hexsha
stringlengths
40
40
size
int64
6
1.04M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
247
max_stars_repo_name
stringlengths
4
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
368k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
247
max_issues_repo_name
stringlengths
4
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
247
max_forks_repo_name
stringlengths
4
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.04M
avg_line_length
float64
1.53
618k
max_line_length
int64
1
1.02M
alphanum_fraction
float64
0
1
original_content
stringlengths
6
1.04M
filtered:remove_non_ascii
int64
0
538k
filtered:remove_decorators
int64
0
917k
filtered:remove_async
int64
0
722k
filtered:remove_classes
int64
-45
1M
filtered:remove_generators
int64
0
814k
filtered:remove_function_no_docstring
int64
-102
850k
filtered:remove_class_no_docstring
int64
-3
5.46k
filtered:remove_unused_imports
int64
-1,350
52.4k
filtered:remove_delete_markers
int64
0
59.6k
351525ff3510e81241132c03602b819a2a740942
70
py
Python
core/src/static_classes/__init__.py
azurlane-doujin/AzurLanePaintingExtract-v1.0
ef4f25e70b3ca1b9df4304132cc7612c8f5efebb
[ "MIT" ]
144
2019-06-13T06:43:43.000Z
2022-03-29T15:07:57.000Z
core/src/static_classes/__init__.py
Shabi1213/AzurLanePaintingExtract-v1.0
ef4f25e70b3ca1b9df4304132cc7612c8f5efebb
[ "MIT" ]
2
2020-08-02T15:08:58.000Z
2021-11-29T02:34:18.000Z
core/src/static_classes/__init__.py
Goodjooy/ArknightsPaintingExtract
e1e6ef339c6f76cab45a26df66497126c11a21a8
[ "MIT" ]
19
2020-03-01T10:06:52.000Z
2022-02-06T13:49:26.000Z
__all__ = ["file_read", 'image_deal', 'search_order', 'static_data']
35
69
0.7
__all__ = ["file_read", 'image_deal', 'search_order', 'static_data']
0
0
0
0
0
0
0
0
0
13e87111dffd55a11464ba7c203a6cc1cb2cb9ac
412
py
Python
Demo/wdt/example_wdt_file.py
quecpython/EC100Y-SDK
712c7eb7b54a3971009d94f6d6b21a6011d56f68
[ "MIT" ]
4
2021-01-28T01:30:59.000Z
2021-06-15T07:13:41.000Z
Demo/wdt/example_wdt_file.py
QuePython/EC100Y-SDK
712c7eb7b54a3971009d94f6d6b21a6011d56f68
[ "MIT" ]
null
null
null
Demo/wdt/example_wdt_file.py
QuePython/EC100Y-SDK
712c7eb7b54a3971009d94f6d6b21a6011d56f68
[ "MIT" ]
3
2021-04-07T09:55:59.000Z
2022-01-08T15:15:23.000Z
''' @Author: Pawn @Date: 2020-08-12 @LastEditTime: 2020-08-12 17:06:08 @Description: example for module timer @FilePath: example_wdt.py ''' from machine import WDT from machine import Timer timer1 = Timer(Timer.Timer1) if __name__ == '__main__': wdt = WDT(20) # timer1.start(period=15000, mode=timer1.PERIODIC, callback=feed) # # wdt.stop()
17.913043
78
0.682039
''' @Author: Pawn @Date: 2020-08-12 @LastEditTime: 2020-08-12 17:06:08 @Description: example for module timer @FilePath: example_wdt.py ''' from machine import WDT from machine import Timer timer1 = Timer(Timer.Timer1) def feed(t): wdt.feed() if __name__ == '__main__': wdt = WDT(20) # 启动看门狗,间隔时长 timer1.start(period=15000, mode=timer1.PERIODIC, callback=feed) # 使用定时器喂狗 # wdt.stop()
51
0
0
0
0
6
0
0
23
bcb5024cd6f5e64a630af32466bb1b12cbac2b4a
2,752
py
Python
users/tests/test_urls.py
jewells07/mumbleapi
beee0b50eefb3b1ff3e21073400c778323eece98
[ "Apache-2.0" ]
1
2021-05-18T11:37:44.000Z
2021-05-18T11:37:44.000Z
users/tests/test_urls.py
TomNewton1/mumbleapi
108d5a841b97d38285bede523f243624e05bc231
[ "Apache-2.0" ]
null
null
null
users/tests/test_urls.py
TomNewton1/mumbleapi
108d5a841b97d38285bede523f243624e05bc231
[ "Apache-2.0" ]
null
null
null
# Create your tests here.
37.69863
87
0.703125
from django.conf.urls import url from django.urls import reverse , resolve from rest_framework import status from rest_framework.test import APITestCase from users.views import ( followUser , users , UserProfileUpdate , ProfilePictureUpdate , usersRecommended , user , userMumbles, userArticles, passwordChange, sendActivationEmail, sendActivationEmail , activate) # Create your tests here. class AccountTests(APITestCase): def setUp(self): pass def test_users_url(self): url = 'users-api:users' reversed_url = reverse(url) response = self.client.get('/api/users/') self.assertEqual(resolve(reversed_url).func,users) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_users_follow_url(self): url = 'users-api:follow-user' reversed_url = reverse(url,args=['praveen']) self.assertEqual(resolve(reversed_url).func,followUser) def test_user_profile_update_url(self): url = 'users-api:profile_update' reversed_url = reverse(url) self.assertEqual(resolve(reversed_url).func.view_class,UserProfileUpdate) def test_profile_update_photo_url(self): url = 'users-api:profile_update_photo' reversed_url = reverse(url) resolved = resolve(reversed_url).func self.assertEqual(resolved.view_class,ProfilePictureUpdate) def test_users_recommended_url(self): url = 'users-api:users-recommended' reversed_url = reverse(url) self.assertEqual(resolve(reversed_url).func,usersRecommended) def test_user_url(self): url = 'users-api:user' reversed_url = reverse(url,args=['test']) self.assertEqual(resolve(reversed_url).func,user) def test_user_mumbles(self): url = 'users-api:user-mumbles' reversed_url = reverse(url,args=['test']) self.assertEqual(resolve(reversed_url).func,userMumbles) def test_user_articles_url(self): url = 'users-api:user-articles' reversed_url = reverse(url,args=['test']) self.assertEqual(resolve(reversed_url).func,userArticles) def test_user_password_url(self): url = 'users-api:password-change' reversed_url = reverse(url) self.assertEqual(resolve(reversed_url).func,passwordChange) def test_send_activation_email_url(self): url = 'users-api:send-activation-email' reversed_url = reverse(url) self.assertEqual(resolve(reversed_url).func,sendActivationEmail) def test_active_user_account_url(self): url = 'users-api:verify' reversed_url = reverse(url,args=['903u924u934u598348943','*&6g83chruhrweriuj']) self.assertEqual(resolve(reversed_url).func,activate)
0
0
0
2,322
0
0
0
272
133
73e1afd1d4cf91f0ff98fd1d78bfc8ce897e5c54
4,921
py
Python
src/Testing/ZopeTestCase/utils.py
tseaver/Zope-RFA
08634f39b0f8b56403a2a9daaa6ee4479ef0c625
[ "ZPL-2.1" ]
2
2015-12-21T10:34:56.000Z
2017-09-24T11:07:58.000Z
src/Testing/ZopeTestCase/utils.py
MatthewWilkes/Zope
740f934fc9409ae0062e8f0cd6dcfd8b2df00376
[ "ZPL-2.1" ]
null
null
null
src/Testing/ZopeTestCase/utils.py
MatthewWilkes/Zope
740f934fc9409ae0062e8f0cd6dcfd8b2df00376
[ "ZPL-2.1" ]
null
null
null
############################################################################## # # Copyright (c) 2005 Zope Foundation and Contributors. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Utility functions These functions are designed to be imported and run at module level to add functionality to the test environment. """ import os import sys import time import random import transaction def importObjectFromFile(container, filename, quiet=0): '''Imports an object from a (.zexp) file into the given container.''' from ZopeLite import _print, _patched quiet = quiet or not _patched start = time.time() if not quiet: _print("Importing %s ... " % os.path.basename(filename)) container._importObjectFromFile(filename, verify=0) transaction.commit() if not quiet: _print('done (%.3fs)\n' % (time.time() - start)) _Z2HOST = None _Z2PORT = None def startZServer(number_of_threads=1, log=None): '''Starts an HTTP ZServer thread.''' global _Z2HOST, _Z2PORT if _Z2HOST is None: _Z2HOST = '127.0.0.1' _Z2PORT = random.choice(range(55000, 55500)) from threadutils import setNumberOfThreads setNumberOfThreads(number_of_threads) from threadutils import QuietThread, zserverRunner t = QuietThread(target=zserverRunner, args=(_Z2HOST, _Z2PORT, log)) t.setDaemon(1) t.start() time.sleep(0.1) # Sandor Palfy return _Z2HOST, _Z2PORT def makerequest(app, stdout=sys.stdout): '''Wraps the app into a fresh REQUEST.''' from Testing.makerequest import makerequest as _makerequest environ = {} environ['SERVER_NAME'] = _Z2HOST or 'nohost' environ['SERVER_PORT'] = '%d' % (_Z2PORT or 80) environ['REQUEST_METHOD'] = 'GET' return _makerequest(app, stdout=stdout, environ=environ) def appcall(func, *args, **kw): '''Calls a function passing 'app' as first argument.''' from base import app, close app = app() args = (app,) + args try: return func(*args, **kw) finally: transaction.abort() close(app) def makelist(arg): '''Turns arg into a list. Where arg may be list, tuple, or string. ''' if type(arg) == type([]): return arg if type(arg) == type(()): return list(arg) if type(arg) == type(''): return filter(None, [arg]) raise ValueError('Argument must be list, tuple, or string') __all__ = [ 'setupCoreSessions', 'setupSiteErrorLog', 'startZServer', 'importObjectFromFile', 'appcall', 'makerequest', 'makelist', ]
31.544872
83
0.636456
############################################################################## # # Copyright (c) 2005 Zope Foundation and Contributors. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Utility functions These functions are designed to be imported and run at module level to add functionality to the test environment. """ import os import sys import time import random import transaction import layer @layer.appcall def setupCoreSessions(app): '''Sets up the session_data_manager e.a.''' from Acquisition import aq_base commit = 0 if not hasattr(app, 'temp_folder'): from Products.TemporaryFolder.TemporaryFolder import MountedTemporaryFolder tf = MountedTemporaryFolder('temp_folder', 'Temporary Folder') app._setObject('temp_folder', tf) commit = 1 if not hasattr(aq_base(app.temp_folder), 'session_data'): from Products.Transience.Transience import TransientObjectContainer toc = TransientObjectContainer('session_data', 'Session Data Container', timeout_mins=3, limit=100) app.temp_folder._setObject('session_data', toc) commit = 1 if not hasattr(app, 'browser_id_manager'): from Products.Sessions.BrowserIdManager import BrowserIdManager bid = BrowserIdManager('browser_id_manager', 'Browser Id Manager') app._setObject('browser_id_manager', bid) commit = 1 if not hasattr(app, 'session_data_manager'): from Products.Sessions.SessionDataManager import SessionDataManager sdm = SessionDataManager('session_data_manager', title='Session Data Manager', path='/temp_folder/session_data', requestName='SESSION') app._setObject('session_data_manager', sdm) commit = 1 if commit: transaction.commit() @layer.appcall def setupSiteErrorLog(app): '''Sets up the error_log object required by ZPublisher.''' if not hasattr(app, 'error_log'): try: from Products.SiteErrorLog.SiteErrorLog import SiteErrorLog except ImportError: pass else: app._setObject('error_log', SiteErrorLog()) transaction.commit() def importObjectFromFile(container, filename, quiet=0): '''Imports an object from a (.zexp) file into the given container.''' from ZopeLite import _print, _patched quiet = quiet or not _patched start = time.time() if not quiet: _print("Importing %s ... " % os.path.basename(filename)) container._importObjectFromFile(filename, verify=0) transaction.commit() if not quiet: _print('done (%.3fs)\n' % (time.time() - start)) _Z2HOST = None _Z2PORT = None def startZServer(number_of_threads=1, log=None): '''Starts an HTTP ZServer thread.''' global _Z2HOST, _Z2PORT if _Z2HOST is None: _Z2HOST = '127.0.0.1' _Z2PORT = random.choice(range(55000, 55500)) from threadutils import setNumberOfThreads setNumberOfThreads(number_of_threads) from threadutils import QuietThread, zserverRunner t = QuietThread(target=zserverRunner, args=(_Z2HOST, _Z2PORT, log)) t.setDaemon(1) t.start() time.sleep(0.1) # Sandor Palfy return _Z2HOST, _Z2PORT def makerequest(app, stdout=sys.stdout): '''Wraps the app into a fresh REQUEST.''' from Testing.makerequest import makerequest as _makerequest environ = {} environ['SERVER_NAME'] = _Z2HOST or 'nohost' environ['SERVER_PORT'] = '%d' % (_Z2PORT or 80) environ['REQUEST_METHOD'] = 'GET' return _makerequest(app, stdout=stdout, environ=environ) def appcall(func, *args, **kw): '''Calls a function passing 'app' as first argument.''' from base import app, close app = app() args = (app,) + args try: return func(*args, **kw) finally: transaction.abort() close(app) def makelist(arg): '''Turns arg into a list. Where arg may be list, tuple, or string. ''' if type(arg) == type([]): return arg if type(arg) == type(()): return list(arg) if type(arg) == type(''): return filter(None, [arg]) raise ValueError('Argument must be list, tuple, or string') __all__ = [ 'setupCoreSessions', 'setupSiteErrorLog', 'startZServer', 'importObjectFromFile', 'appcall', 'makerequest', 'makelist', ]
0
1,844
0
0
0
0
0
-9
68
c4ac1344ac12b2b41b5b5813289b0939cfb026e8
977
py
Python
experiments/mcompress/set_options.py
paralab/EigenMM
5c94233524ae2758ebf47c3b3fdb6570a6cc4e59
[ "MIT" ]
null
null
null
experiments/mcompress/set_options.py
paralab/EigenMM
5c94233524ae2758ebf47c3b3fdb6570a6cc4e59
[ "MIT" ]
null
null
null
experiments/mcompress/set_options.py
paralab/EigenMM
5c94233524ae2758ebf47c3b3fdb6570a6cc4e59
[ "MIT" ]
null
null
null
emm_fmt = """<?xml version="1.0" encoding="utf-8" ?> <EIGEN_MM> <OPTIONS _splitmaxiters="10" _nodesperevaluator="1" _subproblemsperevaluator="1" _totalsubproblems="1" _nevaluators="1" _taskspernode="%d" _nevals="-1" _nk="10" _nb="4" _p="0" _nv="10" _raditers="20" _splittol="0.9" _radtol="1e-8" _L="1.1" _R="-1" _terse="0" _details="0" _debug="1" _save_correctness="0" _save_operators="0" _save_eigenvalues="0" _save_eigenbasis="1" _correctness_filename="" _operators_filename="" _eigenvalues_filename="" _eigenbasis_filename="%s" /> </EIGEN_MM>""" import sys if __name__ == "__main__": taskspernode = int(sys.argv[1]) optionsdir = sys.argv[2] outputdir = sys.argv[3] expname = sys.argv[4] emmpath = optionsdir + "/" + expname + "_options.xml" f = open(emmpath, 'w') f_str = emm_fmt % (taskspernode, outputdir + "/" + expname) f.write(f_str) f.close()
