = self._QC_numbers(dummy,count,ratio) if self.config['selfUpdate']: self.data = np.array(dummy) self.time = np.array(tummy) self.counts = np.array(count) else: print("This is not object standard operation!") print("You need to set config[selfUpdate]=True and use get method to get the result.") dummy = Time._set_header(dummy,header=self.header) if self.config['asDict']: return dict(time=tummy,data=dummy,counts=count) else: return tummy,dummy,count def month(self,ratio: Union[int, float]=None,base: int=30) -> Union[None, tuple, list, dict]: ''' Do statistic method base on config setting. Arguments: ratio: require of the data numbers(int) or ratio(float) base: base number of required data, use on ratio<=1 Returns: structure of return data None: if config.selfUpdate==True, then export data by self.get() tuple or list: if config.selfUpdate==False & config.asDict==False, then return the data as tuple. ( time, data, count ) dict: if config.selfUpdate==False & config.asDict==True, then return the data as dictionary. { time: np.ndarray, data: np.ndarray, count: np.ndarray } ''' if ratio!=None: ratio=int(base*ratio) if ratio<=1 else int(ratio) else: if self.ratio!=None: ratio=int(base*self.ratio) if self.ratio<=1 else int(self.ratio) if self.config['fixTime']: if self.config['zeroStart']: tummy,dummy,count = self._fixTime(self.time,self.data,timeStep=dict(months=1), zeroPara=dict(day=1,hour=0,minute=0,second=0,microsecond=0), outputPara_list=self.config['outputPara_list'],storageForward=self.config['storageForward'], starttime=self.starttime,endtime=self.endtime) else: tummy,dummy,count = self._fixTime(self.time,self.data,timeStep=dict(months=1), outputPara_list=self.config['outputPara_list'],starttime=self.starttime,endtime=self.endtime) else: # self.config['fixTime']==False tummy,dummy,count = self._nofixTime(self.time,self.data,parameter='month',outputPara_list=self.config['outputPara_list']) dummy = self._QC_numbers(dummy,count,ratio) if self.config['selfUpdate']: self.data = np.array(dummy) self.time = np.array(tummy) self.counts = np.array(count) else: print("This is not object standard operation!") print("You need to set config[selfUpdate]=True and use get method to get the result.") dummy = Time._set_header(dummy,header=self.header) if self.config['asDict']: return dict(time=tummy,data=dummy,counts=count) else: return tummy,dummy,count def season(self,ratio: Union[int, float]=None,base: int=3) -> Union[None, tuple, list, dict]: ''' Do statistic method base on config setting. Arguments: ratio: require of the data numbers(int) or ratio(float) base: base number of required data, use on ratio<=1 Returns: structure of return data None: if config.selfUpdate==True, then export data by self.get() tuple or list: if config.selfUpdate==False & config.asDict==False, then return the data as tuple. ( time, data, count ) dict: if config.selfUpdate==False & config.asDict==True, then return the data as dictionary. { time: np.ndarray, data: np.ndarray, count: np.ndarray } ''' ''' Spring: March, April, May <br> Summer: June, July, August <br> Autumn: September, October, November <br> Winter: December, January, February ''' if ratio!=None: ratio=int(base*ratio) if ratio<=1 else int(ratio) else: if self.ratio!=None: ratio=int(base*self.ratio) if self.ratio<=1 else int(self.ratio) if self.config['fixTime']: if self.config['zeroStart']: tummy,dummy,count = self._fixTime(self.time,self.data,timeStep=dict(season=1), zeroPara=dict(day=1,hour=0,minute=0,second=0,microsecond=0), outputPara_list=self.config['outputPara_list'],storageForward=self.config['storageForward'], starttime=self.starttime,endtime=self.endtime) else: tummy,dummy,count = self._fixTime(self.time,self.data,timeStep=dict(season=1), outputPara_list=self.config['outputPara_list'],starttime=self.starttime,endtime=self.endtime) else: # self.config['fixTime']==False tummy,dummy,count = self._nofixTime(self.time,self.data,parameter='season',outputPara_list=self.config['outputPara_list']) dummy = self._QC_numbers(dummy,count,ratio) if self.config['selfUpdate']: self.data = np.array(dummy) self.time = np.array(tummy) self.counts = np.array(count) else: print("This is not object standard operation!") print("You need to set config[selfUpdate]=True and use get method to get the result.") dummy = Time._set_header(dummy,header=self.header) if self.config['asDict']: return dict(time=tummy,data=dummy,counts=count) else: return tummy,dummy,count def year(self,ratio:Union[int, float]=None,base:int=12) -> Union[None, tuple, list, dict]: ''' Do statistic method base on config setting. Arguments: ratio: require of the data numbers(int) or ratio(float) base: base number of required data, use on ratio<=1 Returns: structure of return data None: if config.selfUpdate==True, then export data by self.get() tuple or list: if config.selfUpdate==False & config.asDict==False, then return the data as tuple. ( time, data, count ) dict: if config.selfUpdate==False & config.asDict==True, then return the data as dictionary. { time: np.ndarray, data: np.ndarray, count: np.ndarray } ''' if ratio!=None: ratio=int(base*ratio) if ratio<=1 else int(ratio) else: if self.ratio!=None: ratio=int(base*self.ratio) if self.ratio<=1 else int(self.ratio) if self.config['fixTime']: if self.config['zeroStart']: tummy,dummy,count = self._fixTime(self.time,self.data,timeStep=dict(years=1), zeroPara=dict(month=1,day=1,hour=0,minute=0,second=0,microsecond=0),storageForward=self.config['storageForward'], outputPara_list=self.config['outputPara_list'],starttime=self.starttime,endtime=self.endtime) else: tummy,dummy,count = self._fixTime(self.time,self.data,timeStep=dict(years=1), outputPara_list=self.config['outputPara_list'],starttime=self.starttime,endtime=self.endtime) else: # self.config['fixTime']==False tummy,dummy,count = self._nofixTime(self.time,self.data,parameter='year',outputPara_list=self.config['outputPara_list']) dummy = self._QC_numbers(dummy,count,ratio) if self.config['selfUpdate']: self.data = np.array(dummy) self.time = np.array(tummy) self.counts = np.array(count) else: print("This is not object standard operation!") print("You need to set config[selfUpdate]=True and use get method to get the result.") dummy = Time._set_header(dummy,header=self.header) if self.config['asDict']: return dict(time=tummy,data=dummy,counts=count) else: return tummy,dummy,count def get(self,parameter: str=None) -> Union[list, dict, np.ndarray]: ''' export the data from Time factory. Arguments: parameter: select the return parameter. enum: None: { time, data, counts }, config, time, data, counts Returns: select parameter data set. ''' if parameter=='config': return self.config if (parameter==None) and (self.config['asDict']): return dict(time=self.time, data=Time._set_header(self.data,header=self.header), counts=self.counts) if parameter=='time': return self.time if parameter=='data': return Time._set_header(self.data,header=self.header) if parameter=='counts': return self.counts print("Please select the return parameter or set config['asDict']=True.") if __name__ == "__main__": # Implement the object myobj = Time() # Input data import datetime, random st = datetime.datetime(2020,1,1) number = 50000 time = [st+datetime.timedelta(hours=val) for val in range(number)] data = [[random.gauss(10,5) for _ in range(4)] for _ in range(number)] myobj.input(time,data,header=['a','b','c','d']) # Calculate and Get result # myobj.hour(1,500) myobj.set_config(outputPara_list=['mean','std','max','quartile']) myobj.season() myobj.set_config(asDict=True) result = myobj.get() print(result)
0
8,533
0
22,470
0
0
0
23
97
f191d89902854c6a45383db6b705fc612cf47791
784
py
Python
mmdet/models/__init__.py
FelixZhang7/miemiedetection
ca44f33255e0bb9d6150044983a344fb9a288c08
[ "Apache-2.0" ]
null
null
null
mmdet/models/__init__.py
FelixZhang7/miemiedetection
ca44f33255e0bb9d6150044983a344fb9a288c08
[ "Apache-2.0" ]
null
null
null
mmdet/models/__init__.py
FelixZhang7/miemiedetection
ca44f33255e0bb9d6150044983a344fb9a288c08
[ "Apache-2.0" ]
1
2022-02-16T08:35:00.000Z
2022-02-16T08:35:00.000Z
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
27.034483
63
0.811224
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. from .backbones.darknet import CSPDarknet, Darknet from .backbones.resnet_vd import Resnet18Vd, Resnet50Vd from .backbones.resnet_vb import Resnet50Vb from .losses.yolov3_loss import YOLOv3Loss from .losses.losses import IOUloss from .losses.iou_losses import MyIOUloss, IouLoss, IouAwareLoss from .losses.fcos_loss import FCOSLoss from .heads.yolov3_head import YOLOv3Head from .heads.yolox_head import YOLOXHead from .heads.fcos_head import FCOSHead from .necks.yolo_pafpn import YOLOPAFPN from .necks.yolo_fpn import YOLOFPN from .necks.fpn import FPN from .architectures.yolo import PPYOLO from .architectures.yolox import YOLOX from .architectures.fcos import FCOS
0
0
0
0
0
0
0
318
357
0468d6c246b239a4fae46a385cc87c22edb5790e
282
py
Python
egs/voxceleb/v2.voxceleb1/scp_ark2npy.py
zeek-han/kaldi
e3ed0812db7abd3c266d5616babfd0adff8260ac
[ "Apache-2.0" ]
null
null
null
egs/voxceleb/v2.voxceleb1/scp_ark2npy.py
zeek-han/kaldi
e3ed0812db7abd3c266d5616babfd0adff8260ac
[ "Apache-2.0" ]
null
null
null
egs/voxceleb/v2.voxceleb1/scp_ark2npy.py
zeek-han/kaldi
e3ed0812db7abd3c266d5616babfd0adff8260ac
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import numpy as np import kaldiio id2mfcc = kaldiio.load_scp('/home/sangjik/kaldi/egs/voxceleb/v2.smallest/mfcc/raw_mfcc_train.10.scp') for utt_id, mfcc in id2mfcc.items(): #print(utt_id, mfcc.shape) np.save('./tmp_mfcc/{}.npy'.format(utt_id), mfcc)
28.2
101
0.72695
#!/usr/bin/env python import numpy as np import kaldiio id2mfcc = kaldiio.load_scp('/home/sangjik/kaldi/egs/voxceleb/v2.smallest/mfcc/raw_mfcc_train.10.scp') for utt_id, mfcc in id2mfcc.items(): #print(utt_id, mfcc.shape) np.save('./tmp_mfcc/{}.npy'.format(utt_id), mfcc)
0
0
0
0
0
0
0
0
0
b75db27a80b0122a92a95241b891c75aed56b87b
38,348
py
Python
pipeline/publication.py
Yi-61/map-ephys
8eacd84f67678b05bcc379c7d5a9560ea7a87e46
[ "MIT" ]
null
null
null
pipeline/publication.py
Yi-61/map-ephys
8eacd84f67678b05bcc379c7d5a9560ea7a87e46
[ "MIT" ]
null
null
null
pipeline/publication.py
Yi-61/map-ephys
8eacd84f67678b05bcc379c7d5a9560ea7a87e46
[ "MIT" ]
null
null
null
import logging import datajoint as dj from . import experiment from . import ephys from . import get_schema_name PUBLICATION_TRANSFER_TIMEOUT = 10000 schema = dj.schema(get_schema_name('publication')) log = logging.getLogger(__name__) __all__ = [experiment, ephys]
34.861818
80
0.49854
import logging import pathlib import re import os from fnmatch import fnmatch from textwrap import dedent from collections import defaultdict import datajoint as dj from . import lab from . import experiment from . import ephys from . import tracking from .ingest.tracking import TrackingIngest from pipeline.globus import GlobusStorageManager from . import get_schema_name PUBLICATION_TRANSFER_TIMEOUT = 10000 schema = dj.schema(get_schema_name('publication')) log = logging.getLogger(__name__) __all__ = [experiment, ephys] @schema class GlobusStorageLocation(dj.Lookup): """ globus storage locations """ definition = """ globus_alias: varchar(32) # name for location (e.g. 'raw-ephys') --- globus_endpoint: varchar(255) # globus endpoint (user#endpoint) globus_path: varchar(1024) # unix-style path within endpoint """ @property def contents(self): custom = dj.config.get('custom', None) if custom and 'globus.storage_locations' in custom: # test config return custom['globus.storage_locations'] return (('raw-ephys', '5b875fda-4185-11e8-bb52-0ac6873fc732', '/'), ('raw-video', '5b875fda-4185-11e8-bb52-0ac6873fc732', '/'),) @classmethod def local_endpoint(cls, globus_alias=None): ''' return local endpoint for globus_alias from dj.config expects: globus.local_endpoints: { globus_alias: { 'endpoint': uuid, # UUID of local endpoint 'endpoint_subdir': str, # unix-style path within endpoint 'endpoint_path': str # corresponding local path } ''' le = dj.config.get('custom', {}).get('globus.local_endpoints', None) if le is None or globus_alias not in le: raise dj.DataJointError( "globus_local_endpoints for {} not configured".format( globus_alias)) return le[globus_alias] @schema class ArchivedSession(dj.Imported): definition = """ -> experiment.Session --- -> GlobusStorageLocation """ @schema class DataSetType(dj.Lookup): definition = """ dataset_type: varchar(64) """ contents = zip(['ephys-raw-trialized', 'ephys-raw-continuous', 'ephys-sorted', 'tracking-video']) @schema class FileType(dj.Lookup): definition = """ file_type: varchar(32) # file type short name --- file_glob: varchar(64) # file match pattern file_descr: varchar(255) # file type long description """ @property def contents(self): data = [('ephys-raw-3a-ap-trial', '*_g0_t[0-9]*.imec.ap.bin', ''' 3A Probe per-trial AP channels high pass filtered at 300Hz and sampled at 30kHz - recording file '''), ('ephys-raw-3a-ap-trial-meta', '*_g0_t[0-9]*.imec.ap.meta', ''' 3A Probe per-trial AP channels high pass filtered at 300Hz and sampled at 30kHz - file metadata '''), ('ephys-raw-3a-lf-trial', '*_g0_t[0-9]*.imec.lf.bin', ''' 3A Probe per-trial AP channels low pass filtered at 300Hz and sampled at 2.5kHz - recording file '''), ('ephys-raw-3a-lf-trial-meta', '*_g0_t[0-9]*.imec.lf.meta', ''' 3A Probe per-trial AP channels low pass filtered at 300Hz and sampled at 2.5kHz - file metadata '''), ('ephys-raw-3b-ap-trial', '*_????????_g?_t[0-9]*.imec.ap.bin', ''' 3B Probe per-trial AP channels high pass filtered at 300Hz and sampled at 30kHz - recording file '''), ('ephys-raw-3b-ap-trial-meta', '*_????????_g?_t[0-9]*.imec.ap.meta', ''' 3B Probe per-trial AP channels high pass filtered at 300Hz and sampled at 30kHz - file metadata '''), ('ephys-raw-3b-lf-trial', '*_????????_g?_t[0-9]*.imec.lf.bin', ''' 3B Probe per-trial AP channels low pass filtered at 300Hz and sampled at 2.5kHz - recording file '''), ('ephys-raw-3b-lf-trial-meta', '*_????????_g?_t[0-9]*.imec.lf.meta', ''' 3B Probe per-trial AP channels low pass filtered at 300Hz and sampled at 2.5kHz - file metadata '''), ('ephys-raw-3b-ap-concat', '*_????????_g?_tcat.imec.ap.bin', ''' 3B Probe concatenated AP channels high pass filtered at 300Hz and sampled at 30kHz - recording file '''), ('ephys-raw-3b-ap-concat-meta', '*_??????_g?_tcat.imec.ap.meta', ''' 3B Probe concatenated AP channels high pass filtered at 300Hz and sampled at 30kHz - file metadata '''), ('ephys-raw-3b-lf-concat', '*_????????_g?_tcat.imec.lf.bin', ''' 3B Probe concatenated AP channels low pass filtered at 300Hz and sampled at 2.5kHz - recording file '''), ('ephys-raw-3b-lf-concat-meta', '*_????????_g?_tcat.imec.lf.meta', ''' 3B Probe concatenated AP channels low pass filtered at 300Hz and sampled at 2.5kHz - file metadata '''), ('tracking-video-trial', '*_*_[0-9]*-*.[am][vp][i4]', ''' Video Tracking per-trial file at 300fps '''), ('tracking-video-map', '*_????????_*.txt', ''' Video Tracking file-to-trial mapping ''')] return [[dedent(i).replace('\n', ' ').strip(' ') for i in r] for r in data] @schema class DataSet(dj.Manual): definition = """ -> GlobusStorageLocation dataset_name: varchar(128) --- -> DataSetType """ class PhysicalFile(dj.Part): definition = """ -> master file_subpath: varchar(128) --- -> FileType """ @schema class ArchivedRawEphys(dj.Imported): definition = """ -> ArchivedSession -> DataSet probe_folder: tinyint """ key_source = experiment.Session gsm = None # for GlobusStorageManager class RawEphysTrial(dj.Part): """ file:trial mapping if applicable """ definition = """ -> master -> experiment.SessionTrial -> DataSet.PhysicalFile """ def get_gsm(self): log.debug('ArchivedRawEphysTrial.get_gsm()') if self.gsm is None: self.gsm = GlobusStorageManager() self.gsm.wait_timeout = PUBLICATION_TRANSFER_TIMEOUT return self.gsm @classmethod def discover(cls): """ Discover files on globus and attempt to register them. """ self = cls() globus_alias = 'raw-ephys' ra, rep, rep_sub = (GlobusStorageLocation() & {'globus_alias': globus_alias}).fetch1().values() smap = {'{}/{}'.format(s['water_restriction_number'], s['session_date']).replace('-', ''): s for s in (experiment.Session() * (lab.WaterRestriction() * lab.Subject.proj()))} ftmap = {t['file_type']: t for t in (FileType() & "file_type like 'ephys%%'")} skey = None sskip = set() sfiles = [] # {file_subpath:, trial:, file_type:,} def commit(skey, sfiles): log.info('commit. skey: {}, sfiles: {}'.format(skey, sfiles)) if not sfiles: log.info('skipping. no files in set') return h2o, sdate, ftypes = set(), set(), set() ptmap = defaultdict(lambda: defaultdict(list)) # probe:trial:file for s in sfiles: ptmap[s['probe']][s['trial']].append(s) h2o.add(s['water_restriction_number']) sdate.add(s['session_date']) ftypes.add(s['file_type']) if len(h2o) != 1 or len(sdate) != 1: log.info('skipping. bad h2o {} or session date {}'.format( h2o, sdate)) return h2o, sdate = next(iter(h2o)), next(iter(sdate)) {k: {kk: vv for kk, vv in v.items()} for k, v in ptmap.items()} if all('trial' in f for f in ftypes): # DataSet ds_type = 'ephys-raw-trialized' ds_name = '{}_{}_{}'.format(h2o, sdate, ds_type) ds_key = {'dataset_name': ds_name, 'globus_alias': globus_alias} if (DataSet & ds_key): log.info('DataSet: {} already exists. Skipping.'.format( ds_key)) return DataSet.insert1({**ds_key, 'dataset_type': ds_type}, allow_direct_insert=True) # ArchivedSession as_key = {k: v for k, v in smap[skey].items() if k in ArchivedSession.primary_key} ArchivedSession.insert1( {**as_key, 'globus_alias': globus_alias}, allow_direct_insert=True, skip_duplicates=True) for p in ptmap: # ArchivedRawEphys ep_key = {**as_key, **ds_key, 'probe_folder': p} ArchivedRawEphys.insert1(ep_key, allow_direct_insert=True) for t in ptmap[p]: for f in ptmap[p][t]: DataSet.PhysicalFile.insert1( {**ds_key, **f}, allow_direct_insert=True, ignore_extra_fields=True) ArchivedRawEphys.RawEphysTrial.insert1( {**ep_key, **ds_key, 'trial': t, 'file_subpath': f['file_subpath']}, allow_direct_insert=True) elif all('concat' in f for f in ftypes): raise NotImplementedError('concatenated not yet implemented') else: log.info('skipping. mixed filetypes detected') return gsm = self.get_gsm() gsm.activate_endpoint(rep) for ep, dirname, node in gsm.fts('{}:{}'.format(rep, rep_sub)): log.debug('checking: {}:{}/{}'.format( ep, dirname, node.get('name', ''))) edir = re.match('([a-z]+[0-9]+)/([0-9]{8})/([0-9]+)', dirname) if not edir or node['DATA_TYPE'] != 'file': continue log.debug('dir match: {}'.format(dirname)) h2o, sdate, probe = edir[1], edir[2], edir[3] skey_i = '{}/{}'.format(h2o, sdate) if skey_i != skey: if skey and skey in smap: with dj.conn().transaction: try: commit(skey, sfiles) except Exception as e: log.error( 'Exception {} committing {}. files: {}'.format( repr(e), skey, sfiles)) skey, sfiles = skey_i, [] if skey not in smap: if skey not in sskip: log.debug('session {} not known. skipping.'.format(skey)) sskip.add(skey) continue fname = node['name'] log.debug('found file {}'.format(fname)) if '.' not in fname: log.debug('skipping {} - no dot in fname'.format(fname)) continue froot, fext = fname.split('.', 1) ftype = {g['file_type']: g for g in ftmap.values() if fnmatch(fname, g['file_glob'])} if len(ftype) != 1: log.debug('skipping {} - incorrect type matches: {}'.format( fname, ftype)) continue ftype = next(iter(ftype.values()))['file_type'] trial = None if 'trial' in ftype: trial = int(froot.split('_t')[1]) file_subpath = '{}/{}'.format(dirname, fname) sfiles.append({'water_restriction_number': h2o, 'session_date': '{}-{}-{}'.format( sdate[:4], sdate[4:6], sdate[6:]), 'probe': int(probe), 'trial': int(trial), 'file_subpath': file_subpath, 'file_type': ftype}) if skey: with dj.conn().transaction: commit(skey, sfiles) def make(self, key): """ discover files in local endpoint and transfer/register """ log.debug(key) globus_alias = 'raw-ephys' le = GlobusStorageLocation.local_endpoint(globus_alias) lep, lep_sub, lep_dir = (le['endpoint'], le['endpoint_subdir'], le['endpoint_path']) re, rep, rep_sub = (GlobusStorageLocation() & {'globus_alias': globus_alias}).fetch1().values() log.info('local_endpoint: {}:{} -> {}'.format(lep, lep_sub, lep_dir)) # Get session related information needed for filenames/records sinfo = (lab.WaterRestriction * lab.Subject.proj() * experiment.Session() & key).fetch1() tinfo = ((lab.WaterRestriction * lab.Subject.proj() * experiment.Session() * experiment.SessionTrial) & key).fetch() h2o = sinfo['water_restriction_number'] sdate = sinfo['session_date'] subdir = pathlib.Path(h2o, str(sdate).replace('-', '')) # + probeno lep_subdir = pathlib.Path(lep_dir, subdir) probechoice = [str(i) for i in range(1, 10)] # XXX: hardcoded file_globs = {i['file_glob']: i['file_type'] for i in FileType & "file_type like 'ephys%%'"} # Process each probe folder for lep_probedir in lep_subdir.glob('*'): lep_probe = str(lep_probedir.relative_to(lep_subdir)) if lep_probe not in probechoice: log.info('skipping lep_probedir: {} - unexpected name'.format( lep_probedir)) continue lep_matchfiles = {} lep_probefiles = lep_probedir.glob('*.*') for pf in lep_probefiles: pfbase = pf.relative_to(lep_probedir) pfmatch = {k: pfbase.match(k) for k in file_globs} if any(pfmatch.values()): log.debug('found valid file: {}'.format(pf)) lep_matchfiles[pf] = tuple(k for k in pfmatch if pfmatch[k]) else: log.debug('skipping non-match file: {}'.format(pf)) continue # Build/Validate file records if not all([len(lep_matchfiles[i]) == 1 for i in lep_matchfiles]): # TODO: handle trial + concatenated match case... log.warning('files matched multiple types'.format( lep_matchfiles)) continue type_to_file = {file_globs[lep_matchfiles[mf][0]]: mf for mf in lep_matchfiles} ds_key, ds_name, ds_files, ds_trials = ( None, None, None, [], []) if all(['trial' in t for t in type_to_file]): dataset_type = 'ephys-raw-trialized' ds_name = '{}_{}_{}'.format(h2o, sdate.isoformat(), dataset_type) ds_key = {'dataset_name': ds_name, 'globus_storage_location': globus_alias} for t in type_to_file: fsp = type_to_file[t].relative_to(lep_dir) dsf = {**ds_key, 'file_subpath': str(fsp)} # e.g : 'tw34_g0_t0.imec.ap.meta' -> *_t(trial).* trial = int(fsp.name.split('_t')[1].split('.')