20.354167
63
0.616172
emm_fmt = """<?xml version="1.0" encoding="utf-8" ?> <EIGEN_MM> <OPTIONS _splitmaxiters="10" _nodesperevaluator="1" _subproblemsperevaluator="1" _totalsubproblems="1" _nevaluators="1" _taskspernode="%d" _nevals="-1" _nk="10" _nb="4" _p="0" _nv="10" _raditers="20" _splittol="0.9" _radtol="1e-8" _L="1.1" _R="-1" _terse="0" _details="0" _debug="1" _save_correctness="0" _save_operators="0" _save_eigenvalues="0" _save_eigenbasis="1" _correctness_filename="" _operators_filename="" _eigenvalues_filename="" _eigenbasis_filename="%s" /> </EIGEN_MM>""" import sys if __name__ == "__main__": taskspernode = int(sys.argv[1]) optionsdir = sys.argv[2] outputdir = sys.argv[3] expname = sys.argv[4] emmpath = optionsdir + "/" + expname + "_options.xml" f = open(emmpath, 'w') f_str = emm_fmt % (taskspernode, outputdir + "/" + expname) f.write(f_str) f.close()
0
0
0
0
0
0
0
0
0
cb18427c6dda988b4a46b9e6269b431bec7b5ea3
5,758
py
Python
qtpyvcp/widgets/display_widgets/atc_widget/atc.py
awigen/qtpyvcp
5a23c4bca78accb159a76ac03652c74d5a07d14f
[ "BSD-3-Clause-LBNL", "MIT" ]
null
null
null
qtpyvcp/widgets/display_widgets/atc_widget/atc.py
awigen/qtpyvcp
5a23c4bca78accb159a76ac03652c74d5a07d14f
[ "BSD-3-Clause-LBNL", "MIT" ]
null
null
null
qtpyvcp/widgets/display_widgets/atc_widget/atc.py
awigen/qtpyvcp
5a23c4bca78accb159a76ac03652c74d5a07d14f
[ "BSD-3-Clause-LBNL", "MIT" ]
null
null
null
import os # Workarround for nvidia propietary drivers import ctypes import ctypes.util ctypes.CDLL(ctypes.util.find_library("GL"), mode=ctypes.RTLD_GLOBAL) # end of Workarround from qtpyvcp.plugins import getPlugin from qtpyvcp.utilities import logger LOG = logger.getLogger(__name__) STATUS = getPlugin('status') TOOLTABLE = getPlugin('tooltable') IN_DESIGNER = os.getenv('DESIGNER', False) WIDGET_PATH = os.path.dirname(os.path.abspath(__file__))
30.146597
83
0.633032
import os # Workarround for nvidia propietary drivers import ctypes import ctypes.util ctypes.CDLL(ctypes.util.find_library("GL"), mode=ctypes.RTLD_GLOBAL) # end of Workarround from qtpy.QtCore import Signal, Slot, QUrl, QTimer from qtpy.QtQuickWidgets import QQuickWidget from qtpyvcp.plugins import getPlugin from qtpyvcp.utilities import logger from qtpyvcp.utilities.hal_qlib import QComponent LOG = logger.getLogger(__name__) STATUS = getPlugin('status') TOOLTABLE = getPlugin('tooltable') IN_DESIGNER = os.getenv('DESIGNER', False) WIDGET_PATH = os.path.dirname(os.path.abspath(__file__)) class DynATC(QQuickWidget): moveToPocketSig = Signal(int, int, arguments=['previous_pocket', 'pocket_num']) # toolInSpindleSig = Signal(int, arguments=['tool_num']) rotateFwdSig = Signal(int, arguments=['steps']) rotateRevSig = Signal(int, arguments=['steps']) showToolSig = Signal(int, int, arguments=['pocket', 'tool_num']) hideToolSig = Signal(int, arguments=['tool_num']) homeMsgSig = Signal(str, arguments=["message"]) homingMsgSig = Signal(str, arguments=["message"]) def __init__(self, parent=None): super(DynATC, self).__init__(parent) if IN_DESIGNER: return self.atc_position = 0 self.pocket = 1 self.home = 0 self.homing = 0 self.pocket_slots = 12 self.component = QComponent("atc-widget") # define pocket pins to store tools for i in range(self.pocket_slots): pin_name = "pocket-{}".format(i+1) self.component.newPin(pin_name, "s32", "in") self.component[pin_name].valueChanged.connect(self.pocket_changed) self.component.newPin('home', "float", "in") self.component.newPin('homing', "float", "in") self.component.newPin("goto", "float", "in") self.component.newPin('goto-enable', "bit", "in") self.component.newPin("steps", "float", "in") self.component.newPin('steps-fwd', "bit", "in") self.component.newPin('steps-rev', "bit", "in") self.component.newPin('jog-fwd', "bit", "in") self.component.newPin('jog-rev', "bit", "in") self.component['home'].valueIncreased.connect(self.home_message) self.component['homing'].valueIncreased.connect(self.homing_message) self.component['goto-enable'].valueIncreased.connect(self.goto) self.component['steps-fwd'].valueIncreased.connect(self.steps_fwd) self.component['steps-rev'].valueIncreased.connect(self.steps_rev) self.component['jog-fwd'].valueIncreased.connect(self.jog_fwd) self.component['jog-rev'].valueIncreased.connect(self.jog_rev) self.component.ready() self.engine().rootContext().setContextProperty("atc_spiner", self) qml_path = os.path.join(WIDGET_PATH, "atc.qml") url = QUrl.fromLocalFile(qml_path) self.setSource(url) # Fixme fails on qtdesigner self.tool_table = None self.status_tool_table = None self.pockets = dict() self.tools = None self.load_tools() self.draw_tools() STATUS.tool_table.notify(self.load_tools) STATUS.pocket_prepped.notify(self.on_pocket_prepped) STATUS.tool_in_spindle.notify(self.on_tool_in_spindle) def hideEvent(self, *args, **kwargs): pass # hack to prevent animation glitch when we are on another tab def load_tools(self): self.tool_table = TOOLTABLE.getToolTable() self.status_tool_table = STATUS.tool_table self.pockets = dict() self.tools = dict() for i in range(self.pocket_slots): pin_name = "pocket-{}".format(i+1) self.pockets[i + 1] = self.component[pin_name].value def draw_tools(self): for i in range(1, 13): self.hideToolSig.emit(i) for pocket, tool in self.pockets.items(): if 0 < pocket < 13: if tool != 0: self.showToolSig.emit(pocket, tool) def pocket_changed(self): self.load_tools() self.draw_tools() def on_tool_in_spindle(self, tool): self.load_tools() self.draw_tools() def on_pocket_prepped(self, pocket_num): self.load_tools() self.draw_tools() def homing_message(self, *args, **kwargs): self.homing = args[0] if self.homing: self.homingMsgSig.emit("REFERENCING") else: self.homingMsgSig.emit("") def home_message(self, *args, **kwargs): self.home = args[0] if self.homing: self.homeMsgSig.emit("") else: self.homeMsgSig.emit("UN REFERENCED") def goto(self): self.component["goto-enable"].value = 0 pocket = self.component["goto"].value if self.pocket > pocket: steps = self.pocket - pocket self.rotate_rev(steps) elif self.pocket < pocket: steps = pocket - self.pocket self.rotate_fwd(steps) def steps_fwd(self): self.component["steps-fwd"].value = 0 steps = self.component["steps"].value self.rotate_fwd(steps) def steps_rev(self): self.component["steps-rev"].value = 0 steps = self.component["steps"].value self.rotate_rev(steps) def rotate_fwd(self, steps): self.rotateFwdSig.emit(steps) def rotate_rev(self, steps): self.rotateRevSig.emit(steps) def jog_fwd(self, *args, **kwargs): self.rotateFwdSig.emit(1) self.command.set_digital_output(5, 0) def jog_rev(self, *args, **kwargs): self.rotateRevSig.emit(1) self.command.set_digital_output(6, 0)
0
0
0
5,131
0
0
0
80
90
0515dfbce20f8b6db5af0d540ac7d973ccefba31
603
py
Python
oreo_backend/memes/migrations/0003_auto_20211108_1250.py
TaipeiTechIAEWorkplace/Website
fc962d5f8163c08f901fe4d97af14b8e7b3cfc9c
[ "MIT" ]
1
2022-02-06T07:08:13.000Z
2022-02-06T07:08:13.000Z
oreo_backend/memes/migrations/0003_auto_20211108_1250.py
TaipeiTechIAEWorkplace/Website
fc962d5f8163c08f901fe4d97af14b8e7b3cfc9c
[ "MIT" ]
null
null
null
oreo_backend/memes/migrations/0003_auto_20211108_1250.py
TaipeiTechIAEWorkplace/Website
fc962d5f8163c08f901fe4d97af14b8e7b3cfc9c
[ "MIT" ]
null
null
null
# Generated by Django 3.2.9 on 2021-11-08 04:50
22.333333
58
0.557214
# Generated by Django 3.2.9 on 2021-11-08 04:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('memes', '0002_auto_20211108_1233'), ] operations = [ migrations.RemoveField( model_name='photo', name='hashtag', ), migrations.RemoveField( model_name='photo', name='uploader', ), migrations.AlterField( model_name='photo', name='upload_date', field=models.DateTimeField(auto_now_add=True), ), ]
0
0
0
489
0
0
0
19
46
fd2d2d27a90eb687cfa5ddaaf7a717a930d940df
2,951
py
Python
ldap_sync/__main__.py
JuKu/pycroft
15595f9b4327da5c52c77174def73660226da7dc
[ "Apache-2.0" ]
null
null
null
ldap_sync/__main__.py
JuKu/pycroft
15595f9b4327da5c52c77174def73660226da7dc
[ "Apache-2.0" ]
null
null
null
ldap_sync/__main__.py
JuKu/pycroft
15595f9b4327da5c52c77174def73660226da7dc
[ "Apache-2.0" ]
null
null
null
import argparse import logging from .exporter import logger logger = logging.getLogger('ldap_sync') NAME_LEVEL_MAPPING = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } parser = argparse.ArgumentParser(description="Pycroft ldap syncer") parser.add_argument('--fake', dest='fake', action='store_true', default=False, help="Use a mocked LDAP backend") parser.add_argument("-l", "--log", dest='loglevel', type=str, choices=list(NAME_LEVEL_MAPPING.keys()), default='info', help="Set the loglevel") parser.add_argument("-d", "--debug", dest='loglevel', action='store_const', const='debug', help="Short for --log=debug") if __name__ == '__main__': exit(main())
30.42268
91
0.683497
import argparse import logging import os from .exporter import add_stdout_logging, establish_and_return_ldap_connection, \ establish_and_return_session, fake_connection, fetch_current_ldap_users, \ fetch_users_to_sync, get_config_or_exit, logger, sync_all logger = logging.getLogger('ldap_sync') def sync_production(): logger.info("Starting the production sync. See --help for other options.") config = get_config_or_exit(required_property='ldap') db_users = fetch_users_to_sync( session=establish_and_return_session(config.db_uri), required_property=config.required_property, ) logger.info("Fetched %s database users", len(db_users)) connection = establish_and_return_ldap_connection( host=config.host, port=config.port, bind_dn=config.bind_dn, bind_pw=config.bind_pw, ) ldap_users = fetch_current_ldap_users(connection, base_dn=config.base_dn) logger.info("Fetched %s ldap users", len(ldap_users)) sync_all(db_users, ldap_users, connection, base_dn=config.base_dn) def sync_fake(): logger.info("Starting sync using a mocked LDAP backend. See --help for other options.") try: db_uri = os.environ['PYCROFT_DB_URI'] except KeyError: logger.critical('PYCROFT_DB_URI not set') exit() db_users = fetch_users_to_sync( session=establish_and_return_session(db_uri) ) logger.info("Fetched %s database users", len(db_users)) connection = fake_connection() BASE_DN = 'ou=pycroft,dc=agdsn,dc=de' logger.debug("BASE_DN set to %s", BASE_DN) ldap_users = fetch_current_ldap_users(connection, base_dn=BASE_DN) logger.info("Fetched %s ldap users", len(ldap_users)) sync_all(db_users, ldap_users, connection, base_dn=BASE_DN) NAME_LEVEL_MAPPING = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } parser = argparse.ArgumentParser(description="Pycroft ldap syncer") parser.add_argument('--fake', dest='fake', action='store_true', default=False, help="Use a mocked LDAP backend") parser.add_argument("-l", "--log", dest='loglevel', type=str, choices=list(NAME_LEVEL_MAPPING.keys()), default='info', help="Set the loglevel") parser.add_argument("-d", "--debug", dest='loglevel', action='store_const', const='debug', help="Short for --log=debug") def main(): args = parser.parse_args() add_stdout_logging(logger, level=NAME_LEVEL_MAPPING[args.loglevel]) try: if args.fake: sync_fake() else: sync_production() except KeyboardInterrupt: logger.fatal("SIGINT received, stopping.") logger.info("Re-run the syncer to retain a consistent state.") return 1 return 0 if __name__ == '__main__': exit(main())
0
0
0
0
0
1,821
0
184
91
a20fcaf6ccf8820b917742d329e834e07689579f
6,837
py
Python
visdex/exploratory_graphs/__init__.py
mcraig-ibme/visdex
bbf8365e627f6d52fb201ae4ae6fef6775c4d716
[ "Apache-2.0" ]
null
null
null
visdex/exploratory_graphs/__init__.py
mcraig-ibme/visdex
bbf8365e627f6d52fb201ae4ae6fef6775c4d716
[ "Apache-2.0" ]
null
null
null
visdex/exploratory_graphs/__init__.py
mcraig-ibme/visdex
bbf8365e627f6d52fb201ae4ae6fef6775c4d716
[ "Apache-2.0" ]
null
null
null
""" visdex: Exploratory graphs The exploratory graphs section defines specialised data visualisations that can be generated by the user on request """ import logging from dash import html, dcc import plotly.graph_objects as go from visdex.common import plot_style LOG = logging.getLogger(__name__) def generate_generic_group(n_clicks, group_type): """ The generic builder for each of the component types. :param n_clicks: :param group_type: :param component_list: :return: """ LOG.info(f"generate_generic_group {group_type}") children = list() component_list = all_components[group_type] for component in component_list: name = component["id"] args_to_replicate = dict(component) del args_to_replicate["component_type"] del args_to_replicate["id"] del args_to_replicate["label"] # Generate each component with the correct id, index, and arguments, inside its # own Div. children.append( html.Div( [ component["label"] + ":", component["component_type"]( id={"type": group_type + "-" + name, "index": n_clicks}, **args_to_replicate, ), ], id={"type": "div-" + group_type + "-" + name, "index": n_clicks}, style=plot_style, ) ) children.append( dcc.Graph( id={"type": "gen-" + group_type + "-graph", "index": n_clicks}, figure=go.Figure(data=go.Scatter()), ) ) LOG.debug(f"{children}") return html.Div( id={"type": "filter-graph-group-" + group_type, "index": n_clicks}, children=children, )
34.356784
91
0.511482