[0]) if trial not in tinfo['trial']: log.warning('unknown trial file: {}. skipping'.format( dsf)) continue ds_trials.append({**dsf, 'trial': trial}) ds_files.append({**dsf, 'file_type': t}) elif all(['concat' in t for t in type_to_file]): dataset_type = 'ephys-raw-continuous' ds_name = '{}_{}_{}'.format(h2o, sdate.isoformat(), dataset_type) ds_key = {'dataset_name': ds_name, 'globus_storage_location': globus_alias} for t in type_to_file: fsp = type_to_file[t].relative_to(lep_dir) ds_files.append({**ds_key, 'file_subpath': str(fsp), 'file_type': t}) else: log.warning("couldn't determine dataset type for {}".format( lep_probedir)) continue # Transfer Files gsm = self.get_gsm() gsm.activate_endpoint(lep) # XXX: cache / prevent duplicate RPC? gsm.activate_endpoint(rep) # XXX: cache / prevent duplicate RPC? DataSet.insert1({**ds_key, 'dataset_type': dataset_type}, allow_direct_insert=True) for f in ds_files: fsp = ds_files[f]['file_subpath'] srcp = '{}:{}/{}'.format(lep, lep_sub, fsp) dstp = '{}:{}/{}'.format(rep, rep_sub, fsp) log.info('transferring {} to {}'.format(srcp, dstp)) # XXX: check if exists 1st? if not gsm.cp(srcp, dstp): emsg = "couldn't transfer {} to {}".format(srcp, dstp) log.error(emsg) raise dj.DataJointError(emsg) DataSet.PhysicalFile.insert1({**ds_key, **ds_files[f]}, allow_direct_insert=True) # Add Records ArchivedSession.insert1( {**key, 'globus_storage_location': globus_alias}, skip_duplicates=True, allow_direct_insert=True) ArchivedRawEphys.insert1( {**key, **ds_key, 'probe_folder': int(str(lep_probe))}, allow_direct_insert=True) if dataset_type == 'ephys-raw-trialized': ArchivedRawEphys.ArchivedTrials.insert( [{**key, **t} for t in ds_trials], allow_direct_insert=True) @classmethod def retrieve(cls): self = cls() for key in self: self.retrieve1(key) @classmethod def retrieve1(cls, key): ''' retrieve related files for a given key ''' self = cls() raise NotImplementedError('retrieve not yet implemented') # Old / to be updated: # >>> list(key.keys()) # ['subject_id', 'session', 'trial', 'electrode_group', 'globus_alia log.debug(key) lep, lep_sub, lep_dir = GlobusStorageLocation().local_endpoint log.info('local_endpoint: {}:{} -> {}'.format(lep, lep_sub, lep_dir)) # get session related information needed for filenames/records sinfo = ((lab.WaterRestriction * lab.Subject.proj() * experiment.Session() * experiment.SessionTrial) & key).fetch1() h2o = sinfo['water_restriction_number'] sdate = sinfo['session_date'] eg = key['electrode_group'] trial = key['trial'] # build file locations: # fpat: base file pattern for this sessions files # gbase: globus-url base path for this sessions files fpat = '{}_{}_{}_g0_t{}'.format(h2o, sdate, eg, trial) gbase = '/'.join((h2o, str(sdate), str(eg), fpat)) repname, rep, rep_sub = (GlobusStorageLocation() & key).fetch()[0] gsm = self.get_gsm() gsm.activate_endpoint(lep) # XXX: cache this / prevent duplicate RPC? gsm.activate_endpoint(rep) # XXX: cache this / prevent duplicate RPC? sfxmap = {'.imec.ap.bin': ArchivedRawEphysTrial.ArchivedApChannel, '.imec.ap.meta': ArchivedRawEphysTrial.ArchivedApMeta, '.imec.lf.bin': ArchivedRawEphysTrial.ArchivedLfChannel, '.imec.lf.meta': ArchivedRawEphysTrial.ArchivedLfMeta} for sfx, cls in sfxmap.items(): if cls & key: log.debug('record found for {} & {}'.format(cls.__name__, key)) gname = '{}{}'.format(gbase, sfx) srcp = '{}:/{}/{}'.format(rep, rep_sub, gname) dstp = '{}:/{}/{}'.format(lep, lep_sub, gname) log.info('transferring {} to {}'.format(srcp, dstp)) # XXX: check if exists 1st? (manually or via API copy-checksum) if not gsm.cp(srcp, dstp): emsg = "couldn't transfer {} to {}".format(srcp, dstp) log.error(emsg) raise dj.DataJointError(emsg) @schema class ArchivedSortedEphys(dj.Imported): definition = """ -> ArchivedSession -> DataSet probe_folder: tinyint --- sorting_time=null: datetime """ key_source = experiment.Session def make(self, key): """ discover files in local endpoint and transfer/register """ raise NotImplementedError('ArchivedSortedEphys.make to be implemented') @schema class ArchivedTrackingVideo(dj.Imported): ''' ArchivedTrackingVideo storage Note: video_file_name tracked here as trial->file map is non-deterministic Directory locations of the form: {Water restriction number}\{Session Date}\video with file naming convention of the form: {Water restriction number}_{camera-position-string}_NNN-NNNN.avi Where 'NNN' is determined from the 'tracking map file' which maps trials to videos as outlined in tracking.py XXX: Using key-source based loookup as is currently done, may have trials for which there is no tracking, so camera cannot be determined to do file lookup, thus videos are missed. This could be resolved via schema adjustment, or file-traversal based 'opportunistic' registration strategy. ''' definition = """ -> ArchivedSession -> tracking.TrackingDevice --- -> DataSet """ key_source = tracking.TrackingDevice * experiment.Session ingest = None # ingest module reference gsm = None # for GlobusStorageManager class TrialVideo(dj.Part): definition = """ -> master -> experiment.SessionTrial --- -> DataSet.PhysicalFile """ @classmethod def get_ingest(cls): ''' return tracking_ingest module not imported globally to prevent ingest schema creation for client case ''' log.debug('ArchivedVideoFile.get_ingest()') if cls.ingest is None: from .ingest import tracking as tracking_ingest cls.ingest = tracking_ingest return cls.ingest def get_gsm(self): log.debug('ArchivedVideoFile.get_gsm()') if self.gsm is None: self.gsm = GlobusStorageManager() self.gsm.wait_timeout = PUBLICATION_TRANSFER_TIMEOUT return self.gsm @classmethod def discover(cls): """ discover files on globus and attempt to register them """ self = cls() globus_alias = 'raw-video' le = GlobusStorageLocation.local_endpoint(globus_alias) lep, lep_sub, lep_dir = (le['endpoint'], le['endpoint_subdir'], le['endpoint_path']) ra, rep, rep_sub = (GlobusStorageLocation() & {'globus_alias': globus_alias}).fetch1().values() smap = {'{}/{}'.format(s['water_restriction_number'], s['session_date']).replace('-', ''): s for s in (experiment.Session() * (lab.WaterRestriction() * lab.Subject.proj()))} tpos_dev = {s['tracking_position']: s['tracking_device'] for s in tracking.TrackingDevice()} # position:device ftmap = {t['file_type']: t for t in (FileType() & "file_type like 'tracking%%'")} skey = None sskip = set() sfiles = [] # {file_subpath:, trial:, file_type:,} gsm = self.get_gsm() gsm.activate_endpoint(lep) gsm.activate_endpoint(rep) def commit(skey, sfiles): log.info('commit. skey: {}'.format(skey)) if not sfiles: log.info('commit skipping {}. no files in set'.format(skey)) # log.debug('sfiles: {}'.format(sfiles)) h2o, sdate, ftypes = set(), set(), set() dftmap = {} # device:file:trial via load_campath mapping files dvfmap = defaultdict(lambda: defaultdict(list)) # device:video:file dtfmap = defaultdict(lambda: defaultdict(list)) # device:trial:file for s in sfiles: if s['file_type'] == 'tracking-video-trial': dvfmap[s['position']][s['video']].append(s) h2o.add(s['water_restriction_number']) sdate.add(s['session_date']) ftypes.add(s['file_type']) if s['file_type'] == 'tracking-video-map': # xfer & load camera:trial map ex: dl55_20190108_side.txtb fsp = s['file_subpath'] lsp = '/tmp/' + s['file_subpath'].split('/')[-1] srcp = '{}:{}/{}'.format(rep, rep_sub, fsp) dstp = '{}:{}/{}'.format(lep, lep_sub, lsp) log.info('transferring {} to {}'.format(srcp, dstp)) if not gsm.cp(srcp, dstp): # XXX: check if exists 1st? emsg = "couldn't transfer {} to {}".format(srcp, dstp) log.error(emsg) raise dj.DataJointError(emsg) lfname = lep_dir + lsp # local filesysem copy location dftmap[s['position']] = TrackingIngest.load_campath(lfname) if len(h2o) != 1 or len(sdate) != 1: log.info('skipping. bad h2o {} or session date {}'.format( h2o, sdate)) return h2o, sdate = next(iter(h2o)), next(iter(sdate)) for d in dvfmap: if d in dftmap: # remap video no -> trial dtfmap[d] = {dftmap[d][v]: dict(dvfmap[d][v], trial=dftmap[d][v]) for v in dvfmap[d]} else: # assign video no -> trial dtfmap[d] = {k: dict(v, trial=v['video']) for k, v in dvfmap[d].items()} # DataSet ds_type = 'tracking-video' ds_name = '{}_{}_{}'.format(h2o, sdate, ds_type) ds_key = {'dataset_name': ds_name, 'globus_alias': globus_alias} if (DataSet & ds_key): log.info('DataSet: {} already exists. Skipping.'.format( ds_key)) return DataSet.insert1({**ds_key, 'dataset_type': ds_type}, allow_direct_insert=True) # ArchivedSession as_key = {k: v for k, v in smap[skey].items() if k in ArchivedSession.primary_key} ArchivedSession.insert1( {**as_key, 'globus_alias': globus_alias}, allow_direct_insert=True, skip_duplicates=True) for d in dtfmap: # ArchivedTrackingVideo atv_key = {**as_key, **ds_key, 'tracking_device': tpos_dev[d]} ArchivedTrackingVideo.insert1( atv_key, allow_direct_insert=True) for t in dtfmap[d]: for f in dtfmap[d][t]: DataSet.PhysicalFile.insert1( {**ds_key, **f}, allow_direct_insert=True, ignore_extra_fields=True) ArchivedTrackingVideo.TrialVideo.insert1( {**atv_key, **ds_key, 'trial': t, 'file_subpath': f['file_subpath']}, allow_direct_insert=True) # end commit() for ep, dirname, node in gsm.fts('{}:{}'.format(rep, rep_sub)): vdir = re.match('([a-z]+[0-9]+)/([0-9]{8})/video', dirname) if not vdir or node['DATA_TYPE'] != 'file': continue h2o, sdate = vdir[1], vdir[2] skey_i = '{}/{}'.format(h2o, sdate) if skey_i != skey: if skey and skey in smap: with dj.conn().transaction: try: commit(skey, sfiles) except Exception as e: log.error( 'Exception {} committing {}. files: {}'.format( repr(e), skey, sfiles)) skey, sfiles = skey_i, [] if skey not in smap: if skey not in sskip: log.debug('session {} not known. skipping'.format(skey)) sskip.add(skey) continue fname = node['name'] log.debug('checking {}/{}'.format(dirname, fname)) if '.' not in fname: log.debug('skipping {} - no dot in fname'.format(fname)) continue froot, fext = fname.split('.', 1) ftype = {g['file_type']: g for g in ftmap.values() if fnmatch(fname, g['file_glob'])} if len(ftype) != 1: log.debug('skipping {} - incorrect type matches: {}'.format( fname, ftype)) continue ftype = next(iter(ftype.values()))['file_type'] log.debug('processing as {}'.format(ftype)) file_subpath = '{}/{}'.format(dirname, fname) if ftype == 'tracking-video-map': # e.g. dl55_20190108_side.txt h2o_f, fdate, pos = froot.split('_') sfiles.append({'water_restriction_number': h2o, 'session_date': '{}-{}-{}'.format( sdate[:4], sdate[4:6], sdate[6:]), 'position': pos, 'file_subpath': file_subpath, 'file_type': ftype}) else: # tracking-video-map # e.g. dl41_side_998-0000.avi or dl41_side_998-0000_00.avi h2o_f, pos, video = froot.replace('-', '_').split('_')[:3] sfiles.append({'water_restriction_number': h2o, 'session_date': '{}-{}-{}'.format( sdate[:4], sdate[4:6], sdate[6:]), 'position': pos, 'video': int(video), 'file_subpath': file_subpath, 'file_type': ftype}) def make(self, key): """ discover files in local endpoint and transfer/register """ log.info('ArchivedVideoFile.make(): {}'.format(key)) # {'tracking_device': 'Camera 0', 'subject_id': 432572, 'session': 1} globus_alias = 'raw-video' le = GlobusStorageLocation.local_endpoint(globus_alias) lep, lep_sub, lep_dir = (le['endpoint'], le['endpoint_subdir'], le['endpoint_path']) re = (GlobusStorageLocation & {'globus_alias': globus_alias}).fetch1() rep, rep_sub = re['globus_endpoint'], re['globus_path'] log.info('local_endpoint: {}:{} -> {}'.format(lep, lep_sub, lep_dir)) log.info('remote_endpoint: {}:{}'.format(rep, rep_sub)) h2o = (lab.WaterRestriction & key).fetch1('water_restriction_number') session = (experiment.Session & key).fetch1() sdate = session['session_date'] sdate_sml = "{}{:02d}{:02d}".format(sdate.year, sdate.month, sdate.day) dev = (tracking.TrackingDevice & key).fetch1() trls = (experiment.SessionTrial & key).fetch( order_by='trial', as_dict=True) tracking_ingest = self.get_ingest() tdev = dev['tracking_device'] # NOQA: notused tpos = dev['tracking_position'] camtrial = '{}_{}_{}.txt'.format(h2o, sdate_sml, tpos) vbase = pathlib.Path(lep_dir, h2o, sdate_sml, 'video') campath = vbase / camtrial if not campath.exists(): # XXX: uses 1st found log.warning('trial map {} n/a! skipping.'