""" visdex: Exploratory graphs The exploratory graphs section defines specialised data visualisations that can be generated by the user on request """ import logging from dash import html, dcc import dash_bootstrap_components as dbc from dash.dependencies import Input, Output, State, MATCH import plotly.graph_objects as go from . import ( bar_graph, histogram_graph, manhattan_graph, scatter_graph, violin_graph, ) from visdex.common import standard_margin_left, vstack, plot_style LOG = logging.getLogger(__name__) def get_layout(app): @app.callback( [ Output("explore-collapse", "is_open"), Output("collapse-explore-button", "children"), ], [Input("collapse-explore-button", "n_clicks")], [State("explore-collapse", "is_open")], prevent_initial_call=True, ) def toggle_collapse_explore(n, is_open): """ Handle click on the 'Explore' expand/collapse button """ LOG.info(f"toggle_collapse_explore {n} {is_open}") if n: return not is_open, "+" if is_open else "-" return is_open, "-" @app.callback( Output("graph-group-container", "children"), [Input("add-graph-button", "n_clicks")], [State("graph-group-container", "children")], prevent_initial_call=True, ) def add_graph_group(n_clicks, children): # Add a new graph group each time the button is clicked. The if None guard stops # there being an initial graph. LOG.info(f"add_graph_group") if n_clicks is not None: # This dropdown controls what type of graph-group to display next to it. new_graph_type_dd = html.Div( [ "Graph type:", dcc.Dropdown( id={"type": "graph-type-dd", "index": n_clicks}, options=[ {"label": str(value).capitalize(), "value": value} for value in all_components.keys() ], value="scatter", style={"width": "50%"}, ), # This is a placeholder for the 'filter-graph-group-scatter' or # 'filter-graph-group-bar' to be placed here. # Because graph-type-dd above is set to Scatter, this will initially be # automatically filled with a filter-graph-group-scatter. # But on the initial generation of this object, we give it type # 'placeholder' to make it easy to check its value in # change_graph_group_type() html.Div(id={"type": "placeholder", "index": n_clicks}), ], id={"type": "divgraph-type-dd", "index": n_clicks}, style=vstack, ) children.append(new_graph_type_dd) return children @app.callback( Output({"type": "divgraph-type-dd", "index": MATCH}, "children"), [Input({"type": "graph-type-dd", "index": MATCH}, "value")], [ State({"type": "graph-type-dd", "index": MATCH}, "id"), State({"type": "divgraph-type-dd", "index": MATCH}, "children"), ], ) def change_graph_group_type(graph_type, id, children): LOG.info(f"change_graph_group_type {graph_type} {id}") # Generate a new group of the right type. if "filter-graph-group-" + str(graph_type) != children[-1]["props"]["id"]["type"]: children[-1] = generate_generic_group(id["index"], graph_type) return children bar_graph.define_cbs(app) histogram_graph.define_cbs(app) manhattan_graph.define_cbs(app) scatter_graph.define_cbs(app) violin_graph.define_cbs(app) return html.Div(children=[ html.Div( [ dbc.Button( "+", id="collapse-explore-button", style={ "display": "inline-block", "margin-left": "10px", "width": "40px", "vertical-align" : "middle", }, ), html.H2( "Exploratory graphs", style={ "display": "inline-block", "margin-left": standard_margin_left, "margin-bottom": "0", "vertical-align" : "middle", }, ), ], ), dbc.Collapse( id="explore-collapse", children=[ # Container to hold all the exploratory graphs html.Div(id="graph-group-container", children=[]), # Button at the page bottom to add a new graph html.Button( "New Graph", id="add-graph-button", style={ "margin-top": "10px", "margin-left": standard_margin_left, "margin-bottom": "40px", }, ), ], is_open=False, ), ]) def generate_generic_group(n_clicks, group_type): """ The generic builder for each of the component types. :param n_clicks: :param group_type: :param component_list: :return: """ LOG.info(f"generate_generic_group {group_type}") children = list() component_list = all_components[group_type] for component in component_list: name = component["id"] args_to_replicate = dict(component) del args_to_replicate["component_type"] del args_to_replicate["id"] del args_to_replicate["label"] # Generate each component with the correct id, index, and arguments, inside its # own Div. children.append( html.Div( [ component["label"] + ":", component["component_type"]( id={"type": group_type + "-" + name, "index": n_clicks}, **args_to_replicate, ), ], id={"type": "div-" + group_type + "-" + name, "index": n_clicks}, style=plot_style, ) ) children.append( dcc.Graph( id={"type": "gen-" + group_type + "-graph", "index": n_clicks}, figure=go.Figure(data=go.Scatter()), ) ) LOG.debug(f"{children}") return html.Div( id={"type": "filter-graph-group-" + group_type, "index": n_clicks}, children=children, )
0
3,069
0
0
0
1,717
0
174
90
eebf786325342f19a4237a7fea589022310860b1
4,982
py
Python
intel_software/pkg_contents/micperf/CONTENTS/usr/share/micperf/micp/micp/kernels/mkl_conv.py
antoinecarme/xeon-phi-data
883a6e2f31b2e729715303725f417b2990d923be
[ "BSD-3-Clause" ]
1
2021-07-22T18:01:28.000Z
2021-07-22T18:01:28.000Z
intel_software/pkg_contents/micperf/CONTENTS/usr/share/micperf/micp/micp/kernels/mkl_conv.py
antoinecarme/xeon-phi-data
883a6e2f31b2e729715303725f417b2990d923be
[ "BSD-3-Clause" ]
null
null
null
intel_software/pkg_contents/micperf/CONTENTS/usr/share/micperf/micp/micp/kernels/mkl_conv.py
antoinecarme/xeon-phi-data
883a6e2f31b2e729715303725f417b2990d923be
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2012-2017, Intel Corporation, All Rights Reserved. # # This software is supplied under the terms of a license # agreement or nondisclosure agreement with Intel Corp. # and may not be copied or disclosed except in accordance # with the terms of that agreement. confParamNames = [ 'groups', 'nImg', 'inpWidth', 'inpHeight', 'nIfm', \ 'nOfm', 'kw', 'kh', 'stride', 'pad', 'iters' ] optimalParamValues = '1 16 224 224 3 64 7 7 2 3 100' # expected minimal number of parsed scores in output CONST_expected_perf_scores = 3 # expected number of "|"-separated sections in output CONST_expected_sections = 2 # expected measurements per row CONST_expected_meas_per_row = 4
35.585714
119
0.609193
# Copyright 2012-2017, Intel Corporation, All Rights Reserved. # # This software is supplied under the terms of a license # agreement or nondisclosure agreement with Intel Corp. # and may not be copied or disclosed except in accordance # with the terms of that agreement. import os import re import micp.kernel as micp_kernel import micp.info as micp_info import micp.common as micp_common import micp.params as micp_params from micp.common import mp_print, get_ln, CAT_ERROR confParamNames = [ 'groups', 'nImg', 'inpWidth', 'inpHeight', 'nIfm', \ 'nOfm', 'kw', 'kh', 'stride', 'pad', 'iters' ] optimalParamValues = '1 16 224 224 3 64 7 7 2 3 100' # expected minimal number of parsed scores in output CONST_expected_perf_scores = 3 # expected number of "|"-separated sections in output CONST_expected_sections = 2 # expected measurements per row CONST_expected_meas_per_row = 4 class mkl_conv(micp_kernel.Kernel): def __init__(self): optimalParamsString = '' self._categoryParams = {} info = micp_info.Info() maxCount = info.num_cores() self.name = 'mkl_conv' self.param_validator = micp_params.NO_VALIDATOR # for ease of use, split params into two lists self._paramNames = ['omp_num_threads', 'with_padding', 'output'] self._paramNames.extend(confParamNames) self._paramDefaults = {'omp_num_threads':str(maxCount), 'with_padding':'0', 'output':'--original-output'} for (idx, val) in enumerate(optimalParamValues.split(' ')): optimalParamsString += '--{0} {1} '.format(confParamNames[idx], val) self._paramDefaults[confParamNames[idx]] = val self._categoryParams['test'] = [ optimalParamsString ] self._categoryParams['optimal'] = [ optimalParamsString ] self._categoryParams['optimal_quick'] = self._categoryParams['optimal'] self._categoryParams['scaling'] = self._categoryParams['optimal'] self._categoryParams['scaling_quick'] = self._categoryParams['optimal'] # scale with step 10 coreConfig = range(1, maxCount, 10) self._categoryParams['scaling_core'] = \ [ ' '.join(['--omp_num_threads {0}'.format(cc), optimalParamsString]) \ for cc in coreConfig] def path_host_exec(self, offload_method): if offload_method == 'local': return self._path_exec(micp_kernel.LIBEXEC_HOST, "std_conv_bench") else: return None def _do_unit_test(self): return True def offload_methods(self): return ['local'] def param_type(self): return 'pos' def independent_var(self, category): return 'omp_num_threads' def param_for_env(self): return ['omp_num_threads'] def path_dev_exec(self, offType): """ Intel Xeon Phi Coprocessors is not supported """ return None def environment_host(self): return {'LD_LIBRARY_PATH':self.ld_library_path(), 'KMP_PLACE_THREADS':'1T', 'KMP_AFFINITY':'compact,granularity=fine'} def get_process_modifiers(self): info = micp_info.Info() if info.is_processor_mcdram_available(): return ['numactl', '--membind=1'] else: return [] def parse_desc(self, raw): res_line = raw.splitlines() # get general parameters before '|' character try: out_sections = res_line[1].rsplit("|", 1) except IndexError: micp_kernel.raise_parse_error(raw) if len(out_sections) != CONST_expected_sections: micp_kernel.raise_parse_error(raw) return out_sections[0].strip() def parse_perf(self, raw): res_lines = raw.splitlines() result = {} for line in res_lines: # example one line of output: # FWD w/ padding in flops min(ms) 0.01; max(gflop/s) 2.70;avg(ms) 0.02; avg(gflop/s) 1.58; # ex. ( FWD ) propagation = re.search('([F|B]WD[A-Z_]*)', line) # ex. (avg ) ((gflops/s)) (1.58 ) values = re.findall('([a-zA-Z]*)\(([a-zA-Z/]*)\)\s*([0-9]*\.[0-9]*)', line) # skip text data lines if not (propagation and values): continue # check syntax (4 measurements per row) if len(values) != CONST_expected_meas_per_row: micp_kernel.raise_parse_error(raw) propag_txt = propagation.group(0) for (prop, unit, value) in values: if prop != 'avg': continue if unit == 'gflop/s': result['Computation.Avg.{0}'.format(propag_txt)] = {'value':value, 'units':'GFlops', 'rollup':True} if len(result) != CONST_expected_perf_scores: micp_kernel.raise_parse_error(raw) return result
0
0
0
4,059
0
0
0
50
180
5499e89c9e89f497892f031f5a9cc83e7deaabf6
610
py
Python
wfsim/utils.py
jmeyers314/wfsim
c2ad60c100ec1c4046368801a56a5211499f0c51
[ "BSD-3-Clause" ]
null
null
null
wfsim/utils.py
jmeyers314/wfsim
c2ad60c100ec1c4046368801a56a5211499f0c51
[ "BSD-3-Clause" ]
null
null
null
wfsim/utils.py
jmeyers314/wfsim
c2ad60c100ec1c4046368801a56a5211499f0c51
[ "BSD-3-Clause" ]
null
null
null
import numpy as np import galsim def BBSED(T): """(unnormalized) Blackbody SED for temperature T in Kelvin. """ waves_nm = np.arange(330.0, 1120.0, 10.0) flambda = planck(T, waves_nm*1e-9) return galsim.SED( galsim.LookupTable(waves_nm, flambda), wave_type='nm', flux_type='flambda' )
27.727273
64
0.57377
import numpy as np import galsim def BBSED(T): """(unnormalized) Blackbody SED for temperature T in Kelvin. """ waves_nm = np.arange(330.0, 1120.0, 10.0) def planck(t, w): # t in K # w in m c = 2.99792458e8 # speed of light in m/s kB = 1.3806488e-23 # Boltzmann's constant J per Kelvin h = 6.62607015e-34 # Planck's constant in J s return w**(-5) / (np.exp(h*c/(w*kB*t))-1) flambda = planck(T, waves_nm*1e-9) return galsim.SED( galsim.LookupTable(waves_nm, flambda), wave_type='nm', flux_type='flambda' )
0
0
0
0
0
249
0
0
26
a5f484ac8ab36970a0402fcb7d92a67abbe863f9
1,495
py
Python
src/app/search.py
delgadofarid/my-first-search-engine
e8ea909030a599bb4bba739fe77747c98395dc29
[ "Apache-2.0" ]
1
2021-06-05T03:52:21.000Z
2021-06-05T03:52:21.000Z
src/app/search.py
delgadofarid/my-first-search-engine
e8ea909030a599bb4bba739fe77747c98395dc29
[ "Apache-2.0" ]
null
null
null
src/app/search.py
delgadofarid/my-first-search-engine
e8ea909030a599bb4bba739fe77747c98395dc29
[ "Apache-2.0" ]
null
null
null
from elasticsearch import Elasticsearch # initialize Elasticsearch client es = Elasticsearch()
30.510204
103
0.626756
import re from elasticsearch import Elasticsearch, helpers from itertools import islice # initialize Elasticsearch client es = Elasticsearch() def first_n(iterable, n): return islice(iterable, 0, n) def format_es_response(user_question, es_candidates): results = list() for c in es_candidates: par = dict() par['questionText'] = user_question par['bookTitle'] = c['_source']['bookTitle'] par['paragraphText'] = c['_source']['paragraphText'] par['esScore'] = c['_score'] par['paragraphId'] = c['_source']['paragraphId'] par['bookURL'] = c['_source']['bookURL'] par['bookId'] = c['_source']['bookId'] results.append(par) return results def search_candidates(user_question, index_name="wikibooks-search-index", size=20, es=Elasticsearch()): match_queries = [ {"match": {"bookTitle": user_question}}, {"match": {"paragraphText": user_question}} ] quoted_text = re.findall('"([^"]*)"', user_question) for text in quoted_text: match_queries.append({"match_phrase": {"bookTitle": text}}) match_queries.append({"match_phrase": {"paragraphText": text}}) es_query = { "query": { "bool": { "should": match_queries } } } results = helpers.scan(es, query=es_query, index=index_name, preserve_order=True) results = first_n(results, size) return format_es_response(user_question, results)
0
0
0
0
0
1,279
0
4
113
5786c329b92403e4f8b652789de8bbe26502cea4
24,221
py
Python
tests/test_configfetch.py
openandclose/configfetch
fc0b329e6861cc73f0a108ddaea636e6956dd56f
[ "MIT" ]
null
null
null
tests/test_configfetch.py
openandclose/configfetch
fc0b329e6861cc73f0a108ddaea636e6956dd56f
[ "MIT" ]
null
null
null
tests/test_configfetch.py
openandclose/configfetch
fc0b329e6861cc73f0a108ddaea636e6956dd56f
[ "MIT" ]
null
null
null
import functools import configfetch fetch_ = configfetch.fetch fetch = functools.partial( configfetch.fetch, option_builder=configfetch.FiniOptionBuilder) # Just checking the standard library's behaviors.