.format(campath)) return log.info('loading trial map: {}'.format(campath)) vmap = {v: k for k, v in tracking_ingest.TrackingIngest.load_campath(campath).items()} log.debug('loaded video map: {}'.format(vmap)) # add ArchivedSession as_key = {k: v for k, v in key.items() if k in experiment.Session.primary_key} as_rec = {**as_key, 'globus_alias': globus_alias} ArchivedSession.insert1(as_rec, allow_direct_insert=True, skip_duplicates=True) # add DataSet ds_type = 'tracking-video' ds_name = '{}_{}_{}_{}'.format(h2o, sdate.isoformat(), ds_type, tpos) ds_key = {'globus_alias': globus_alias, 'dataset_name': ds_name} ds_rec = {**ds_key, 'dataset_type': ds_type} DataSet.insert1(ds_rec, allow_direct_insert=True) # add ArchivedVideoTracking vt_key = {**as_key, 'tracking_device': tdev} vt_rec = {**vt_key, 'globus_alias': globus_alias, 'dataset_name': ds_name} self.insert1(vt_rec) filetype = 'tracking-video-trial' for t in trls: trial = t['trial'] log.info('.. tracking trial {} ({})'.format(trial, t)) if t['trial'] not in vmap: log.warning('trial {} not in video map. skipping!'.format(t)) continue vmatch = '{}_{}_{}-*'.format(h2o, tpos, vmap[trial]) log.debug('vbase: {}, vmatch: {}'.format(vbase, vmatch)) vglob = list(vbase.glob(vmatch)) if len(vglob) != 1: emsg = 'incorrect videos found in {}: {}'.format(vbase, vglob) log.warning(emsg) raise dj.DataJointError(emsg) vfile = vglob[0].name gfile = '{}/{}/{}/{}'.format( h2o, sdate_sml, 'video', vfile) # subpath srcp = '{}:{}/{}'.format(lep, lep_sub, gfile) # source path dstp = '{}:{}/{}'.format(rep, rep_sub, gfile) # dest path gsm = self.get_gsm() gsm.activate_endpoint(lep) # XXX: cache / prevent duplicate RPC? gsm.activate_endpoint(rep) # XXX: cache / prevent duplicate RPC? log.info('transferring {} to {}'.format(srcp, dstp)) if not gsm.cp(srcp, dstp): emsg = "couldn't transfer {} to {}".format(srcp, dstp) log.error(emsg) raise dj.DataJointError(emsg) pf_key = {**ds_key, 'file_subpath': vfile} pf_rec = {**pf_key, 'file_type': filetype} DataSet.PhysicalFile.insert1({**pf_rec}, allow_direct_insert=True) trk_key = {k: v for k, v in {**key, 'trial': trial}.items() if k in experiment.SessionTrial.primary_key} tv_rec = {**vt_key, **trk_key, **pf_key} self.TrialVideo.insert1({**tv_rec}) def test_flist(fname='globus-index-full.txt'): ''' spoof tester for discover methods expects: f: ep:/path/to/file d: ep:/path/to/direct etc. (aka: globus-shell 'find' output) replace the line: for ep, dirname, node in gsm.fts('{}:{}'.format(rep, rep_sub)): with: for ep, dirname, node in test_flist('globus-list.txt'): to test against the file 'globus-list.txt' ''' with open(fname, 'r') as infile: for l in infile: try: t, fp = l.split(' ') fp = fp.split(':')[1].lstrip('/').rstrip('\n') dn, bn = os.path.split(fp) if t == 'f:': yield ('ep', dn, {'DATA_TYPE': 'file', 'name': bn}) else: yield ('ep', dn, {'DATA_TYPE': 'dunno', 'path': bn}) except ValueError as e: if 'too many values' in repr(e): pass
0
36,662
0
0
936
0
0
41
430
31ae962fdd5c782121ff85fe6854a2b889e2cbfd
2,334
py
Python
docs/source/examples/7/sample.py
kumar-pratik/hi-ml
a108cf4ea244a76127adedc0ca60f0a5afdfb3e8
[ "MIT" ]
34
2021-08-18T13:27:36.000Z
2022-03-26T01:25:36.000Z
docs/source/examples/7/sample.py
kumar-pratik/hi-ml
a108cf4ea244a76127adedc0ca60f0a5afdfb3e8
[ "MIT" ]
111
2021-08-18T13:19:46.000Z
2022-03-30T05:57:01.000Z
docs/source/examples/7/sample.py
kumar-pratik/hi-ml
a108cf4ea244a76127adedc0ca60f0a5afdfb3e8
[ "MIT" ]
6
2021-09-13T12:07:58.000Z
2022-03-24T16:31:06.000Z
# ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ # From: # https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/scikit-learn/train-hyperparameter-tune-deploy-with-sklearn/train_iris.py if __name__ == "__main__": main()
39.559322
169
0.654242
# ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ # From: # https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/scikit-learn/train-hyperparameter-tune-deploy-with-sklearn/train_iris.py import argparse from pathlib import Path import numpy as np from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split from health_azure import submit_to_azure_if_needed def main() -> None: run_info = submit_to_azure_if_needed( compute_cluster_name="lite-testing-ds2", default_datastore="himldatasets", input_datasets=["himl_sample7_input"], wait_for_completion=True, wait_for_completion_show_output=True) parser = argparse.ArgumentParser() parser.add_argument('--kernel', type=str, default='linear', help='Kernel type to be used in the algorithm') parser.add_argument('--penalty', type=float, default=1.0, help='Penalty parameter of the error term') args = parser.parse_args() print(f'Kernel type:{args.kernel}') print(f'Penalty: {args.penalty}') # X -> features, y -> label input_folder = run_info.input_datasets[0] or Path("dataset") X = np.loadtxt(fname=input_folder / "X.csv", delimiter=',', skiprows=1) y = np.loadtxt(fname=input_folder / "y.csv", dtype='str', delimiter=',', skiprows=1) # dividing X, y into train and test data X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # training a linear SVM classifier from sklearn.svm import SVC svm_model_linear = SVC(kernel=args.kernel, C=args.penalty).fit(X_train, y_train) svm_predictions = svm_model_linear.predict(X_test) # model accuracy for X_test accuracy = svm_model_linear.score(X_test, y_test) print('Accuracy of SVM classifier on test set: {:.2f}'.format(accuracy)) # creating a confusion matrix cm = confusion_matrix(y_test, svm_predictions) print(cm) if __name__ == "__main__": main()
0
0
0
0
0
1,536
0
77
157
6599733b0213579573a907d9fc5ab78c8a716ed8
510
py
Python
tests/test_cli.py
vfranca/pp
db9e15a490e5b28a177cdcd8f448d21fd5bec8d7
[ "MIT" ]
null
null
null
tests/test_cli.py
vfranca/pp
db9e15a490e5b28a177cdcd8f448d21fd5bec8d7
[ "MIT" ]
null
null
null
tests/test_cli.py
vfranca/pp
db9e15a490e5b28a177cdcd8f448d21fd5bec8d7
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*-
26.842105
74
0.668627
#!/usr/bin/env python # -*- coding: utf-8 -*- import unittest from click.testing import CliRunner from pivotpoint import pp from pivotpoint import cli class TestPivotPoint(unittest.TestCase): def setUp(self): self.runner = CliRunner() def tearDown(self): """Tear down test fixtures, if any.""" def test_command_line_interface(self): result = self.runner.invoke(cli.main, ["34.80", "32.80", "33.40"]) assert "35.67\n34.54\n33.67\n32.54\n31.67\n" in result.output
0
0
0
335
0
0
0
17
111
6c59951f383e22b4b6dd672512b717c4ad1ef094
1,086
py
Python
rackio/dao/controls.py
crivero7/rackio-framework
d3362041b1fc4c3af7eb51ac06b1f0f1b5aa497c
[ "MIT" ]
null
null
null
rackio/dao/controls.py
crivero7/rackio-framework
d3362041b1fc4c3af7eb51ac06b1f0f1b5aa497c
[ "MIT" ]
null
null
null
rackio/dao/controls.py
crivero7/rackio-framework
d3362041b1fc4c3af7eb51ac06b1f0f1b5aa497c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """rackio/dao/controls.py This module implements Controls Data Objects Access. """
18.40678
52
0.57919
# -*- coding: utf-8 -*- """rackio/dao/controls.py This module implements Controls Data Objects Access. """ from .core import RackioDAO class ControlsDAO(RackioDAO): def get_all(self): app = self.get_app() manager = app.get_manager("control") result = list() for control in manager.get_controls(): result.append(control.serialize()) return result def get(self, name): app = self.get_app() manager = app.get_manager("control") control = manager.get_control(name) if control: return control.serialize() class RulesDAO(RackioDAO): def get_all(self): app = self.get_app() manager = app.get_manager("control") result = list() for rule in manager.get_rules(): result.append(rule.serialize()) return result def get(self, name): app = self.get_app() manager = app.get_manager("control") rule = manager.get_rule(name) if rule: return rule.serialize()
0
0
0
902
0
0
0
6
68
b3ba1dada5fdca8c0505e224c5e297d351338eaf
721
py
Python
AddPDFBookmarks/handle_pdf.py
wanghuohuo0716/py-project
b771b8005d72843df1653ce68ddb67ccf77a57a8
[ "MIT" ]
92
2018-02-26T07:59:27.000Z
2022-03-31T08:57:51.000Z
AddPDFBookmarks/handle_pdf.py
Linkeer365/py-project
b771b8005d72843df1653ce68ddb67ccf77a57a8
[ "MIT" ]
2
2020-08-19T00:55:52.000Z
2021-03-08T07:37:32.000Z
AddPDFBookmarks/handle_pdf.py
Linkeer365/py-project
b771b8005d72843df1653ce68ddb67ccf77a57a8
[ "MIT" ]
53
2018-09-07T14:26:33.000Z
2022-03-31T08:57:53.000Z
# coding:utf-8 # PDF import sys reload(sys) sys.setdefaultencoding('utf-8') if __name__ == '__main__': main()
31.347826
88
0.71706
# coding:utf-8 # 添加PDF书签 from pdf_utils import MyPDFHandler,PDFHandleMode as mode import ConfigParser import sys reload(sys) sys.setdefaultencoding('utf-8') def main(): # 从配置文件中读取配置信息 cf = ConfigParser.SafeConfigParser() cf.read('./info.conf') pdf_path = cf.get('info','pdf_path') bookmark_file_path = cf.get('info','bookmark_file_path') page_offset = cf.getint('info','page_offset') new_pdf_file_name = cf.get('info','new_pdf_file_name') pdf_handler = MyPDFHandler(pdf_path,mode = mode.NEWLY) pdf_handler.add_bookmarks_by_read_txt(bookmark_file_path,page_offset = page_offset) pdf_handler.save2file(new_pdf_file_name) if __name__ == '__main__': main()
48
0
0
0
0
480
0
33
71
28cd58401f73165d35b3541ef644b2fdcb572816
1,638
py
Python
openff/utilities/testing.py
openforcefield/openff-utilities
89255d6cc9513df6ad5293841e86ab1f968f7e3b
[ "MIT" ]
null
null
null
openff/utilities/testing.py
openforcefield/openff-utilities
89255d6cc9513df6ad5293841e86ab1f968f7e3b
[ "MIT" ]
17
2021-06-09T06:46:20.000Z
2022-03-02T00:30:41.000Z
openff/utilities/testing.py
openforcefield/openff-utilities
89255d6cc9513df6ad5293841e86ab1f968f7e3b
[ "MIT" ]
null
null
null
from typing import List, Optional, Union import pytest from openff.utilities.utilities import has_executable, has_package def skip_if_missing(package_name: str, reason: Optional[str] = None): """ Helper function to generate a pytest.mark.skipif decorator for any package. This allows tests to be skipped if some optional dependency is not found. Parameters ---------- package_name : str The name of the package that is required for a test(s) reason : str, optional Explanation of why the skipped it to be tested Returns ------- requires_package : _pytest.mark.structures.MarkDecorator A pytest decorator that will skip tests if the package is not available """ if not reason: reason = f"Package {package_name} is required, but was not found." requires_package = pytest.mark.skipif(not has_package(package_name), reason=reason) return requires_package def skip_if_missing_exec(exec: Union[str, List[str]]): """Helper function to generate a pytest.mark.skipif decorator if an executable(s) is not found.""" if isinstance(exec, str): execs: List = [exec] elif isinstance(exec, list): execs: List = exec # type: ignore[no-redef] else: raise ValueError( "Bad type passed to skip_if_missing_exec. " f"Found type {type(exec)}" ) found_exec = False for exec_ in execs: found_exec = found_exec or has_executable(exec_) reason = f"Package {str(exec)} is required, but was not found." mark = pytest.mark.skipif(not found_exec, reason=reason) return mark
32.117647
87
0.681319
from typing import List, Optional, Union import pytest from openff.utilities.utilities import has_executable, has_package def skip_if_missing(package_name: str, reason: Optional[str] = None): """ Helper function to generate a pytest.mark.skipif decorator for any package. This allows tests to be skipped if some optional dependency is not found. Parameters ---------- package_name : str The name of the package that is required for a test(s) reason : str, optional Explanation of why the skipped it to be tested Returns ------- requires_package : _pytest.mark.structures.MarkDecorator A pytest decorator that will skip tests if the package is not available """ if not reason: reason = f"Package {package_name} is required, but was not found." requires_package = pytest.mark.skipif(not has_package(package_name), reason=reason) return requires_package def skip_if_missing_exec(exec: Union[str, List[str]]): """Helper function to generate a pytest.mark.skipif decorator if an executable(s) is not found.""" if isinstance(exec, str): execs: List = [exec] elif isinstance(exec, list): execs: List = exec # type: ignore[no-redef] else: raise ValueError( "Bad type passed to skip_if_missing_exec. " f"Found type {type(exec)}" ) found_exec = False for exec_ in execs: found_exec = found_exec or has_executable(exec_) reason = f"Package {str(exec)} is required, but was not found." mark = pytest.mark.skipif(not found_exec, reason=reason) return mark
0
0
0
0
0
0
0
0
0
8ef5b889f2b72b0ee8d71a6019e587e98cab7064
5,122
py
Python
projects/Show me the Data Structures/problem_1.py
gmendozah/Data-Structures-and-Algorithms
07474db45acfe42855cc0f4cc968c0564b2cb91a
[ "MIT" ]
5
2021-10-08T11:21:08.000Z
2022-01-24T22:40:03.000Z
projects/Show me the Data Structures/problem_1.py
gmendozah/Data-Structures-and-Algorithms
07474db45acfe42855cc0f4cc968c0564b2cb91a
[ "MIT" ]
null
null
null
projects/Show me the Data Structures/problem_1.py
gmendozah/Data-Structures-and-Algorithms
07474db45acfe42855cc0f4cc968c0564b2cb91a
[ "MIT" ]
3
2021-12-13T06:50:58.000Z
2022-02-05T03:38:49.000Z
if __name__ == '__main__': test_case_1() test_case_2() test_case_3()
31.423313
115
0.557595
class Node: def __init__(self, key=None, value=None): self.key = key self.value = value self.next = None self.prev = None class LRU_Cache(object): def __init__(self, capacity): if capacity < 1: print('LRUCache should have capacity > 0') return # Initialize class variables self.capacity = capacity self.size = 0 self.map = dict() self.head = None # this node represents the least recently used self.tail = None # this node represents the most recently used def get_capacity(self): return self.capacity def get(self, key): # Retrieve item from provided key. Return -1 if nonexistent. if key is None: return -1 elif key not in self.map: return -1 else: node = self.map[key] self.move_to_front(node) return node.value def set(self, key, value): # Set the value if the key is not present in the cache. If the cache is at capacity remove the oldest item. """ First. we validate the input key Second. we verify if key is already in the map If key in map: We update the node value and move it to the front If not in map: We create a new node and set it in the map Third: we validate if we passed the cache capacity """ if key is None or value is None: return -1 elif key not in self.map: node = Node(key, value) self.map[key] = node self.add(node) else: node = self.map[key] node.value = value self.move_to_front(node) if self.capacity < 0: self.remove_lru() def move_to_front(self, node): self.remove(node) self.add(node) def add(self, node): # add data to the next attribute of the tail (i.e. the end of the queue) # if head and tail have no values if self.head is None or self.tail is None: self.head = node self.tail = node # if the linked list has values already else: node.next = self.head node.prev = None self.head.prev = node self.head = node self.capacity = self.capacity - 1 def remove(self, node): # if the node we want to delete is the head if self.head.key == node.key: next_node = self.head.next self.head = next_node # if the node we want to delete is the tail elif self.tail.key == node.key: prev_node = self.tail.prev self.tail = prev_node # if none of the above happens else: prev_node = node.prev next_node = node.next prev_node.next = next_node next_node.prev = prev_node self.capacity += 1 def remove_lru(self): node = self.tail self.remove(node) del self.map[node.key] if __name__ == '__main__': def test_case_1(): # invalid length cache test case our_cache = LRU_Cache(-1) # should show an invalid capacity value def test_case_2(): # normal length cache test case our_cache = LRU_Cache(5) our_cache.set(1, 11) our_cache.set(2, 22) our_cache.set(3, 33) our_cache.set(4, 44) our_cache.set(5, 55) our_cache.set(6, 66) our_cache.set(7, 77) print(our_cache.get(1)) # returns -1 print(our_cache.get(2)) # returns -1 print(our_cache.get(3)) # returns 33 print(our_cache.get(7)) # returns 77 print(our_cache.get(6)) # returns 66 print(our_cache.get(4)) # returns 44 our_cache.set(8, 88) print(our_cache.get(5)) # returns -1 def test_case_3(): # short cache test case our_cache = LRU_Cache(3) our_cache.set(1, 1) our_cache.set(2, 2) our_cache.set(3, 3) our_cache.set(4, 4) print(our_cache.get(4)) # Expected Value = 4 print(our_cache.get(1)) # Expected Value = -1 our_cache.set(2, 4) print(our_cache.get(2)) # Expected Value = 4 our_cache.set(5, 5) print(our_cache.get(3)) # Expected Value = -1 print(our_cache.get(5)) # Expected Value = 5 our_cache.set(2, 6) print(our_cache.get(2)) # Expected Value = 6 our_cache.set(6, 6) print(our_cache.get(4)) # Expected Value = -1 print(our_cache.get(6)) # Expected Value = 6 our_cache.set(5, 10) our_cache.set(7, 7) print(our_cache.get(2)) # Expected Value = -1 print(our_cache.get(7)) # Expected Value = 7 print(our_cache.get(6)) # Expected Value = 6 print(our_cache.get(5)) # Expected Value = 10 print(our_cache.get(5)) # Expected Value = 10 our_cache.set(8, 8) print(our_cache.get(7)) # Expected Value = -1 test_case_1() test_case_2() test_case_3()
0
0
0
3,064
0
1,858
0
0
125
8246e38f21bcb46e020f248157401bcc92b6f2e7
45,802
py
Python
hydrus/tests/test_app.py
vcode11/hydrus
4ed8ada7ed8fd7d8897e744bae410b312f4cfb83
[ "MIT" ]
1
2019-12-04T12:54:21.000Z
2019-12-04T12:54:21.000Z
hydrus/tests/test_app.py
vcode11/hydrus
4ed8ada7ed8fd7d8897e744bae410b312f4cfb83
[ "MIT" ]
3
2019-12-21T04:15:23.000Z
2020-04-07T05:11:05.000Z
hydrus/tests/test_app.py
vcode11/hydrus
4ed8ada7ed8fd7d8897e744bae410b312f4cfb83
[ "MIT" ]
null
null
null
"""Test for checking if the response format is proper. Run test_crud before running this.""" import unittest import random import string from hydra_python_core.doc_writer import HydraLink def gen_dummy_object(class_title, doc): """Create a dummy object based on the definitions in the API Doc. :param class_title: Title of the class whose object is being created. :param doc: ApiDoc. :return: A dummy object of class `class_title`. """ object_ = { "@type": class_title } for class_path in doc.parsed_classes: if class_title == doc.parsed_classes[class_path]["class"].title: for prop in doc.parsed_classes[class_path]["class"].supportedProperty: if isinstance(prop.prop, HydraLink) or prop.write is False: continue if "vocab:" in prop.prop: prop_class = prop.prop.replace("vocab:", "") object_[prop.title] = gen_dummy_object(prop_class, doc) else: object_[prop.title] = ''.join(random.choice( string.ascii_uppercase + string.digits) for _ in range(6)) return object_ if __name__ == '__main__': message = """ Running tests for the app. Checking if all responses are in proper order. """ unittest.main()
51.929705
100
0.550696
"""Test for checking if the response format is proper. Run test_crud before running this.""" import unittest import random import string import json import re import uuid from hydrus.app_factory import app_factory from hydrus.socketio_factory import create_socket from hydrus.utils import set_session, set_doc, set_api_name, set_page_size from hydrus.data import doc_parse, crud from hydra_python_core import doc_maker from hydra_python_core.doc_writer import HydraLink from hydrus.samples import doc_writer_sample from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker, scoped_session from hydrus.data.db_models import Base def gen_dummy_object(class_title, doc): """Create a dummy object based on the definitions in the API Doc. :param class_title: Title of the class whose object is being created. :param doc: ApiDoc. :return: A dummy object of class `class_title`. """ object_ = { "@type": class_title } for class_path in doc.parsed_classes: if class_title == doc.parsed_classes[class_path]["class"].title: for prop in doc.parsed_classes[class_path]["class"].supportedProperty: if isinstance(prop.prop, HydraLink) or prop.write is False: continue if "vocab:" in prop.prop: prop_class = prop.prop.replace("vocab:", "") object_[prop.title] = gen_dummy_object(prop_class, doc) else: object_[prop.title] = ''.join(random.choice( string.ascii_uppercase + string.digits) for _ in range(6)) return object_ class ViewsTestCase(unittest.TestCase): """Test Class for the app.""" @classmethod def setUpClass(self): """Database setup before the tests.""" print("Creating a temporary database...") engine = create_engine('sqlite:///:memory:') Base.metadata.create_all(engine) session = scoped_session(sessionmaker(bind=engine)) self.session = session self.API_NAME = "demoapi" self.page_size = 1 self.HYDRUS_SERVER_URL = "http://hydrus.com/" self.app = app_factory(self.API_NAME) self.socketio = create_socket(self.app, self.session) print("going for create doc") self.doc = doc_maker.create_doc( doc_writer_sample.api_doc.generate(), self.HYDRUS_SERVER_URL, self.API_NAME) test_classes = doc_parse.get_classes(self.doc.generate()) test_properties = doc_parse.get_all_properties(test_classes) doc_parse.insert_classes(test_classes, self.session) doc_parse.insert_properties(test_properties, self.session) print("Classes and properties added successfully.") print("Setting up hydrus utilities... ") self.api_name_util = set_api_name(self.app, self.API_NAME) self.session_util = set_session(self.app, self.session) self.doc_util = set_doc(self.app, self.doc) self.page_size_util = set_page_size(self.app, self.page_size) self.client = self.app.test_client() print("Creating utilities context... ") self.api_name_util.__enter__() self.session_util.__enter__() self.doc_util.__enter__() self.client.__enter__() print("Setup done, running tests...") @classmethod def tearDownClass(self): """Tear down temporary database and exit utilities""" self.client.__exit__(None, None, None) self.doc_util.__exit__(None, None, None) self.session_util.__exit__(None, None, None) self.api_name_util.