24.842051
85
0.473886
import argparse import configparser import functools import textwrap import pytest import configfetch fetch_ = configfetch.fetch fetch = functools.partial( configfetch.fetch, option_builder=configfetch.FiniOptionBuilder) def f(string): return textwrap.dedent(string.strip('\n')) def _get_action(conf, option_strings): parser = argparse.ArgumentParser(prog='test') conf.build_arguments(parser) # parser.print_help() for action in parser._get_optional_actions(): if option_strings in action.option_strings: return action raise ValueError('No action with option_strings: %r' % option_strings) class TestEscapedSplit: def check_comma(self, value, expected): ret = configfetch._parse_comma(value) assert ret == expected def check_line(self, value, expected): ret = configfetch._parse_line(value) assert ret == expected def test_comma(self): self.check_comma('aaaa', ['aaaa']) self.check_comma(r'\aaaa', [r'\aaaa']) self.check_comma(r'aa\aa', [r'aa\aa']) self.check_comma(r'aaa\a', [r'aaa\a']) self.check_comma(r'aaaa\\', [r'aaaa\\']) self.check_comma(r'aa\\aa', [r'aa\\aa']) self.check_comma(r'aa\\\aa', [r'aa\\\aa']) self.check_comma('aa, bb', ['aa', 'bb']) self.check_comma(r'aa\, bb', ['aa, bb']) self.check_comma(r'aa\\, bb', [r'aa\, bb']) self.check_comma(r'aa\\\, bb', [r'aa\\, bb']) self.check_comma(r'aa\a, bb', [r'aa\a', 'bb']) self.check_comma(r'aa\\a, bb', [r'aa\\a', 'bb']) self.check_comma(r'aa\\\a, bb', [r'aa\\\a', 'bb']) self.check_comma(',aa', ['aa']) self.check_comma('aa,', ['aa']) self.check_comma('aa,,', ['aa']) def test_line(self): self.check_line('aa\nbb', ['aa', 'bb']) self.check_line('aa\\\nbb', ['aa\nbb']) self.check_line('aa\\\\\nbb', ['aa\\\nbb']) self.check_line('aa\\\\\\\nbb', ['aa\\\\\nbb']) self.check_line('aa\nbb,', ['aa', 'bb,']) class TestInheritance: def test_iter(self): data = f(""" [sec1] [sec2] """) conf = fetch(data) assert list(conf.__iter__()) == ['DEFAULT', 'sec1', 'sec2'] def test_iter_option(self): data = f(""" [sec1] aa = xxx bb = yyy """) conf = fetch(data) assert list(conf.sec1.__iter__()) == ['aa', 'bb'] def test_contains(self): data = f(""" [sec1] [sec2] """) conf = fetch(data) assert 'sec2' in conf def test_contains_option(self): data = f(""" [sec1] aa = xxx bb = yyy """) conf = fetch(data) assert 'bb' in conf.sec1 class TestParseConfig: def test_conf_str(self): data = f(""" [sec1] aa = xxx """) conf = fetch(data) assert conf.sec1.aa == 'xxx' def test_conf_str_blank(self): data = f(""" [sec1] """) conf = fetch(data) with pytest.raises(configfetch.NoOptionError): assert conf.sec1.aa == '' def test_conf_str_nosection(self): data = f(""" [sec1] aa = xxx """) conf = fetch(data) with pytest.raises(configfetch.NoSectionError): assert conf.sec2 def test_conf_str_default(self): data = f(""" [DEFAULT] aa = xxx [sec1] """) conf = fetch(data) assert conf.sec1.aa == 'xxx' def test_conf_str_default_nosection(self): data = f(""" [DEFAULT] aa = xxx """) conf = fetch(data) with pytest.raises(configfetch.NoSectionError): assert conf.sec1.aa == 'xxx' def test_conf_str_default_read_section(self): data = f(""" [DEFAULT] aa = xxx """) conf = fetch(data) data = f(""" [sec1] """) conf._config.read_string(data) assert conf.sec1.aa == 'xxx' def test_conf_str_default_blank(self): data = f(""" [DEFAULT] [sec1] """) conf = fetch(data) with pytest.raises(configfetch.NoOptionError): assert conf.sec1.aa == '' def test_conf_str_default_blank_nosection(self): data = '' conf = fetch(data) with pytest.raises(configfetch.NoSectionError): assert conf.sec1.aa == '' def test_conf_bool(self): data = f(""" [sec1] aa = :: f: bool Yes """) conf = fetch(data) assert conf.sec1.aa is True def test_conf_bool_no(self): data = f(""" [sec1] aa = :: f: bool No """) conf = fetch(data) assert conf.sec1.aa is False # blank string returns ``None`` def test_conf_bool_blank(self): data = f(""" [sec1] aa = :: f: bool """) conf = fetch(data) assert conf.sec1.aa is None def test_conf_comma(self): data = f(""" [sec1] aa = :: f: comma xxx1, xxx2, xxx3 """) conf = fetch(data) assert conf.sec1.aa == ['xxx1', 'xxx2', 'xxx3'] def test_conf_comma_indent(self): data = f(""" [sec1] aa = :: f: comma xxx1, xxx2, xxx3 """) conf = fetch(data) assert conf.sec1.aa == ['xxx1', 'xxx2', 'xxx3'] def test_conf_comma_newline(self): data = f(""" [sec1] aa = :: f: comma xxx1, xxx2 xxx3 """) conf = fetch(data) assert conf.sec1.aa == ['xxx1', 'xxx2\nxxx3'] def test_conf_comma_blank(self): data = f(""" [sec1] aa = :: f: comma """) conf = fetch(data) assert conf.sec1.aa == [] def test_conf_line(self): data = f(""" [sec1] aa = :: f: line xxx1 xxx2 xxx3 """) conf = fetch(data) assert conf.sec1.aa == ['xxx1', 'xxx2', 'xxx3'] def test_conf_line_comma(self): data = f(""" [sec1] aa = :: f: line xxx1 xxx2 xxx3, xxx4 """) conf = fetch(data) assert conf.sec1.aa == ['xxx1', 'xxx2', 'xxx3, xxx4'] def test_conf_line_blank(self): data = f(""" [sec1] aa = :: f: line """) conf = fetch(data) assert conf.sec1.aa == [] def test_conf_line_multiblanks(self): data = f(""" [sec1] aa = :: f: line """) conf = fetch(data) assert conf.sec1.aa == [] def test_conf_bar_comma(self): data = f(""" [sec1] aa = :: f: comma, bar xxx1, xxx2, xxx3 """) conf = fetch(data) assert conf.sec1.aa == 'xxx1|xxx2|xxx3' def test_conf_bar_comma_blank(self): data = f(""" [sec1] aa = :: f: comma, bar """) conf = fetch(data) assert conf.sec1.aa == '' def test_conf_bar_comma_blank_spaces(self): data = f(""" [sec1] aa = :: f: comma, bar """) conf = fetch(data) assert conf.sec1.aa == '' def test_conf_bar_line(self): data = f(""" [sec1] aa = :: f: line, bar xxx1 xxx2 xxx3 """) conf = fetch(data) assert conf.sec1.aa == 'xxx1|xxx2|xxx3' def test_conf_bar_line_blank(self): data = f(""" [sec1] aa = :: f: line, bar """) conf = fetch(data) assert conf.sec1.aa == '' def test_conf_bar_line_blank_spaces(self): data = f(""" [sec1] aa = :: f: line, bar """) conf = fetch(data) assert conf.sec1.aa == '' def test_conf_cmd(self): data = f(""" [sec1] aa = :: f: cmd --aaa -b "ccc cc" ddd,dd """) conf = fetch(data) assert conf.sec1.aa == ['--aaa', '-b', 'ccc cc', 'ddd,dd'] def test_conf_cmds(self): data = f(""" [sec1] aa = :: f: line, cmds ls *.txt find . "aaa" """) conf = fetch(data) assert conf.sec1.aa == [['ls', '*.txt'], ['find', '.', 'aaa']] def test_conf_fmt(self): data = f(""" [sec1] aa = :: f: fmt {USER}/data/my.css """) conf = fetch(data, fmts={'USER': '/home/john'}) assert conf.sec1.aa == '/home/john/data/my.css' class TestParseContexts: def test_ctx_default_bool(self): data = f(""" [DEFAULT] aa = :: f: bool no [sec1] """) conf = fetch(data) assert conf.sec1.aa is False def test_ctx_default_bool_noop(self): data = f(""" [DEFAULT] aa = :: f: bool [sec1] aa = no """) conf = fetch(data) assert conf.sec1.aa is False def test_ctx_default_comma(self): data = f(""" [DEFAULT] aa = :: f: comma [sec1] aa = xxx1, xxx2, xxx3 """) conf = fetch(data) assert conf.sec1.aa == ['xxx1', 'xxx2', 'xxx3'] class TestParseFunc: def test_func_newline(self): data = f(""" [sec1] aa = :: f: bool no """) conf = fetch(data) assert conf.sec1.aa is False # Just checking the standard library's behaviors. class TestConfigParser: def test_indent(self): data = f(""" [sec1] aa = xxx """) config = configparser.ConfigParser() config.read_string(data) assert config['sec1']['aa'] == '\nxxx' data = f(""" [sec1] aa = xxx """) config = configparser.ConfigParser() with pytest.raises(configparser.ParsingError): config.read_string(data) def test_allow_no_value(self): data = f(""" [sec1] aa = :: f: bool no """) config = configparser.ConfigParser(allow_no_value=True) config.read_string(data) assert config['sec1']['aa'] == '\n:: f: bool\nno' class TestArgparse: parser = argparse.ArgumentParser() parser.add_argument('-a', '--aa') parser.add_argument('-b', '--bb') parser.add_argument('-c', '--cc', action='store_const', default='', const='yes') parser.add_argument('-d', '--no-cc', action='store_const', const='no', dest='cc') parser.add_argument('-e', '--ee-eee') def get_args(self, cmd): return self.parser.parse_args(cmd) def test_args_and_conf(self): data = f(""" [sec1] aa = xxx """) args = self.get_args(['--aa', 'axxx']) conf = fetch(data, args=args) assert conf.sec1.aa == 'axxx' def test_args_and_conf_short(self): data = f(""" [sec1] aa = xxx """) args = self.get_args(['-a', 'axxx']) conf = fetch(data, args=args) assert conf.sec1.aa == 'axxx' def test_args_and_conf_none(self): data = f(""" [sec1] aa = xxx """) args = self.get_args([]) conf = fetch(data, args=args) assert conf.sec1.aa == 'xxx' def test_args_and_conf_const(self): data = f(""" [sec1] cc = :: f: bool """) args = self.get_args(['--cc']) conf = fetch(data, args=args) assert conf.sec1.cc is True def test_args_and_conf_const_false(self): data = f(""" [sec1] cc = :: f: bool true """) args = self.get_args(['--no-cc']) conf = fetch(data, args=args) assert conf.sec1.cc is False def test_args_and_conf_dash(self): data = f(""" [sec1] ee_eee = xxx """) args = self.get_args(['-e', 'axxx']) conf = fetch(data, args=args) assert conf.sec1.ee_eee == 'axxx' class _CustomFunc(configfetch.Func): """Used the test below.""" @configfetch.register def custom(self, value): return 'test' class TestCustomize: def test_customfunc(self): data = f(""" [sec1] aa = :: f: custom xxx """) conf = fetch(data, Func=_CustomFunc) assert conf.sec1.aa == 'test' class TestDouble: def test_nooption_nooption(self): data = f(""" [sec1] aa = xxx """) conf1 = fetch(data) data = f(""" [sec1] aa = yyy """) conf2 = fetch(data) double = configfetch.Double(conf2.sec1, conf1.sec1) with pytest.raises(configfetch.NoOptionError): assert double.bb == 'zzz' def test_nooption_blank(self): data = f(""" [sec1] aa = xxx """) conf1 = fetch(data) data = f(""" [sec1] bb = """) conf2 = fetch(data) double = configfetch.Double(conf2.sec1, conf1.sec1) assert double.bb == '' def test_blank_nooption(self): data = f(""" [sec1] bb = """) conf1 = fetch(data) data = f(""" [sec1] aa = yyy """) conf2 = fetch(data) double = configfetch.Double(conf2.sec1, conf1.sec1) assert double.bb == '' def test_blank_blank(self): data = f(""" [sec1] bb = """) conf1 = fetch(data) data = f(""" [sec1] bb = :: f: comma """) conf2 = fetch(data) double = configfetch.Double(conf2.sec1, conf1.sec1) assert double.bb == '' def test_plus(self): data = f(""" [sec1] aa = :: f: plus xxx, yyy """) conf1 = fetch(data) data = f(""" [sec1] aa = :: f: plus -yyy """) conf2 = fetch(data) double = configfetch.Double(conf2.sec1, conf1.sec1) assert double.aa == ['xxx'] class TestGetPlusMinusValues: initial = ['aaa', 'bbb', 'ccc'] def compare(self, adjusts, initial, expected): values = configfetch._get_plusminus_values(adjusts, initial) assert values == expected def test_adjusts_argument(self): args = (['ddd'], None, ['ddd']) self.compare(*args) args = (['+ddd'], None, ['ddd']) self.compare(*args) args = (['-bbb'], None, []) self.compare(*args) args = (['ddd'], self.initial, ['ddd']) self.compare(*args) args = (['+ddd'], self.initial, ['aaa', 'bbb', 'ccc', 'ddd']) self.compare(*args) args = (['-bbb'], self.initial, ['aaa', 'ccc']) self.compare(*args) args = (['-aaa, -bbb'], self.initial, ['ccc']) self.compare(*args) args = (['-aaa, +ddd, +eee'], self.initial, ['bbb', 'ccc', 'ddd', 'eee']) self.compare(*args) class TestMinusAdapter: parser = argparse.ArgumentParser() parser.add_argument('-a', '--aa', action='store_const', const='A') parser.add_argument('-b', '--bb', action='store_true') parser.add_argument('-c', '--cc', action='store_false') parser.add_argument('-d', '--dd', action='append') parser.add_argument('-e', '--ee', action='append_const', const='E') parser.add_argument('-f', '--ff', action='count') parser.add_argument('-x', '--xx') parser.add_argument('-y', '--yy', nargs=1) def compare(self, args, new_args, matcher=None): assert configfetch.minusadapter(self.parser, matcher, args) == new_args def test(self): # No Minus argument args = ['--aa', '--xx', 'xxxx', '--bb'] new_args = ['--aa', '--xx', 'xxxx', '--bb'] self.compare(args, new_args) # Minus argument args = ['--aa', '--xx', '-xxxx', '--bb'] new_args = ['--aa', '--xx=-xxxx', '--bb'] self.compare(args, new_args) # Minus with another StoreAction args = ['--aa', '--xx', '-xxxx', '--yy', 'yyyy'] new_args = ['--aa', '--xx=-xxxx', '--yy', 'yyyy'] self.compare(args, new_args) # Minus with AppendAction args = ['--dd', '-dddd', '--xx', '-xxxx', '--bb'] new_args = ['--dd=-dddd', '--xx=-xxxx', '--bb'] self.compare(args, new_args) # Minus, short option version args = ['--aa', '-x', '-xxxx', '--bb'] new_args = ['--aa', '-x-xxxx', '--bb'] self.compare(args, new_args) class TestParseArgs: def test_help(self): data = f(""" [sec1] aa = : help string :: f: comma xxx1, xxx2 """) conf = fetch(data) args = conf._ctx['aa']['argparse'] assert args['help'] == 'help string' def test_help_multilines(self): data = f(""" [sec1] aa = : This : is a : help. :: f: comma xxx1, xxx2 """) conf = fetch(data) args = conf._ctx['aa']['argparse'] assert args['help'] == 'This\nis a\nhelp.' def test_help_multilines_blank(self): # testing both ':' and ': ' data = f(""" [sec1] aa = : This : is a : : : help. :: f: comma xxx1, xxx2 """) conf = fetch(data) args = conf._ctx['aa']['argparse'] assert args['help'] == 'This\nis a\n\n\nhelp.' def test_help_and_choices(self): data = f(""" [sec1] aa = : help string :: choices: ss, tt tt """) conf = fetch(data) args = conf._ctx['aa']['argparse'] assert args['help'] == 'help string' assert args['choices'] == ['ss', 'tt'] class TestBuildArgs: def test_help(self): data = f(""" [sec1] aa = : help string :: f: comma xxx1, xxx2 """) conf = fetch(data) action = _get_action(conf, '--aa') assert isinstance(action, argparse._StoreAction) assert action.help == 'help string' def test_help_and_choices(self): data = f(""" [sec1] aa = : help string :: choices: ss, tt tt """) conf = fetch(data) action = _get_action(conf, '--aa') assert isinstance(action, argparse._StoreAction) assert action.choices == ['ss', 'tt'] def test_names(self): data = f(""" [sec1] aa = : help string :: names: a true """) conf = fetch(data) action = _get_action(conf, '--aa') assert isinstance(action, argparse._StoreAction) assert action.option_strings == ['-a', '--aa'] def test_bool(self): data = f(""" [sec1] aa = : help string :: f: bool yes """) conf = fetch(data) action = _get_action(conf, '--aa') assert isinstance(action, argparse._StoreConstAction) assert action.const == 'yes' def test_bool_opposite(self): data = f(""" [sec1] aa = : help string :: f: bool yes no_aa = : help string2 :: dest: aa :: f: bool no """) conf = fetch(data) parser = argparse.ArgumentParser(prog='test') conf.build_arguments(parser) namespace = parser.parse_args(['--aa']) assert namespace.__dict__['aa'] == 'yes' namespace = parser.parse_args(['--no-aa']) assert namespace.__dict__['aa'] == 'no' def test_bool_default_no(self): data = f(""" [sec1] overwrite = : help string :: f: bool no """) conf = fetch(data) action = _get_action(conf, '--overwrite') assert isinstance(action, argparse._StoreConstAction) assert action.const == 'yes' def test_bool_opposite_default_no(self): data = f(""" [sec1] overwrite = : help string :: f: bool no no_overwrite = : help string2 :: dest: overwrite :: f: bool yes """) conf = fetch(data) parser = argparse.ArgumentParser(prog='test') conf.build_arguments(parser) namespace = parser.parse_args(['--overwrite']) assert namespace.__dict__['overwrite'] == 'yes' namespace = parser.parse_args(['--no-overwrite']) assert namespace.__dict__['overwrite'] == 'no' class TestBuildArgsCommandlineOnly: def test_int(self): data = f(""" [sec1] aa = : help string :: default: 1 xxx """) conf = fetch(data) action = _get_action(conf, '--aa') assert isinstance(action, argparse._StoreAction) assert action.default == 1 def test_int_like_string(self): data = f(""" [sec1] aa = : help string :: default: '1' xxx """) conf = fetch(data) action = _get_action(conf, '--aa') assert isinstance(action, argparse._StoreAction) assert action.default == '1' def test_type(self): data = f(""" [sec1] aa = : help string :: type: int 42 """) conf = fetch(data) action = _get_action(conf, '--aa') assert isinstance(action, argparse._StoreAction) assert action.type == int def test_suppress(self): data = f(""" [DEFAULT] aa = : argparse.SUPPRESS :: default: argparse.SUPPRESS [sec1] aa = xxx """) conf = fetch(data) action = _get_action(conf, '--aa') assert isinstance(action, argparse._StoreAction) assert action.help == argparse.SUPPRESS assert action.default == argparse.SUPPRESS assert conf.sec1.aa == 'xxx' def test_print_data(): data = f(""" [DEFAULT] aa = aaa [sec1] bb = bbb cc = : help string :: names: c :: f: bool ccc dd = """) dict_string = f(""" { 'DEFAULT': { 'aa': { 'value': 'aaa', }, }, 'sec1': { 'bb': { 'value': 'bbb', }, 'cc': { 'argparse': { 'help': 'help string', 'names': ['c'], }, 'func': ['bool'], 'value': 'ccc', }, 'dd': { 'value': '', }, }, } """) ini_string = f(""" [DEFAULT] aa= aaa [sec1] bb= bbb cc= ccc dd= """) conf = fetch(data, option_builder=configfetch.FiniOptionBuilder) printer = configfetch.ConfigPrinter ret = [] printer(conf, print=ret.append).print_dict() assert '\n'.join(ret) == dict_string[:-1] ret = [] printer(conf, print=ret.append).print_ini() assert '\n'.join(ret) == ini_string[:-1] dict_ = eval(dict_string) conf = fetch(dict_, option_builder=configfetch.DictOptionBuilder) ret = [] printer(conf, print=ret.append).print_dict() assert '\n'.join(ret) == dict_string[:-1] ret = [] printer(conf, print=ret.append).print_ini() assert '\n'.join(ret) == ini_string[:-1]
0
51
0
21,633
0
1,826
0
-22
503
a5bd7b16ae0ef9281e8935c406154bcc19d183b1
10,477
py
Python
pt3/client.py
Aerun/pytyle3
86876fa7ad652fc99b77f5482559733c95490e84
[ "WTFPL" ]
null
null
null
pt3/client.py
Aerun/pytyle3
86876fa7ad652fc99b77f5482559733c95490e84
[ "WTFPL" ]
null
null
null
pt3/client.py
Aerun/pytyle3
86876fa7ad652fc99b77f5482559733c95490e84
[ "WTFPL" ]
null
null
null
import xpybutil import xpybutil.event as event import xpybutil.ewmh as ewmh import xpybutil.motif as motif import xpybutil.icccm as icccm import xpybutil.rect as rect import xpybutil.util as util import xpybutil.window as window clients = {} ignore = [] # Some clients are never gunna make it... event.connect('PropertyNotify', xpybutil.root, cb_property_notify)
34.127036
98
0.592345
import time import xcffib.xproto import xpybutil import xpybutil.event as event import xpybutil.ewmh as ewmh import xpybutil.motif as motif import xpybutil.icccm as icccm import xpybutil.rect as rect import xpybutil.util as util import xpybutil.window as window from debug import debug import config import state import tile clients = {} ignore = [] # Some clients are never gunna make it... class Client(object): def __init__(self, wid): self.wid = wid self.name = ewmh.get_wm_name(self.wid).reply() or 'N/A' debug('Connecting to %s' % self) window.listen(self.wid, 'PropertyChange', 'FocusChange') event.connect('PropertyNotify', self.wid, self.cb_property_notify) event.connect('FocusIn', self.wid, self.cb_focus_in) event.connect('FocusOut', self.wid, self.cb_focus_out) # This connects to the parent window (decorations) # We get all resize AND move events... might be too much self.parentid = window.get_parent_window(self.wid) window.listen(self.parentid, 'StructureNotify') event.connect('ConfigureNotify', self.parentid, self.cb_configure_notify) # A window should only be floating if that is default self.floating = getattr(config, 'floats_default', False) # Not currently in a "moving" state self.moving = False # Load some data self.desk = ewmh.get_wm_desktop(self.wid).reply() # Add it to this desktop's tilers tile.update_client_add(self) # First cut at saving client geometry self.save() def remove(self): tile.update_client_removal(self) debug('Disconnecting from %s' % self) event.disconnect('ConfigureNotify', self.parentid) event.disconnect('PropertyNotify', self.wid) event.disconnect('FocusIn', self.wid) event.disconnect('FocusOut', self.wid) def activate(self): ewmh.request_active_window_checked(self.wid, source=1).check() def unmaximize(self): vatom = util.get_atom('_NET_WM_STATE_MAXIMIZED_VERT') hatom = util.get_atom('_NET_WM_STATE_MAXIMIZED_HORZ') ewmh.request_wm_state_checked(self.wid, 0, vatom, hatom).check() def save(self): self.saved_geom = window.get_geometry(self.wid) self.saved_state = ewmh.get_wm_state(self.wid).reply() def restore(self): debug('Restoring %s' % self) if getattr(config, 'remove_decorations', False): motif.set_hints_checked(self.wid,2,decoration=1).check() if getattr(config, 'tiles_below', False): ewmh.request_wm_state_checked(self.wid,0,util.get_atom('_NET_WM_STATE_BELOW')).check() if self.saved_state: fullymaxed = False vatom = util.get_atom('_NET_WM_STATE_MAXIMIZED_VERT') hatom = util.get_atom('_NET_WM_STATE_MAXIMIZED_HORZ') if vatom in self.saved_state and hatom in self.saved_state: fullymaxed = True ewmh.request_wm_state_checked(self.wid, 1, vatom, hatom).check() elif vatom in self.saved_state: ewmh.request_wm_state_checked(self.wid, 1, vatom).check() elif hatom in self.saved_state: ewmh.request_wm_state_checked(self.wid, 1, hatom).check() # No need to continue if we've fully maximized the window if fullymaxed: return mnow = rect.get_monitor_area(window.get_geometry(self.wid), state.monitors) mold = rect.get_monitor_area(self.saved_geom, state.monitors) x, y, w, h = self.saved_geom # What if the client is on a monitor different than what it was before? # Use the same algorithm in Openbox to convert one monitor's # coordinates to another. if mnow != mold: nowx, nowy, noww, nowh = mnow oldx, oldy, oldw, oldh = mold xrat, yrat = float(noww) / float(oldw), float(nowh) / float(oldh) x = nowx + (x - oldx) * xrat y = nowy + (y - oldy) * yrat w *= xrat h *= yrat window.moveresize(self.wid, x, y, w, h) def moveresize(self, x=None, y=None, w=None, h=None): # Ignore this if the user is moving the window... if self.moving: print 'Sorry but %s is moving...' % self return try: window.moveresize(self.wid, x, y, w, h) except: pass def is_button_pressed(self): try: pointer = xpybutil.conn.core.QueryPointer(self.wid).reply() if pointer is None: return False if (xcffib.xproto.KeyButMask.Button1 & pointer.mask or xcffib.xproto.KeyButMask.Button3 & pointer.mask): return True except xcffib.xproto.BadWindow: pass return False def cb_focus_in(self, e): if self.moving and e.mode == xcffib.xproto.NotifyMode.Ungrab: state.GRAB = None self.moving = False tile.update_client_moved(self) def cb_focus_out(self, e): if e.mode == xcffib.xproto.NotifyMode.Grab: state.GRAB = self def cb_configure_notify(self, e): if state.GRAB is self and self.is_button_pressed(): self.moving = True def cb_property_notify(self, e): aname = util.get_atom_name(e.atom) try: if aname == '_NET_WM_DESKTOP': if should_ignore(self.wid): untrack_client(self.wid) return olddesk = self.desk self.desk = ewmh.get_wm_desktop(self.wid).reply() if self.desk is not None and self.desk != olddesk: tile.update_client_desktop(self, olddesk) else: self.desk = olddesk elif aname == '_NET_WM_STATE': if