__exit__(None, None, None) self.session.close() def setUp(self): for class_ in self.doc.parsed_classes: link_props = {} class_title = self.doc.parsed_classes[class_]["class"].title dummy_obj = gen_dummy_object(class_title, self.doc) for supportedProp in self.doc.parsed_classes[class_]['class'].supportedProperty: if isinstance(supportedProp.prop, HydraLink): class_name = supportedProp.prop.range.replace("vocab:", "") for collection_path in self.doc.collections: coll_class = self.doc.collections[ collection_path]['collection'].class_.title if class_name == coll_class: id_ = str(uuid.uuid4()) crud.insert( gen_dummy_object(class_name, self.doc), id_=id_, session=self.session) link_props[supportedProp.title] = id_ dummy_obj[supportedProp.title] = "{}/{}/{}".format( self.API_NAME, collection_path, id_) crud.insert( dummy_obj, id_=str( uuid.uuid4()), link_props=link_props, session=self.session) # If it's a collection class then add an extra object so # we can test pagination thoroughly. if class_ in self.doc.collections: crud.insert( dummy_obj, id_=str( uuid.uuid4()), session=self.session) def test_Index(self): """Test for the index.""" response_get = self.client.get("/{}".format(self.API_NAME)) endpoints = json.loads(response_get.data.decode('utf-8')) response_post = self.client.post( "/{}".format(self.API_NAME), data=dict(foo="bar")) response_put = self.client.put( "/{}".format(self.API_NAME), data=dict(foo="bar")) response_delete = self.client.delete("/{}".format(self.API_NAME)) assert "@context" in endpoints assert endpoints["@id"] == "/{}".format(self.API_NAME) assert endpoints["@type"] == "EntryPoint" assert response_get.status_code == 200 assert response_post.status_code == 405 assert response_put.status_code == 405 assert response_delete.status_code == 405 def test_EntryPoint_context(self): """Test for the EntryPoint context.""" response_get = self.client.get( "/{}/contexts/EntryPoint.jsonld".format(self.API_NAME)) response_get_data = json.loads(response_get.data.decode('utf-8')) response_post = self.client.post( "/{}/contexts/EntryPoint.jsonld".format(self.API_NAME), data={}) response_delete = self.client.delete( "/{}/contexts/EntryPoint.jsonld".format(self.API_NAME)) assert response_get.status_code == 200 assert "@context" in response_get_data assert response_post.status_code == 405 assert response_delete.status_code == 405 def test_Vocab(self): """Test the vocab.""" response_get = self.client.get("/{}/vocab#".format(self.API_NAME)) response_get_data = json.loads(response_get.data.decode('utf-8')) assert "@context" in response_get_data assert response_get_data["@type"] == "ApiDocumentation" assert response_get_data["@id"] == "{}{}/vocab".format( self.HYDRUS_SERVER_URL, self.API_NAME) assert response_get.status_code == 200 response_delete = self.client.delete( "/{}/vocab#".format(self.API_NAME)) assert response_delete.status_code == 405 response_put = self.client.put( "/{}/vocab#".format(self.API_NAME), data=json.dumps(dict(foo='bar'))) assert response_put.status_code == 405 response_post = self.client.post( "/{}/vocab#".format(self.API_NAME), data=json.dumps(dict(foo='bar'))) assert response_post.status_code == 405 def test_Collections_GET(self): """Test GET on collection endpoints.""" index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: collection_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if collection_name in self.doc.collections: response_get = self.client.get(endpoints[endpoint]) # pdb.set_trace() assert response_get.status_code == 200 response_get_data = json.loads( response_get.data.decode('utf-8')) assert "@context" in response_get_data assert "@id" in response_get_data assert "@type" in response_get_data assert "members" in response_get_data # Check the item URI has the valid format, so it can be dereferenced if len(response_get_data["members"]) > 0: for item in response_get_data["members"]: class_type = item["@type"] if class_type in self.doc.parsed_classes: class_ = self.doc.parsed_classes[class_type]["class"] class_methods = [ x.method for x in class_.supportedOperation] if "GET" in class_methods: item_response = self.client.get( response_get_data["members"][0]["@id"]) assert item_response.status_code == 200 def test_pagination(self): """Test basic pagination""" index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: collection_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if collection_name in self.doc.collections: response_get = self.client.get(endpoints[endpoint]) assert response_get.status_code == 200 response_get_data = json.loads( response_get.data.decode('utf-8')) assert "view" in response_get_data assert "first" in response_get_data["view"] assert "last" in response_get_data["view"] if "next" in response_get_data["view"]: response_next = self.client.get(response_get_data["view"]["next"]) assert response_next.status_code == 200 response_next_data = json.loads( response_next.data.decode('utf-8')) assert "previous" in response_next_data["view"] break def test_Collections_PUT(self): """Test insert data to the collection.""" index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: collection_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if collection_name in self.doc.collections: collection = self.doc.collections[collection_name]["collection"] dummy_object = gen_dummy_object( collection.class_.title, self.doc) good_response_put = self.client.put( endpoints[endpoint], data=json.dumps(dummy_object)) assert good_response_put.status_code == 201 def test_object_POST(self): """Test replace of a given object using ID.""" index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: collection_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if collection_name in self.doc.collections: collection = self.doc.collections[collection_name]["collection"] class_ = self.doc.parsed_classes[collection.class_.title]["class"] class_methods = [x.method for x in class_.supportedOperation] dummy_object = gen_dummy_object( collection.class_.title, self.doc) initial_put_response = self.client.put( endpoints[endpoint], data=json.dumps(dummy_object)) assert initial_put_response.status_code == 201 response = json.loads( initial_put_response.data.decode('utf-8')) regex = r'(.*)ID (.{36})* (.*)' matchObj = re.match(regex, response["description"]) assert matchObj is not None id_ = matchObj.group(2) if "POST" in class_methods: dummy_object = gen_dummy_object( collection.class_.title, self.doc) post_replace_response = self.client.post( '{}/{}'.format(endpoints[endpoint], id_), data=json.dumps(dummy_object)) assert post_replace_response.status_code == 200 def test_object_DELETE(self): """Test DELETE of a given object using ID.""" index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: collection_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if collection_name in self.doc.collections: collection = self.doc.collections[collection_name]["collection"] class_ = self.doc.parsed_classes[collection.class_.title]["class"] class_methods = [x.method for x in class_.supportedOperation] dummy_object = gen_dummy_object( collection.class_.title, self.doc) initial_put_response = self.client.put( endpoints[endpoint], data=json.dumps(dummy_object)) assert initial_put_response.status_code == 201 response = json.loads( initial_put_response.data.decode('utf-8')) regex = r'(.*)ID (.{36})* (.*)' matchObj = re.match(regex, response["description"]) assert matchObj is not None id_ = matchObj.group(2) if "DELETE" in class_methods: delete_response = self.client.delete( '{}/{}'.format(endpoints[endpoint], id_)) assert delete_response.status_code == 200 def test_object_PUT_at_id(self): """Create object in collection using PUT at specific ID.""" index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: collection_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if collection_name in self.doc.collections: collection = self.doc.collections[collection_name]["collection"] class_ = self.doc.parsed_classes[collection.class_.title]["class"] class_methods = [x.method for x in class_.supportedOperation] dummy_object = gen_dummy_object( collection.class_.title, self.doc) if "PUT" in class_methods: dummy_object = gen_dummy_object( collection.class_.title, self.doc) put_response = self.client.put('{}/{}'.format( endpoints[endpoint], uuid.uuid4()), data=json.dumps(dummy_object)) assert put_response.status_code == 201 def test_object_PUT_at_ids(self): index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: collection_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if collection_name in self.doc.collections: collection = self.doc.collections[collection_name]["collection"] class_ = self.doc.parsed_classes[collection.class_.title]["class"] class_methods = [x.method for x in class_.supportedOperation] data_ = {"data": list()} objects = list() ids = "" for index in range(3): objects.append(gen_dummy_object( collection.class_.title, self.doc)) ids = "{},".format(uuid.uuid4()) data_["data"] = objects if "PUT" in class_methods: put_response = self.client.put( '{}/add/{}'.format(endpoints[endpoint], ids), data=json.dumps(data_)) assert put_response.status_code == 201 def test_endpointClass_PUT(self): """Check non collection Class PUT.""" index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: if endpoint not in ["@context", "@id", "@type"]: class_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if class_name not in self.doc.collections: class_ = self.doc.parsed_classes[class_name]["class"] class_methods = [ x.method for x in class_.supportedOperation] if "PUT" in class_methods: dummy_object = gen_dummy_object(class_.title, self.doc) put_response = self.client.put( endpoints[endpoint], data=json.dumps(dummy_object)) assert put_response.status_code == 201 def test_endpointClass_POST(self): """Check non collection Class POST.""" index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: if endpoint not in ["@context", "@id", "@type"]: class_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if class_name not in self.doc.collections: class_ = self.doc.parsed_classes[class_name]["class"] class_methods = [ x.method for x in class_.supportedOperation] if "POST" in class_methods: dummy_object = gen_dummy_object(class_.title, self.doc) post_response = self.client.post( endpoints[endpoint], data=json.dumps(dummy_object)) assert post_response.status_code == 200 def test_endpointClass_DELETE(self): """Check non collection Class DELETE.""" index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: if endpoint not in ["@context", "@id", "@type"]: class_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if class_name not in self.doc.collections: class_ = self.doc.parsed_classes[class_name]["class"] class_methods = [ x.method for x in class_.supportedOperation] if "DELETE" in class_methods: delete_response = self.client.delete( endpoints[endpoint]) assert delete_response.status_code == 200 def test_endpointClass_GET(self): """Check non collection Class GET.""" index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: if endpoint not in ["@context", "@id", "@type"]: class_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if class_name not in self.doc.collections: class_ = self.doc.parsed_classes[class_name]["class"] class_methods = [ x.method for x in class_.supportedOperation] if "GET" in class_methods: response_get = self.client.get(endpoints[endpoint]) assert response_get.status_code == 200 response_get_data = json.loads( response_get.data.decode('utf-8')) assert "@context" in response_get_data assert "@id" in response_get_data assert "@type" in response_get_data def test_IriTemplate(self): """Test structure of IriTemplates attached to collections""" index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: collection_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if collection_name in self.doc.collections: response_get = self.client.get(endpoints[endpoint]) assert response_get.status_code == 200 response_get_data = json.loads( response_get.data.decode('utf-8')) assert "search" in response_get_data assert "mapping" in response_get_data["search"] collection = self.doc.collections[collection_name]["collection"] class_ = self.doc.parsed_classes[collection.class_.title]["class"] class_props = [x.prop for x in class_.supportedProperty] for mapping in response_get_data["search"]["mapping"]: if mapping["property"] not in ["limit", "offset", "pageIndex"]: assert mapping["property"] in class_props def test_client_controlled_pagination(self): """Test pagination controlled by client with help of pageIndex, offset and limit parameters.""" index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: collection_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if collection_name in self.doc.collections: response_get = self.client.get(endpoints[endpoint]) assert response_get.status_code == 200 response_get_data = json.loads( response_get.data.decode('utf-8')) assert "search" in response_get_data assert "mapping" in response_get_data["search"] # Test with pageIndex and limit params = {"pageIndex": 