should_ignore(self.wid): untrack_client(self.wid) return except xcffib.xproto.BadWindow: pass # S'ok... def __str__(self): return '{%s (%d)}' % (self.name[0:30], self.wid) def update_clients(): client_list = ewmh.get_client_list_stacking().reply() client_list = list(reversed(client_list)) for c in client_list: if c not in clients: track_client(c) for c in clients.keys(): if c not in client_list: untrack_client(c) def track_client(client): assert client not in clients try: if not should_ignore(client): if state.PYTYLE_STATE == 'running': # This is truly unfortunate and only seems to be necessary when # a client comes back from an iconified state. This causes a # slight lag when a new window is mapped, though. time.sleep(0.2) clients[client] = Client(client) except xcffib.xproto.BadWindow: debug('Window %s was destroyed before we could finish inspecting it. ' 'Untracking it...' % client) untrack_client(client) def untrack_client(client): if client not in clients: return c = clients[client] del clients[client] c.remove() def should_ignore(client): # Don't waste time on clients we'll never possibly tile if client in ignore: return True nm = ewmh.get_wm_name(client).reply() wm_class = icccm.get_wm_class(client).reply() if wm_class is not None: try: inst, cls = wm_class matchNames = set([inst.lower(), cls.lower()]) if matchNames.intersection(config.ignore): debug('Ignoring %s because it is in the ignore list' % nm) return True if hasattr(config, 'tile_only') and config.tile_only: if not matchNames.intersection(config.tile_only): debug('Ignoring %s because it is not in the tile_only ' 'list' % nm) return True except ValueError: pass if icccm.get_wm_transient_for(client).reply() is not None: debug('Ignoring %s because it is transient' % nm) ignore.append(client) return True wtype = ewmh.get_wm_window_type(client).reply() if wtype: for atom in wtype: aname = util.get_atom_name(atom) if aname in ('_NET_WM_WINDOW_TYPE_DESKTOP', '_NET_WM_WINDOW_TYPE_DOCK', '_NET_WM_WINDOW_TYPE_TOOLBAR', '_NET_WM_WINDOW_TYPE_MENU', '_NET_WM_WINDOW_TYPE_UTILITY', '_NET_WM_WINDOW_TYPE_SPLASH', '_NET_WM_WINDOW_TYPE_DIALOG', '_NET_WM_WINDOW_TYPE_DROPDOWN_MENU', '_NET_WM_WINDOW_TYPE_POPUP_MENU', '_NET_WM_WINDOW_TYPE_TOOLTIP', '_NET_WM_WINDOW_TYPE_NOTIFICATION', '_NET_WM_WINDOW_TYPE_COMBO', '_NET_WM_WINDOW_TYPE_DND'): debug('Ignoring %s because it has type %s' % (nm, aname)) ignore.append(client) return True wstate = ewmh.get_wm_state(client).reply() if wstate is None: debug('Ignoring %s because it does not have a state' % nm) return True for atom in wstate: aname = util.get_atom_name(atom) # For now, while I decide how to handle these guys if aname == '_NET_WM_STATE_STICKY': debug('Ignoring %s because it is sticky and they are weird' % nm) return True if aname in ('_NET_WM_STATE_SHADED', '_NET_WM_STATE_HIDDEN', '_NET_WM_STATE_FULLSCREEN', '_NET_WM_STATE_MODAL'): debug('Ignoring %s because it has state %s' % (nm, aname)) return True d = ewmh.get_wm_desktop(client).reply() if d == 0xffffffff: debug('Ignoring %s because it\'s on all desktops' \ '(not implemented)' % nm) return True return False def cb_property_notify(e): aname = util.get_atom_name(e.atom) if aname == '_NET_CLIENT_LIST_STACKING': update_clients() event.connect('PropertyNotify', xpybutil.root, cb_property_notify)
0
0
0
5,878
0
3,995
0
-36
273
1782765336d1c920b25f3e04b8d6dd09f0344112
905
py
Python
index_cli/core/json_type.py
lishnih/index_cli
57f23d5df5168bcc73e23e0eeabbb8317014585b
[ "MIT" ]
null
null
null
index_cli/core/json_type.py
lishnih/index_cli
57f23d5df5168bcc73e23e0eeabbb8317014585b
[ "MIT" ]
null
null
null
index_cli/core/json_type.py
lishnih/index_cli
57f23d5df5168bcc73e23e0eeabbb8317014585b
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding=utf-8 # Stan 2018-09-27 from __future__ import (division, absolute_import, print_function, unicode_literals) # class JsonType(UserDefinedType): # def get_col_spec(self, **kw): # return "JSON" # # def bind_processor(self, dialect): # def process(value): # return json.dumps(value, ensure_ascii=False).encode('utf8') # # return process # # def result_processor(self, dialect, coltype): # def process(value): # return json.loads(value) # # return process
23.815789
73
0.653039
#!/usr/bin/env python # coding=utf-8 # Stan 2018-09-27 from __future__ import (division, absolute_import, print_function, unicode_literals) import json from sqlalchemy.types import UserDefinedType, TypeDecorator, Text class JsonType(TypeDecorator): impl = Text def process_bind_param(self, value, dialect): return json.dumps(value, ensure_ascii=False) def process_result_value(self, value, dialect): return json.loads(value) # class JsonType(UserDefinedType): # def get_col_spec(self, **kw): # return "JSON" # # def bind_processor(self, dialect): # def process(value): # return json.dumps(value, ensure_ascii=False).encode('utf8') # # return process # # def result_processor(self, dialect, coltype): # def process(value): # return json.loads(value) # # return process
0
0
0
215
0
0
0
34
69
ed5e6c0f6c69ec6fdd90183710bf386418d25c66
1,563
py
Python
tests/test_settings.py
sneJ-/chaostoolkit-lib
07b00c8bffe8cda7494b049f9640cdbba3bad8bc
[ "Apache-2.0" ]
1
2019-11-18T19:57:42.000Z
2019-11-18T19:57:42.000Z
tests/test_settings.py
sneJ-/chaostoolkit-lib
07b00c8bffe8cda7494b049f9640cdbba3bad8bc
[ "Apache-2.0" ]
null
null
null
tests/test_settings.py
sneJ-/chaostoolkit-lib
07b00c8bffe8cda7494b049f9640cdbba3bad8bc
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import os.path settings_dir = os.path.join(os.path.dirname(__file__), "fixtures")
28.944444
79
0.715931
# -*- coding: utf-8 -*- import os.path from chaoslib.settings import get_loaded_settings, load_settings, save_settings settings_dir = os.path.join(os.path.dirname(__file__), "fixtures") def test_do_not_fail_when_settings_do_not_exist(): assert load_settings( os.path.join(settings_dir, "no_settings.yaml")) is None def test_load_settings(): settings = load_settings(os.path.join(settings_dir, "settings.yaml")) assert "notifications" in settings def test_save_settings(): settings = load_settings(os.path.join(settings_dir, "settings.yaml")) new_settings_location = os.path.join(settings_dir, "new_settings.yaml") try: os.remove(new_settings_location) except OSError: pass save_settings(settings, new_settings_location) saved_settings = load_settings(new_settings_location) assert "notifications" in saved_settings os.remove(new_settings_location) def test_load_unsafe_settings(): settings = load_settings( os.path.join(settings_dir, "unsafe-settings.yaml")) assert settings is None def test_create_settings_file_on_save(): ghost = os.path.abspath(os.path.join(settings_dir, "bah", "ghost.yaml")) assert not os.path.exists(ghost) try: save_settings({}, ghost) assert os.path.exists(ghost) finally: try: os.remove(ghost) except OSError: pass def test_get_loaded_settings(): settings = load_settings(os.path.join(settings_dir, "settings.yaml")) assert get_loaded_settings() is settings
0
0
0
0
0
1,231
0
58
160
0da55faa65c939131e74dd60e3f512e40b9acbf0
49
py
Python
instance/config.py
davideguidobene/cinema-web-app
1a83576a1e37ea69bec2b2a80f584912cfc9b264
[ "MIT" ]
null
null
null
instance/config.py
davideguidobene/cinema-web-app
1a83576a1e37ea69bec2b2a80f584912cfc9b264
[ "MIT" ]
null
null
null
instance/config.py
davideguidobene/cinema-web-app
1a83576a1e37ea69bec2b2a80f584912cfc9b264
[ "MIT" ]
null
null
null
import os SECRET_KEY = os.getenv("SECRET_KEY")
9.8
36
0.734694
import os SECRET_KEY = os.getenv("SECRET_KEY")
0
0
0
0
0
0
0
0
0
7a777dd89c577420d917a03e50e383d90d26f239
652
py
Python
cit_vipnet/inventory/migrations/0002_auto_20210906_1138.py
mr-Marshanskiy/cit-vipnet
6a0e56a13cae57252957c82af3d4e98da5d9d6a4
[ "BSD-3-Clause" ]
null
null
null
cit_vipnet/inventory/migrations/0002_auto_20210906_1138.py
mr-Marshanskiy/cit-vipnet
6a0e56a13cae57252957c82af3d4e98da5d9d6a4
[ "BSD-3-Clause" ]
null
null
null
cit_vipnet/inventory/migrations/0002_auto_20210906_1138.py
mr-Marshanskiy/cit-vipnet
6a0e56a13cae57252957c82af3d4e98da5d9d6a4
[ "BSD-3-Clause" ]
null
null
null
# Generated by Django 2.2 on 2021-09-06 08:38
29.636364
137
0.627301
# Generated by Django 2.2 on 2021-09-06 08:38 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('inventory', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='hardwareplatform', options={'ordering': ['-name'], 'verbose_name': 'Аппаратная платформа', 'verbose_name_plural': 'Аппаратные платформы'}, ), migrations.AlterModelOptions( name='modification', options={'ordering': ['-name'], 'verbose_name': 'Модификация исполненеия', 'verbose_name_plural': 'Модификации исполненеий'}, ), ]
164
0
0
466
0
0
0
11
46
a218e268b041cea723c99b9e20c6c99c665876db
88
py
Python
main.py
hailleenvarela/data-2022-1
8f92e1325b6fcbf727b426c50ddf32d10e38db89
[ "MIT" ]
null
null
null
main.py
hailleenvarela/data-2022-1
8f92e1325b6fcbf727b426c50ddf32d10e38db89
[ "MIT" ]
1
2022-02-27T23:23:50.000Z
2022-02-27T23:23:50.000Z
main.py
hailleenvarela/data-2022-1
8f92e1325b6fcbf727b426c50ddf32d10e38db89
[ "MIT" ]
3
2022-02-27T23:14:24.000Z
2022-03-02T00:47:12.000Z
from source.etl import ETL x = ETL() df = x.extract(True) x.transform(df) #x.load(df)
11
26
0.670455
from source.etl import ETL x = ETL() df = x.extract(True) x.transform(df) #x.load(df)
0
0
0
0
0
0
0
0
0
97d4c4d8955d3f56c8e11f52c3ceebef2f337f77
2,533
py
Python
2021/advent2021_9.py
aatango/Advent-of-Code
f229abc7acaaa0a2316839bf11fa7e2fdf9caf2c
[ "MIT" ]
null
null
null
2021/advent2021_9.py
aatango/Advent-of-Code
f229abc7acaaa0a2316839bf11fa7e2fdf9caf2c
[ "MIT" ]
null
null
null
2021/advent2021_9.py
aatango/Advent-of-Code
f229abc7acaaa0a2316839bf11fa7e2fdf9caf2c
[ "MIT" ]
null
null
null
"""Advent of Code 2021, day 9: Smoke Basin""" def main(input_matrix: tuple[str]) -> int: """ Find all of the low points on your heightmap. What is the sum of the risk levels of all low points on your heightmap? """ # It's a brute force approach that does not scale to part two, # but it's what I could think of with very little time. # Transform string input into usable int values. for line in input_matrix: int_line: list[int] = [] for num in line: int_line.append(int(num)) DEPTH_MAP.append(int_line) # Find local minima. low_points: list[int] = [] for line_index, line in enumerate(DEPTH_MAP): for point_index, point in enumerate(line): neighbours: list[int] = [] if point_index - 1 in range(0, len(line)): neighbours.append(DEPTH_MAP[line_index][point_index - 1]) if point_index + 1 in range(0, len(line)): neighbours.append(DEPTH_MAP[line_index][point_index + 1]) if line_index - 1 in range(0, len(DEPTH_MAP)): neighbours.append(DEPTH_MAP[line_index - 1][point_index]) if line_index + 1 in range(0, len(DEPTH_MAP)): neighbours.append(DEPTH_MAP[line_index + 1][point_index]) if point < min(neighbours): low_points.append(point + 1) return sum(low_points) def part_two(): """What do you get if you multiply together the sizes of the three largest basins? Unlike most other days, this part_two() is dependent on main(), as it's there that the global DEPTH_MAP is generated. """ basins_sizes: list[int] = [] # This loop is to initiate recursive calls, whenever it finds a new basin. for line_index, line in enumerate(DEPTH_MAP): for point_index, point in enumerate(line): if point < 9: basins_sizes.append(map_basin((line_index, point_index))) basins_sizes.sort() return basins_sizes[-3] * basins_sizes[-2] * basins_sizes[-1] if __name__ == "__main__": with open("../input", "r") as file: INPUT_FILE = tuple(file.read().splitlines()) # Global so that it doesn't have to be remade for part two. DEPTH_MAP: list[list[int]] = [] print(main(INPUT_FILE)) print(part_two())