1, "limit": 2} response_for_page_param = self.client.get(endpoints[endpoint], query_string=params) assert response_for_page_param.status_code == 200 response_for_page_param_data = json.loads( response_for_page_param.data.decode('utf-8')) assert "first" in response_for_page_param_data["view"] assert "last" in response_for_page_param_data["view"] if "next" in response_for_page_param_data["view"]: assert "pageIndex=2" in response_for_page_param_data["view"]["next"] next_response = self.client.get(response_for_page_param_data["view"]["next"]) assert next_response.status_code == 200 next_response_data = json.loads( next_response.data.decode('utf-8')) assert "previous" in next_response_data["view"] assert "pageIndex=1" in next_response_data["view"]["previous"] # Test with offset and limit params = {"offset": 1, "limit": 2} response_for_offset_param = self.client.get(endpoints[endpoint], query_string=params) assert response_for_offset_param.status_code == 200 response_for_offset_param_data = json.loads( response_for_offset_param.data.decode('utf-8')) assert "first" in response_for_offset_param_data["view"] assert "last" in response_for_offset_param_data["view"] if "next" in response_for_offset_param_data["view"]: assert "offset=3" in response_for_offset_param_data["view"]["next"] next_response = self.client.get( response_for_offset_param_data["view"]["next"]) assert next_response.status_code == 200 next_response_data = json.loads( next_response.data.decode('utf-8')) assert "previous" in next_response_data["view"] assert "offset=1" in next_response_data["view"]["previous"] def test_GET_for_nested_class(self): index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: if endpoint not in ["@context", "@id", "@type"]: class_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if class_name not in self.doc.collections: class_ = self.doc.parsed_classes[class_name]["class"] class_methods = [ x.method for x in class_.supportedOperation] if "GET" in class_methods: response_get = self.client.get(endpoints[endpoint]) assert response_get.status_code == 200 response_get_data = json.loads( response_get.data.decode('utf-8')) assert "@context" in response_get_data assert "@id" in response_get_data assert "@type" in response_get_data class_props = [x for x in class_.supportedProperty] for prop_name in class_props: if isinstance(prop_name.prop, HydraLink) and prop_name.read is True: nested_obj_resp = self.client.get( response_get_data[prop_name.title]) assert nested_obj_resp.status_code == 200 nested_obj = json.loads( nested_obj_resp.data.decode('utf-8')) assert "@type" in nested_obj elif "vocab:" in prop_name.prop: assert "@type" in response_get_data[prop_name.title] def test_required_props(self): index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: if endpoint not in ["@context", "@id", "@type"]: class_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if class_name not in self.doc.collections: class_ = self.doc.parsed_classes[class_name]["class"] class_methods = [ x.method for x in class_.supportedOperation] if "PUT" in class_methods: dummy_object = gen_dummy_object(class_.title, self.doc) required_prop = "" for prop in class_.supportedProperty: if prop.required: required_prop = prop.title break if required_prop: del dummy_object[required_prop] put_response = self.client.put( endpoints[endpoint], data=json.dumps(dummy_object)) assert put_response.status_code == 400 def test_writeable_props(self): index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: if endpoint not in ["@context", "@id", "@type"]: class_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if class_name not in self.doc.collections: class_ = self.doc.parsed_classes[class_name]["class"] class_methods = [ x.method for x in class_.supportedOperation] if "POST" in class_methods: dummy_object = gen_dummy_object(class_.title, self.doc) # Test for writeable properties post_response = self.client.post( endpoints[endpoint], data=json.dumps(dummy_object)) assert post_response.status_code == 200 # Test for properties with writeable=False non_writeable_prop = "" for prop in class_.supportedProperty: if prop.write is False: non_writeable_prop = prop.title break if non_writeable_prop != "": dummy_object[non_writeable_prop] = "xyz" post_response = self.client.post( endpoints[endpoint], data=json.dumps(dummy_object)) assert post_response.status_code == 405 def test_readable_props(self): index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: if endpoint not in ["@context", "@id", "@type"]: class_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if class_name not in self.doc.collections: class_ = self.doc.parsed_classes[class_name]["class"] class_methods = [ x.method for x in class_.supportedOperation] if "GET" in class_methods: not_readable_prop = "" for prop in class_.supportedProperty: if prop.read is False: not_readable_prop = prop.title break if not_readable_prop: get_response = self.client.get( endpoints[endpoint]) get_response_data = json.loads( get_response.data.decode('utf-8')) assert not_readable_prop not in get_response_data def test_bad_objects(self): """Checks if bad objects are added or not.""" index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: collection_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if collection_name in self.doc.collections: bad_response_put = self.client.put( endpoints[endpoint], data=json.dumps( dict( foo='bar'))) assert bad_response_put.status_code == 400 def test_bad_requests(self): """Checks if bad requests are handled or not.""" index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: collection_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if collection_name in self.doc.collections: collection = self.doc.collections[collection_name]["collection"] class_ = self.doc.parsed_classes[collection.class_.title]["class"] class_methods = [x.method for x in class_.supportedOperation] dummy_object = gen_dummy_object( collection.class_.title, self.doc) initial_put_response = self.client.put( endpoints[endpoint], data=json.dumps(dummy_object)) assert initial_put_response.status_code == 201 response = json.loads( initial_put_response.data.decode('utf-8')) regex = r'(.*)ID (.{36})* (.*)' matchObj = re.match(regex, response["description"]) assert matchObj is not None id_ = matchObj.group(2) if "POST" not in class_methods: dummy_object = gen_dummy_object( collection.class_.title, self.doc) post_replace_response = self.client.post( '{}/{}'.format(endpoints[endpoint], id_), data=json.dumps(dummy_object)) assert post_replace_response.status_code == 405 if "DELETE" not in class_methods: delete_response = self.client.delete( '{}/{}'.format(endpoints[endpoint], id_)) assert delete_response.status_code == 405 def test_Endpoints_Contexts(self): """Test all endpoints contexts are generated properly.""" index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: collection_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if collection_name in self.doc.collections: response_get = self.client.get(endpoints[endpoint]) assert response_get.status_code == 200 context = json.loads( response_get.data.decode('utf-8'))["@context"] response_context = self.client.get(context) response_context_data = json.loads( response_context.data.decode('utf-8')) assert response_context.status_code == 200 assert "@context" in response_context_data class SocketTestCase(unittest.TestCase): """Test Class for socket events and operations.""" @classmethod def setUpClass(self): """Database setup before the tests.""" print("Creating a temporary database...") engine = create_engine('sqlite:///:memory:') Base.metadata.create_all(engine) session = scoped_session(sessionmaker(bind=engine)) self.session = session self.API_NAME = "demoapi" self.page_size = 1 self.HYDRUS_SERVER_URL = "http://hydrus.com/" self.app = app_factory(self.API_NAME) self.socketio = create_socket(self.app, self.session) print("going for create doc") self.doc = doc_maker.create_doc( doc_writer_sample.api_doc.generate(), self.HYDRUS_SERVER_URL, self.API_NAME) test_classes = doc_parse.get_classes(self.doc.generate()) test_properties = doc_parse.get_all_properties(test_classes) doc_parse.insert_classes(test_classes, self.session) doc_parse.insert_properties(test_properties, self.session) print("Classes and properties added successfully.") print("Setting up hydrus utilities... ") self.api_name_util = set_api_name(self.app, self.API_NAME) self.session_util = set_session(self.app, self.session) self.doc_util = set_doc(self.app, self.doc) self.page_size_util = set_page_size(self.app, self.page_size) self.client = self.app.test_client() self.socketio_client = self.socketio.test_client(self.app, namespace='/sync') print("Creating utilities context... ") self.api_name_util.__enter__() self.session_util.__enter__() self.doc_util.__enter__() self.client.__enter__() print("Setup done, running tests...") @classmethod def tearDownClass(self): """Tear down temporary database and exit utilities""" self.client.__exit__(None, None, None) self.doc_util.__exit__(None, None, None) self.session_util.__exit__(None, None, None) self.api_name_util.__exit__(None, None, None) self.session.close() def setUp(self): for class_ in self.doc.parsed_classes: class_title = self.doc.parsed_classes[class_]["class"].title dummy_obj = gen_dummy_object(class_title, self.doc) crud.insert( dummy_obj, id_=str( uuid.uuid4()), session=self.session) # If it's a collection class then add an extra object so # we can test pagination thoroughly. if class_ in self.doc.collections: crud.insert( dummy_obj, id_=str( uuid.uuid4()), session=self.session) # Add two dummy modification records crud.insert_modification_record(method="POST", resource_url="", session=self.session) crud.insert_modification_record(method="DELETE", resource_url="", session=self.session) def test_connect(self): """Test connect event.""" socket_client = self.socketio.test_client(self.app, namespace='/sync') data = socket_client.get_received('/sync') assert len(data) > 0 event = data[0] assert event['name'] == 'connect' last_job_id = crud.get_last_modification_job_id(self.session) assert event['args'][0]['last_job_id'] == last_job_id socket_client.disconnect(namespace='/sync') def test_reconnect(self): """Test reconnect event.""" socket_client = self.socketio.test_client(self.app, namespace='/sync') # Flush data of first connect event socket_client.get_received('/sync') # Client reconnects by emitting 'reconnect' event. socket_client.emit('reconnect', namespace='/sync') # Get update received on reconnecting to the server data = socket_client.get_received('/sync') assert len(data) > 0 # Extract the event information event = data[0] assert event['name'] == 'connect' last_job_id = crud.get_last_modification_job_id(self.session) # Check last job id with last_job_id received by client in the update. assert event['args'][0]['last_job_id'] == last_job_id socket_client.disconnect(namespace='/sync') def test_modification_table_diff(self): """Test 'modification-table-diff' events.""" # Flush old received data at socket client self.socketio_client.get_received('/sync') # Set last_job_id as the agent_job_id agent_job_id = crud.get_last_modification_job_id(self.session) # Add an extra modification record newer than the agent_job_id new_latest_job_id = crud.insert_modification_record(method="POST", resource_url="", session=self.session) self.socketio_client.emit('get_modification_table_diff', {'agent_job_id': agent_job_id}, namespace='/sync') data = self.socketio_client.get_received('/sync') assert len(data) > 0 event = data[0] assert event['name'] == 'modification_table_diff' # Check received event contains data of newly added modification record. assert event['args'][0][0]['method'] == "POST" assert event['args'][0][0]['resource_url'] == "" assert event['args'][0][0]['job_id'] == new_latest_job_id def test_socketio_POST_updates(self): """Test 'update' event emitted by socketio for POST operations.""" index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: if endpoint not in ["@context", "@id", "@type"]: class_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if class_name not in self.doc.collections: class_ = self.doc.parsed_classes[class_name]["class"] class_methods = [ x.method for x in class_.supportedOperation] if "POST" in class_methods: dummy_object = gen_dummy_object(class_.title, self.doc) # Flush old socketio updates self.socketio_client.get_received('/sync') post_response = self.client.post( endpoints[endpoint], data=json.dumps(dummy_object)) assert post_response.status_code == 200 # Get new socketio update update = self.socketio_client.get_received('/sync') assert len(update) != 0 assert update[0]['args'][0]['method'] == "POST" resource_name = update[0]['args'][0]['resource_url'].split('/')[-1] assert resource_name == endpoints[endpoint].split('/')[-1] def test_socketio_DELETE_updates(self): """Test 'update' event emitted by socketio for DELETE operations.""" index = self.client.get("/{}".format(self.API_NAME)) assert index.status_code == 200 endpoints = json.loads(index.data.decode('utf-8')) for endpoint in endpoints: if endpoint not in ["@context", "@id", "@type"]: class_name = "/".join(endpoints[endpoint].split( "/{}/".format(self.API_NAME))[1:]) if class_name not in self.doc.collections: class_ = self.doc.parsed_classes[class_name]["class"] class_methods = [ x.method for x in class_.supportedOperation] if "DELETE" in class_methods: # Flush old socketio updates self.socketio_client.get_received('/sync') delete_response = self.client.delete( endpoints[endpoint]) assert delete_response.status_code == 200 # Get new update event update = self.socketio_client.get_received('/sync') assert len(update) != 0 assert update[0]['args'][0]['method'] == 'DELETE' resource_name = update[0]['args'][0]['resource_url'].split('/')[-1] assert resource_name == endpoints[endpoint].split('/')[-1] if __name__ == '__main__': message = """ Running tests for the app. Checking if all responses are in proper order. """ unittest.main()
0
4,067
0
39,830
0
0
0
195
326
c06b33ca0266576dd77b1443051d6971f9e82077
801
py
Python
environment.py
LCBRU/hic_covid
eb5a37339185ed71246235e307a81d91dc91f9ec
[ "MIT" ]
null
null
null
environment.py
LCBRU/hic_covid
eb5a37339185ed71246235e307a81d91dc91f9ec
[ "MIT" ]
null
null
null
environment.py
LCBRU/hic_covid
eb5a37339185ed71246235e307a81d91dc91f9ec
[ "MIT" ]
null
null
null
"""Environment Variables """ import os from dotenv import load_dotenv load_dotenv() HIC_DB_USERNAME = os.environ["HIC_DB_USERNAME"] HIC_DB_PASSWORD = os.environ["HIC_DB_PASSWORD"] HIC_DB_HOST = os.environ["HIC_DB_HOST"] HIC_DB_DATABASE = os.environ["HIC_DB_DATABASE"] MS_SQL_ODBC_DRIVER = os.environ["MS_SQL_ODBC_DRIVER"] MS_SQL_UHL_DWH_HOST = os.environ["MS_SQL_UHL_DWH_HOST"] MS_SQL_UHL_DWH_USER = os.environ["MS_SQL_UHL_DWH_USER"] MS_SQL_UHL_DWH_PASSWORD = os.environ["MS_SQL_UHL_DWH_PASSWORD"] IDENTITY_API_KEY = os.environ["IDENTITY_API_KEY"] IDENTITY_HOST = os.environ["IDENTITY_HOST"] HIC_CONNECTION_STRING = os.environ["HIC_CONNECTION_STRING"] HIC_HOST = os.environ["HIC_HOST"] HIC_USERNAME = os.environ["HIC_USERNAME"] HIC_PASSWORD = os.environ["HIC_PASSWORD"]
30.807692
64
0.781523
"""Environment Variables """ import os from dotenv import load_dotenv load_dotenv() HIC_DB_USERNAME = os.environ["HIC_DB_USERNAME"] HIC_DB_PASSWORD = os.environ["HIC_DB_PASSWORD"] HIC_DB_HOST = os.environ["HIC_DB_HOST"] HIC_DB_DATABASE = os.environ["HIC_DB_DATABASE"] MS_SQL_ODBC_DRIVER = os.environ["MS_SQL_ODBC_DRIVER"] MS_SQL_UHL_DWH_HOST = os.environ["MS_SQL_UHL_DWH_HOST"] MS_SQL_UHL_DWH_USER = os.environ["MS_SQL_UHL_DWH_USER"] MS_SQL_UHL_DWH_PASSWORD = os.environ["MS_SQL_UHL_DWH_PASSWORD"] IDENTITY_API_KEY = os.environ["IDENTITY_API_KEY"] IDENTITY_HOST = os.environ["IDENTITY_HOST"] HIC_CONNECTION_STRING = os.environ["HIC_CONNECTION_STRING"] HIC_HOST = os.environ["HIC_HOST"] HIC_USERNAME = os.environ["HIC_USERNAME"] HIC_PASSWORD = os.environ["HIC_PASSWORD"]
0
0
0
0
0
0
0
0
0
f0682b750b96bf2f312eb6ff9f2bea5aef2c5958
390
py
Python
nbd_app/migrations/0007_alter_socialamenities_hotline_number.py
Kevson102/Nbd-Phoenix
509a9cf026d24827dccc9a5ec67819ecd86fbf03
[ "MIT" ]
null
null
null
nbd_app/migrations/0007_alter_socialamenities_hotline_number.py
Kevson102/Nbd-Phoenix
509a9cf026d24827dccc9a5ec67819ecd86fbf03
[ "MIT" ]
null
null
null
nbd_app/migrations/0007_alter_socialamenities_hotline_number.py
Kevson102/Nbd-Phoenix
509a9cf026d24827dccc9a5ec67819ecd86fbf03
[ "MIT" ]
null
null
null
# Generated by Django 3.2.9 on 2022-01-03 14:32
20.526316
47
0.605128
# Generated by Django 3.2.9 on 2022-01-03 14:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('nbd_app', '0006_generalposts'), ] operations = [ migrations.AlterField( model_name='socialamenities', name='hotline_number', field=models.BigIntegerField(), ), ]
0
0
0
276
0
0
0
19
46
a68bccebe211588992d72d7335645e18121c4bf1
1,039
py
Python
python/icp.py
nowtechnologies/ridi_imu
2d8a8e54d0491c44de7edac662b101db47ad3cfc
[ "MIT" ]
140
2018-05-27T16:11:40.000Z
2022-03-28T15:49:28.000Z
python/icp.py
nowtechnologies/ridi_imu
2d8a8e54d0491c44de7edac662b101db47ad3cfc
[ "MIT" ]
13
2018-07-16T20:59:58.000Z
2021-12-09T08:35:43.000Z
python/icp.py
nowtechnologies/ridi_imu
2d8a8e54d0491c44de7edac662b101db47ad3cfc
[ "MIT" ]
58
2018-02-14T03:53:51.000Z
2022-03-07T15:59:41.000Z
import numpy as np def fit_transformation(source, target): """ This function computes the best rigid transformation between two point sets. It assumes that "source" and "target" are with the same length and "source[i]" corresponds to "target[i]". :param source: Nxd array. :param target: Nxd array. :return: A transformation as (d+1)x(d+1) matrix; the rotation part as a dxd matrix and the translation part as a dx1 vector. """ assert source.shape == target.shape center_source = np.mean(source, axis=0) center_target = np.mean(target, axis=0) m = source.shape[1] source_zeromean = source - center_source target_zeromean = target - center_target W = np.dot(source_zeromean.T, target_zeromean) U, S, Vt = np.linalg.svd(W) R = np.dot(Vt.T, U.T) if np.linalg.det(R) < 0: Vt[m - 1, :] *= -1 R = np.dot(Vt.T, U.T) t = center_target.T - np.dot(R, center_source.T) T = np.identity(m + 1) T[:m, :m] = R T[:m, m] = t return T, R, t
33.516129
109
0.627526
import numpy as np def fit_transformation(source, target): """ This function computes the best rigid transformation between two point sets. It assumes that "source" and "target" are with the same length and "source[i]" corresponds to "target[i]". :param source: Nxd array. :param target: Nxd array. :return: A transformation as (d+1)x(d+1) matrix; the rotation part as a dxd matrix and the translation part as a dx1 vector. """ assert source.shape == target.shape center_source = np.mean(source, axis=0) center_target = np.mean(target, axis=0) m = source.shape[1] source_zeromean = source - center_source target_zeromean = target - center_target W = np.dot(source_zeromean.T, target_zeromean) U, S, Vt = np.linalg.svd(W) R = np.dot(Vt.T, U.T) if np.linalg.det(R) < 0: Vt[m - 1, :] *= -1 R = np.dot(Vt.T, U.T) t = center_target.T - np.dot(R, center_source.T) T = np.identity(m + 1) T[:m, :m] = R T[:m, m] = t return T, R, t
0
0
0
0
0
0
0
0
0
d22e0e78871a5ab8c68a346843dd049461897cb0
1,887
py
Python
codechef/long-challenge/may21/MODEQ.py
ramanaditya/data-structure-and-algorithms
8dcfeb011e76b2b38b54842e8ccc7a59728141f8
[ "MIT" ]
81
2020-05-22T14:22:04.000Z
2021-12-18T10:11:23.000Z
codechef/long-challenge/may21/MODEQ.py
techhub-community/data-structure-and-algorithms
8dcfeb011e76b2b38b54842e8ccc7a59728141f8
[ "MIT" ]
4
2020-08-06T21:08:00.000Z
2021-03-31T16:07:50.000Z
codechef/long-challenge/may21/MODEQ.py
techhub-community/data-structure-and-algorithms
8dcfeb011e76b2b38b54842e8ccc7a59728141f8
[ "MIT" ]
37
2020-05-22T14:25:21.000Z
2021-12-30T03:13:13.000Z
""" [Modular Equation](https://www.codechef.com/MAY21C/problems/MODEQ) Given integers N and M, find the number of ordered pairs (a,b) such that 1a<bN and ((M mod a) mod b)=((M mod b) mod a). Input The first line contains an integer T, the number of test cases. Then the test cases follow. The only line of each test case contains two integers N, M. Output For each testcase, output in a single line the answer to the problem. Constraints 1T1000 2N106 1M5105 The sum of N over all test cases does not exceed 106. Note: Multiplier for JAVA for this problem is reduced to 1.25 instead of usual 2. Subtasks Subtask #1 (10 points): 1T10 2N103 1M105 Subtask #2 (40 points): 1T100 2N105 1M105 The sum of N over all test cases does not exceed 106. Subtask #3 (50 points): Original Constraints Sample Input 3 3 5 3 6 3 10 Sample Output 2 3 2 Explanation Test Case 1: The valid pairs are {(1,2),(1,3)}. Test Case 2: The valid pairs are {(1,2),(1,3),(2,3)}. Test Case 3: The valid pairs are {(1,2),(1,3)}. """ # Brute Force """ if __name__ == '__main__': input = sys.stdin.read() data = list(map(int, input.split())) T = data[0] idx = 1 while T > 0: N, M = data[idx: idx + 2] res = 0 for i in range(1, N): for j in range(i + 1, N + 1): if (M % i) % j == (M % j) % i: res += 1 print(res) T -= 1 idx += 2 # Time : 0.58s """ if __name__ == '__main__': T = int(input()) idx = 1 while T > 0: N, M = list(map(int, input().split())) res = 0 mod = dict() for a in range(2, N+1): mod_with_a = M % a res += mod.get(mod_with_a, 1) for b in range(mod_with_a, N+1, a): mod[b] = mod.get(b, 1) + 1 print(res) T -= 1 # Time : 4.92s
19.255102
91
0.569687
""" [Modular Equation](https://www.codechef.com/MAY21C/problems/MODEQ) Given integers N and M, find the number of ordered pairs (a,b) such that 1≤a<b≤N and ((M mod a) mod b)=((M mod b) mod a). Input The first line contains an integer T, the number of test cases. Then the test cases follow. The only line of each test case contains two integers N, M. Output For each testcase, output in a single line the answer to the problem. Constraints 1≤T≤1000 2≤N≤106 1≤M≤5⋅105 The sum of N over all test cases does not exceed 106. Note: Multiplier for JAVA for this problem is reduced to 1.25 instead of usual 2. Subtasks Subtask #1 (10 points): 1≤T≤10 2≤N≤103 1≤M≤105 Subtask #2 (40 points): 1≤T≤100 2≤N≤105 1≤M≤105 The sum of N over all test cases does not exceed 106. Subtask #3 (50 points): Original Constraints Sample Input 3 3 5 3 6 3 10 Sample Output 2 3 2 Explanation Test Case 1: The valid pairs are {(1,2),(1,3)}. Test Case 2: The valid pairs are {(1,2),(1,3),(2,3)}. Test Case 3: The valid pairs are {(1,2),(1,3)}. """ import sys # Brute Force """ if __name__ == '__main__': input = sys.stdin.read() data = list(map(int, input.split())) T = data[0] idx = 1 while T > 0: N, M = data[idx: idx + 2] res = 0 for i in range(1, N): for j in range(i + 1, N + 1): if (M % i) % j == (M % j) % i: res += 1 print(res) T -= 1 idx += 2 # Time : 0.58s """ if __name__ == '__main__': T = int(input()) idx = 1 while T > 0: N, M = list(map(int, input().split())) res = 0 mod = dict() for a in range(2, N+1): mod_with_a = M % a res += mod.get(mod_with_a, 1) for b in range(mod_with_a, N+1, a): mod[b] = mod.get(b, 1) + 1 print(res) T -= 1 # Time : 4.92s
63
0
0
0
0
0
0
-11
23