28.784091
83
0.684959
"""Advent of Code 2021, day 9: Smoke Basin""" def main(input_matrix: tuple[str]) -> int: """ Find all of the low points on your heightmap. What is the sum of the risk levels of all low points on your heightmap? """ # It's a brute force approach that does not scale to part two, # but it's what I could think of with very little time. # Transform string input into usable int values. for line in input_matrix: int_line: list[int] = [] for num in line: int_line.append(int(num)) DEPTH_MAP.append(int_line) # Find local minima. low_points: list[int] = [] for line_index, line in enumerate(DEPTH_MAP): for point_index, point in enumerate(line): neighbours: list[int] = [] if point_index - 1 in range(0, len(line)): neighbours.append(DEPTH_MAP[line_index][point_index - 1]) if point_index + 1 in range(0, len(line)): neighbours.append(DEPTH_MAP[line_index][point_index + 1]) if line_index - 1 in range(0, len(DEPTH_MAP)): neighbours.append(DEPTH_MAP[line_index - 1][point_index]) if line_index + 1 in range(0, len(DEPTH_MAP)): neighbours.append(DEPTH_MAP[line_index + 1][point_index]) if point < min(neighbours): low_points.append(point + 1) return sum(low_points) def part_two(): """What do you get if you multiply together the sizes of the three largest basins? Unlike most other days, this part_two() is dependent on main(), as it's there that the global DEPTH_MAP is generated. """ def map_basin(pos: tuple[int], basin_size: int = 0) -> int: if DEPTH_MAP[pos[0]][pos[1]] >= 9: return basin_size basin_size += 1 DEPTH_MAP[pos[0]][pos[1]] = 9 basin_size += map_basin((max(pos[0] - 1, 0), pos[1])) basin_size += map_basin((min(pos[0] + 1, len(DEPTH_MAP) - 1), pos[1])) basin_size += map_basin((pos[0], max(pos[1] - 1, 0))) basin_size += map_basin((pos[0], min(pos[1] + 1, len(DEPTH_MAP[0]) - 1))) return basin_size basins_sizes: list[int] = [] # This loop is to initiate recursive calls, whenever it finds a new basin. for line_index, line in enumerate(DEPTH_MAP): for point_index, point in enumerate(line): if point < 9: basins_sizes.append(map_basin((line_index, point_index))) basins_sizes.sort() return basins_sizes[-3] * basins_sizes[-2] * basins_sizes[-1] if __name__ == "__main__": with open("../input", "r") as file: INPUT_FILE = tuple(file.read().splitlines()) # Global so that it doesn't have to be remade for part two. DEPTH_MAP: list[list[int]] = [] print(main(INPUT_FILE)) print(part_two())
0
0
0
0
0
430
0
0
24
8485ba5f72fd09655120694f54a0ea9e297a8fe8
545
py
Python
pythondata_cpu_blackparrot/system_verilog/black-parrot/external/basejump_stl/testing/bsg_test/dramsim3_bandwidth2/const_random.py
litex-hub/pythondata-cpu-blackparrot
ba50883f12d33e1d834640640c84ddc9329bb68a
[ "BSD-3-Clause" ]
3
2021-05-12T21:57:55.000Z
2021-07-29T19:56:04.000Z
pythondata_cpu_blackparrot/system_verilog/black-parrot/external/basejump_stl/testing/bsg_test/dramsim3_bandwidth2/const_random.py
litex-hub/litex-data-cpu-blackparrot
ba50883f12d33e1d834640640c84ddc9329bb68a
[ "BSD-3-Clause" ]
1
2020-05-02T02:41:24.000Z
2020-05-02T02:44:25.000Z
pythondata_cpu_blackparrot/system_verilog/black-parrot/external/basejump_stl/testing/bsg_test/dramsim3_bandwidth2/const_random.py
litex-hub/litex-data-cpu-blackparrot
ba50883f12d33e1d834640640c84ddc9329bb68a
[ "BSD-3-Clause" ]
2
2020-05-01T08:33:19.000Z
2021-07-29T19:56:12.000Z
import sys import random if __name__ == "__main__": random.seed(0) num_cache_p = int(sys.argv[1]) block_size_in_words_p = int(sys.argv[2]) tg = TraceGen(block_size_in_words_p) tg.clear_tags() #words = (2**18)/num_cache_p # 1MB words = (2**18)/num_cache_p # 1MB max_range = (2**14)# 64KB for i in range(words): taddr = random.randint(0, max_range-1) << 2 write_not_read = random.randint(0,1) if write_not_read: tg.send_write(taddr) else: tg.send_read(taddr) tg.done()
20.185185
47
0.66055
import sys import random from trace_gen import * if __name__ == "__main__": random.seed(0) num_cache_p = int(sys.argv[1]) block_size_in_words_p = int(sys.argv[2]) tg = TraceGen(block_size_in_words_p) tg.clear_tags() #words = (2**18)/num_cache_p # 1MB words = (2**18)/num_cache_p # 1MB max_range = (2**14)# 64KB for i in range(words): taddr = random.randint(0, max_range-1) << 2 write_not_read = random.randint(0,1) if write_not_read: tg.send_write(taddr) else: tg.send_read(taddr) tg.done()
0
0
0
0
0
0
0
2
22
74ee5adaad45c0809358f0e7260945651ef42945
5,699
py
Python
touchdown/tests/test_aws_vpc_subnet.py
yaybu/touchdown
70ecda5191ce2d095bc074dcb23bfa1584464814
[ "Apache-2.0" ]
14
2015-01-05T18:18:04.000Z
2022-02-07T19:35:12.000Z
touchdown/tests/test_aws_vpc_subnet.py
yaybu/touchdown
70ecda5191ce2d095bc074dcb23bfa1584464814
[ "Apache-2.0" ]
106
2015-01-06T00:17:13.000Z
2019-09-07T00:35:32.000Z
touchdown/tests/test_aws_vpc_subnet.py
yaybu/touchdown
70ecda5191ce2d095bc074dcb23bfa1584464814
[ "Apache-2.0" ]
5
2015-01-30T10:18:24.000Z
2022-02-07T19:35:13.000Z
# Copyright 2015 Isotoma Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
32.565714
87
0.589402
# Copyright 2015 Isotoma Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from touchdown.tests.aws import StubberTestCase from touchdown.tests.fixtures.aws import ( NetworkAclFixture, RouteTableFixture, VpcFixture, ) from touchdown.tests.stubs.aws import SubnetStubber class TestSubnetCreation(StubberTestCase): def test_create_subnet(self): goal = self.create_goal("apply") vpcf = self.fixtures.enter_context(VpcFixture(goal, self.aws)) subnet = self.fixtures.enter_context( SubnetStubber( goal.get_service( vpcf.vpc.add_subnet( name="test-subnet", cidr_block="192.168.0.0/25" ), "apply", ) ) ) subnet.add_describe_subnets_empty_response() subnet.add_create_subnet() subnet.add_create_tags(Name="test-subnet") # Wait for the subnet to exist subnet.add_describe_subnets_empty_response() subnet.add_describe_subnets_empty_response() subnet.add_describe_subnets_one_response() # Call describe_object again to make sure remote state is correctly cached subnet.add_describe_subnets_one_response() subnet.add_describe_network_acls() subnet.add_describe_route_tables() goal.execute() def test_adding_route_table_to_subnet(self): goal = self.create_goal("apply") vpcf = self.fixtures.enter_context(VpcFixture(goal, self.aws)) route_table = self.fixtures.enter_context( RouteTableFixture(goal, self.aws, vpcf.vpc) ) subnet = self.fixtures.enter_context( SubnetStubber( goal.get_service( vpcf.vpc.add_subnet( name="test-subnet", cidr_block="192.168.0.0/25", route_table=route_table, ), "apply", ) ) ) subnet.add_describe_subnets_one_response() subnet.add_describe_network_acls() subnet.add_describe_route_tables() subnet.add_associate_route_table("rt-52f2381b") goal.execute() def test_adding_nacl_table_to_subnet(self): goal = self.create_goal("apply") vpcf = self.fixtures.enter_context(VpcFixture(goal, self.aws)) nacl = self.fixtures.enter_context(NetworkAclFixture(goal, self.aws, vpcf.vpc)) subnet = self.fixtures.enter_context( SubnetStubber( goal.get_service( vpcf.vpc.add_subnet( name="test-subnet", cidr_block="192.168.0.0/25", network_acl=nacl, ), "apply", ) ) ) subnet.add_describe_subnets_one_response() subnet.add_describe_network_acls() subnet.add_describe_route_tables() subnet.add_replace_network_acl_association() goal.execute() def test_create_subnet_idempotent(self): goal = self.create_goal("apply") vpcf = self.fixtures.enter_context(VpcFixture(goal, self.aws)) subnet = self.fixtures.enter_context( SubnetStubber( goal.get_service( vpcf.vpc.add_subnet( name="test-subnet", cidr_block="192.168.0.0/25" ), "apply", ) ) ) subnet.add_describe_subnets_one_response() subnet.add_describe_network_acls() subnet.add_describe_route_tables() self.assertEqual(len(list(goal.plan())), 0) self.assertEqual(len(goal.get_changes(subnet.resource)), 0) class TestSubnetDestroy(StubberTestCase): def test_destroy_subnet(self): goal = self.create_goal("destroy") vpcf = self.fixtures.enter_context(VpcFixture(goal, self.aws)) subnet = self.fixtures.enter_context( SubnetStubber( goal.get_service( vpcf.vpc.add_subnet( name="test-subnet", cidr_block="192.168.0.0/25" ), "destroy", ) ) ) subnet.add_describe_subnets_one_response() subnet.add_describe_network_acls() subnet.add_describe_route_tables() subnet.add_delete_subnet() goal.execute() def test_destroy_subnet_idempotent(self): goal = self.create_goal("destroy") vpcf = self.fixtures.enter_context(VpcFixture(goal, self.aws)) subnet = self.fixtures.enter_context( SubnetStubber( goal.get_service( vpcf.vpc.add_subnet( name="test-subnet", cidr_block="192.168.0.0/25" ), "destroy", ) ) ) subnet.add_describe_subnets_empty_response() self.assertEqual(len(list(goal.plan())), 0) self.assertEqual(len(goal.get_changes(subnet.resource)), 0)
0
0
0
4,866
0
0
0
141
113
62b58d3a59f61b26ea27943ea666bc132820d76e
8,597
py
Python
pymbs/processing/loops/fourbar.py
brutzl/pymbs
fb7c91435f56b5c4d460f82f081d5d1960fea886
[ "MIT" ]
null
null
null
pymbs/processing/loops/fourbar.py
brutzl/pymbs
fb7c91435f56b5c4d460f82f081d5d1960fea886
[ "MIT" ]
null
null
null
pymbs/processing/loops/fourbar.py
brutzl/pymbs
fb7c91435f56b5c4d460f82f081d5d1960fea886
[ "MIT" ]
null
null
null
AL = 'FB_%s_AL' BE = 'FB_%s_BE' GA = 'FB_%s_GA' DE = 'FB_%s_DE' L1 = 'FB_%s_L1' L2 = 'FB_%s_L2' L3 = 'FB_%s_L3' L4 = 'FB_%s_L4' PHI = 'FB_%s_PHI' PSI = 'FB_%s_PSI' THETA = 'FB_%s_THETA' A = 'FB_%s_A' B = 'FB_%s_B' C = 'FB_%s_C' D = 'FB_%s_D' E = 'FB_%s_E' F = 'FB_%s_F'
35.378601
310
0.562289
from pymbs.processing.loops.loop import Loop from pymbs.common.functions import sqrt from pymbs.processing import Frame from pymbs.processing.loads.constraint import Constraint from numpy import pi from pymbs.symbolics import Matrix, eye, cos, sin, atan, atan2, acos, zeros, transpose AL = 'FB_%s_AL' BE = 'FB_%s_BE' GA = 'FB_%s_GA' DE = 'FB_%s_DE' L1 = 'FB_%s_L1' L2 = 'FB_%s_L2' L3 = 'FB_%s_L3' L4 = 'FB_%s_L4' PHI = 'FB_%s_PHI' PSI = 'FB_%s_PSI' THETA = 'FB_%s_THETA' A = 'FB_%s_A' B = 'FB_%s_B' C = 'FB_%s_C' D = 'FB_%s_D' E = 'FB_%s_E' F = 'FB_%s_F' from pymbs.symbolics import Graph class FourBar(Loop): ''' Explicit Treatment of a Four Bar Linkage Mechanism ''' ''' Sketch: B--3--C / \ 2 4 / \ A-----1------D ''' def __init__(self, name, csCa, csCb, posture): ''' Constructor @param setup: Four Bar Linkage has two setups: -1, 1 ''' # Assertions assert ( isinstance(csCa, Frame) ) assert ( isinstance(csCb, Frame) ) assert ( isinstance(posture, int) ) assert ( (posture == 1) or (posture == -1 )) # Check parents if (csCa.parentBody.joint is None): raise ValueError('Loop "%s": Coordinate System "%s" is directly connected to the world!'%(name,csCa.name)) if (csCb.parentBody.joint is None): raise ValueError('Loop "%s": Coordinate System "%s" is directly connected to the world!'%(name,csCb.name)) # Build complete FourBarLinkage jB = csCa.parentBody.joint jD = csCb.parentBody.joint if (jB.coordSys.parentBody.joint == None): jB = csCb.parentBody.joint jD = csCa.parentBody.joint jA = jB.coordSys.parentBody.joint csC3 = csCb csC4 = csCa else: jA = jB.coordSys.parentBody.joint csC3 = csCa csC4 = csCb # Do the Joints have the same axis of Rotation if (jA.Phi == Matrix([1,0,0])): self.sign = 1 self.pick = Matrix([[0,1,0], [0,0,1]]) elif (jA.Phi == Matrix([0,1,0])): self.sign = -1 self.pick = Matrix([[1,0,0], [0,0,1]]) elif (jA.Phi == Matrix([0,0,1])): self.sign = 1 self.pick = Matrix([[1,0,0], [0,1,0]]) else: raise ValueError('Loop "%s": Axis of Rotation must be either x,y or z!'%name) assert( jA.Phi == jB.Phi ), 'jA.Phi(%s): %s, jB.Phi(%s): %s'%(jA.name,jA.Phi,jB.name,jB.Phi) assert( jA.Phi == jD.Phi ), 'jA.Phi(%s): %s, jD.Phi(%s): %s'%(jA.name,jA.Phi,jD.name,jD.Phi) assert( jA.Psi.norm() == 0 ) assert( jB.Psi.norm() == 0 ) assert( jD.Psi.norm() == 0 ) # Are All Coordinate Systems aligned like their parentBody? assert( (jA.coordSys.R - eye(3)) == zeros(3) ) assert( (jB.coordSys.R - eye(3)) == zeros(3) ) assert( (jD.coordSys.R - eye(3)) == zeros(3) ) # Check that bodies between joints are the same assert( jA.coordSys.parentBody == jD.coordSys.parentBody ) assert( jA.body == jB.coordSys.parentBody ) assert( jB.body == csC3.parentBody ) assert( jD.body == csC4.parentBody ) # Super Constructor Loop.__init__(self, name) # Save Parameters self.jA = jA self.jB = jB self.jD = jD self.csC3 = csC3 self.csC4 = csC4 self.posture = posture # Independent Coordinates self.u = [jA.q] self.ud = [jA.qd] self.udd = [jA.qdd] # Dependent Coordinates self.v = [jB.q, jD.q] self.vd = [jB.qd, jD.qd] self.vdd = [jB.qdd, jD.qdd] def calc(self, graph): ''' Returns precalculated v(u), Bvu and b_prime, s.t. q = [u,v]', where u: independent coordinates v: dependent coordinates Starting from the Constraint Equation: Phi(q) = 0, One Obtains by Differentiation: (d(Phi)/du)*u_dot + (d(Phi)/dv)*v_dot = 0 Ju*u_dot + Jv+v_dot = 0 Thus, v_dot = -(inv(Jv)*Ju)*u_dot = Bvu*u_dot, with Jv = d(Phi)/dv and Ju = d(Phi)/du Differentiating once more, yields Ju*u_ddot + Jv*v_ddot + [Ju_dot, Jv_dot]*[u_dot,v_dot]' = 0 Ju*u_ddot + Jv*v_ddot + J_dot*q_dot = 0 Using this relations, one may obtain an expression for v_ddot v_ddot = -(inv(Jv)*Ju)*u_ddot - inv(Jv)*J_dot*q_dot = Bvu*u_ddot + b_prime, with b_prime = -inv(Jv)*J_dot*q_dot Finally one can transform the Equation of Motion M*q_ddot + h = f + W'*mu M*(J*u_ddot + b) + h = f + W'*mu with J = [1, Bvu']' and b = [0,b_prime']' (J'*M*J)*u_ddot + J'*M*b + J'*h = J'*f, since J'*W' = 0 M_star*u_ddot + h_star = f_star M_star = (J'*M*J) h_star = J'*M*b + J'*h f_star = J'*f ''' assert isinstance(graph, Graph) # Abbrevations s = self.sign # Generalised Coordinates q1 = self.jA.q # u[0] # angle between x-axes q1d = self.jA.qd q2 = self.jB.q # v[0] # angle between x-axes q2d = self.jB.qd q3 = self.jD.q # v[1] # angle between x-axes q3d = self.jD.qd # Length of bars and angle between x-axis and bar l1_vec = self.jD.coordSys.p - self.jA.coordSys.p l1_vec2 = self.pick*l1_vec l1 = graph.addEquation(L1%self.name, sqrt((transpose(l1_vec)*l1_vec))) alpha = graph.addEquation(AL%self.name, s*atan2(l1_vec2[1],l1_vec2[0])) l2_vec = self.jB.coordSys.p l2_vec2 = self.pick*l2_vec l2 = graph.addEquation(L2%self.name, sqrt((transpose(l2_vec)*l2_vec))) beta = graph.addEquation(BE%self.name, s*atan2(l2_vec2[1],l2_vec2[0])) l3_vec = self.csC3.p l3_vec2 = self.pick*l3_vec l3 = graph.addEquation(L3%self.name, sqrt((transpose(l3_vec)*l3_vec))) gamma = graph.addEquation(GA%self.name, s*atan2(l3_vec2[1],l3_vec2[0])) l4_vec = self.csC4.p l4_vec2 = self.pick*l4_vec l4 = graph.addEquation(L4%self.name, sqrt((transpose(l4_vec)*l4_vec))) delta = graph.addEquation(DE%self.name, s*atan2(l4_vec2[1],l4_vec2[0])) # angle between bars phi_prime = graph.addEquation(PHI%self.name, q1 + beta - alpha) # A = P1, B = P2, C = P3 #P1 = graph.addEquation(A%self.name, 2*l4*(l1-l2*cos(phi_prime))) #P2 = graph.addEquation(B%self.name, -2*l2*l4*sin(phi_prime)) #P3 = graph.addEquation(C%self.name, l1**2+l2**2-l3**2+l4**2-2*l1*l2*cos(phi_prime)) # D = P1, E = P2, F = P3 P4 = graph.addEquation(D%self.name, 2*l3*(l2-l1*cos(-phi_prime))) P5 = graph.addEquation(E%self.name, -2*l1*l3*sin(-phi_prime)) P6 = graph.addEquation(F%self.name, l2**2+l1**2-l4**2+l3**2-2*l2*l1*cos(-phi_prime)) # Calculate v theta_prime = graph.addEquation(THETA%self.name, 2*atan((P5-self.posture*sqrt(P4**2+P5**2-P6**2))/(P4-P6))) psi_prime = graph.addEquation(PSI%self.name, ((l2*sin(phi_prime)+l3*sin(phi_prime+theta_prime))/abs(l2*sin(phi_prime)+l3*sin(phi_prime+theta_prime)))*acos((l2*cos(phi_prime)+l3*cos(phi_prime+theta_prime)-l1)/l4)) v1 = (psi_prime + alpha - delta) v0 = (theta_prime + beta - gamma) Bvu = Matrix( [[-l2*sin(phi_prime-psi_prime)/(l3*sin(phi_prime+theta_prime-psi_prime))-1], [(l2*sin(theta_prime))/(l4*sin(phi_prime+theta_prime-psi_prime))]] ) b_prime = Matrix( [-(q1d**2*l2*cos(phi_prime-psi_prime)+l3*cos(phi_prime+theta_prime-psi_prime)*(q1d+q2d)**2-l4*q3d**2)/(l3*sin(phi_prime+theta_prime-psi_prime)) , -(q1d**2*l2*cos(theta_prime)+l3*(q1d+q2d)**2-l4*q3d**2*cos(phi_prime+theta_prime-psi_prime))/(l4*sin(phi_prime+theta_prime-psi_prime)) ] ) return ([v0,v1],Bvu,b_prime) def applyConstraintLoads(self): ''' apply Constraint Forces at the end of the cut ''' # locking all directions perpendicular to axis of rotation transLock = [0,0,0] for i in [0,1,2]: if (self.jA.Phi[i] == 0): transLock[i] = 1 # apply Constraint c = Constraint(name='Constraint_%s'%self.name, parent=self.csC3, child=self.csC4, \ transLock=transLock, rotLock=[0,0,0], active=False) # return load object return c
0
0
0
7,975
0
0
0
165
181
127d839e1bbc55e99f4f321f7c332ef610cb53d8
1,812
py
Python
earth_enterprise/src/server/wsgi/wms/ogc/common/image_specs.py
ezeeyahoo/earthenterprise
b6cac9e6228946f2f17d1edb75e118aeb3e8e8c9
[ "Apache-2.0" ]
2,661
2017-03-20T22:12:50.000Z
2022-03-30T09:43:19.000Z
earth_enterprise/src/server/wsgi/wms/ogc/common/image_specs.py
ezeeyahoo/earthenterprise
b6cac9e6228946f2f17d1edb75e118aeb3e8e8c9
[ "Apache-2.0" ]
1,531
2017-03-24T17:20:32.000Z
2022-03-16T18:11:14.000Z
earth_enterprise/src/server/wsgi/wms/ogc/common/image_specs.py
ezeeyahoo/earthenterprise
b6cac9e6228946f2f17d1edb75e118aeb3e8e8c9
[ "Apache-2.0" ]
990
2017-03-24T11:54:28.000Z
2022-03-22T11:51:47.000Z
#!/usr/bin/env python2.7 # # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Holds meta-information about the image formats we support.""" import collections ImageSpec = collections.namedtuple( "ImageSpec", "content_type file_extension pil_format") IMAGE_SPECS = {"jpg": ImageSpec("image/jpeg", "jpg", "JPEG"), "png": ImageSpec("image/png", "png", "PNG") } def IsKnownFormat(fmt): """Checks if the format is supported. Args: fmt: Format of the image. Returns: boolean: If the format is supported. """ for spec in IMAGE_SPECS.values(): if spec.content_type == fmt: return True return False def GetImageSpec(fmt): """Get the Imagespec. Args: fmt: Format of the image. Returns: image_spec: image spec. """ for spec in IMAGE_SPECS.values(): if spec.content_type == fmt: return spec return None def FormatIsPng(fmt): """Checks if the format is of type png. Args: fmt: Format of the image. Returns: boolean: If the format is png or not. """ for typ, spec in IMAGE_SPECS.iteritems(): if spec.content_type == fmt: return typ == "png" return False if __name__ == "__main__": main()
22.65
74
0.679912
#!/usr/bin/env python2.7 # # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Holds meta-information about the image formats we support.""" import collections ImageSpec = collections.namedtuple( "ImageSpec", "content_type file_extension pil_format") IMAGE_SPECS = {"jpg": ImageSpec("image/jpeg", "jpg", "JPEG"), "png": ImageSpec("image/png", "png", "PNG") } def IsKnownFormat(fmt): """Checks if the format is supported. Args: fmt: Format of the image. Returns: boolean: If the format is supported. """ for spec in IMAGE_SPECS.values(): if spec.content_type == fmt: return True return False def GetImageSpec(fmt): """Get the Imagespec. Args: fmt: Format of the image. Returns: image_spec: image spec. """ for spec in IMAGE_SPECS.values(): if spec.content_type == fmt: return spec return None def FormatIsPng(fmt): """Checks if the format is of type png. Args: fmt: Format of the image. Returns: boolean: If the format is png or not. """ for typ, spec in IMAGE_SPECS.iteritems(): if spec.content_type == fmt: return typ == "png" return False def main(): is_format = IsKnownFormat("jpeg") print is_format if __name__ == "__main__": main()
0
0
0
0
0
44
0
0
23
9b3205aefcc2508985db4f069099edf5e7dbfa1b
662
py
Python
ClassFromQueryGenerator/CRUDPyMacros/Update.py
UnstableMutex/ClassFromQueryGenerator
5de03f61059d2c61783a9b66ab4e11060343e803
[ "MIT" ]
null
null
null
ClassFromQueryGenerator/CRUDPyMacros/Update.py
UnstableMutex/ClassFromQueryGenerator
5de03f61059d2c61783a9b66ab4e11060343e803
[ "MIT" ]
null
null
null
ClassFromQueryGenerator/CRUDPyMacros/Update.py
UnstableMutex/ClassFromQueryGenerator
5de03f61059d2c61783a9b66ab4e11060343e803
[ "MIT" ]
null
null
null
comma="," result="SET ANSI_NULLS ON\n" result+="GO\n" result+="SET QUOTED_IDENTIFIER ON\n" result+="GO\n" result+="CREATE PROCEDURE "+Model.TableName+"_Update\n" result+=mapcols(pars) result+="AS\n" result+="BEGIN\n" result+="SET NOCOUNT ON;\n" result+="update [dbo].["+Model.TableName+"]\n" result+=" set (" result+=mapusual(sqf) result+=")\n" result+="WHERE " +Model.PK.Name+"=@"+Model.PK.Name+"\n" result+="END\n" result+="GO\n"
24.518519
55
0.669184
def sqf(col): return "["+col.Name+"] = @"+col.Name def pars(col): return "@"+col.Name+" "+col.SQLType+"\n" comma="," def mapcols(f): return comma.join(map(f,Model.Columns)) def mapusual(f): return comma.join(map(f,Model.UsualColumns)) result="SET ANSI_NULLS ON\n" result+="GO\n" result+="SET QUOTED_IDENTIFIER ON\n" result+="GO\n" result+="CREATE PROCEDURE "+Model.TableName+"_Update\n" result+=mapcols(pars) result+="AS\n" result+="BEGIN\n" result+="SET NOCOUNT ON;\n" result+="update [dbo].["+Model.TableName+"]\n" result+=" set (" result+=mapusual(sqf) result+=")\n" result+="WHERE " +Model.PK.Name+"=@"+Model.PK.Name+"\n" result+="END\n" result+="GO\n"
0
0
0
0
0
141
0
0
89
e33365306faf8e05ad78b480b5ad8b2e0c36c04f
6,338
py
Python
tests/core/testRpg.py
rrpg/engine
989f701b82aa7c73ea98003eed13077e5d6f15f9
[ "MIT" ]
2
2016-04-07T23:36:46.000Z
2016-12-20T15:35:17.000Z
tests/core/testRpg.py
rrpg/engine
989f701b82aa7c73ea98003eed13077e5d6f15f9
[ "MIT" ]
5
2016-02-04T16:28:33.000Z
2016-03-18T17:02:07.000Z
tests/core/testRpg.py
rrpg/engine
989f701b82aa7c73ea98003eed13077e5d6f15f9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*-
37.502959
297
0.736668
# -*- coding: utf-8 -*- import unittest import tests.common import core from core.localisation import _ from core import Rpg import models.player from models.saved_game import saved_game import json import sqlite3 class rpgTests(tests.common.common): idSavedGame = 1 idFaultySavedGame = 2 idEmptySavedGame = 3 incorrectIdSavedGame = 42 def test_unknown_world(self): rpgEngine = Rpg.Rpg() try: rpgEngine.initWorld("some/unexisting/world") except core.exception.exception as e: self.assertEquals(str(e), _('ERROR_UNKNOWN_SELECTED_WORLD')) def test_invalid_saved_game_id(self): rpgEngine = Rpg.Rpg() rpgEngine.initWorld(self.dbFile) with self.assertRaises(core.exception.exception) as raised: rpgEngine.initSavedGame(self.incorrectIdSavedGame) self.assertEquals(str(raised.exception), _('ERROR_RRPG_INIT_INVALID_SAVED_GAME_ID')) def test_load_player_with_no_save(self): rpgEngine = Rpg.Rpg() rpgEngine.initWorld(self.dbFile) with self.assertRaises(core.exception.exception) as raised: rpgEngine.initPlayer() self.assertEquals(str(raised.exception), _('ERROR_SAVED_GAME_NEEDED_TO_INIT_PLAYER')) def test_load_player_with_empty_save(self): rpgEngine = Rpg.Rpg() rpgEngine.initWorld(self.dbFile) rpgEngine.initSavedGame(self.idEmptySavedGame) with self.assertRaises(core.exception.exception) as raised: rpgEngine.initPlayer() self.assertEquals(str(raised.exception), _('ERROR_NON_EMPTY_SAVED_GAME_NEEDED_TO_INIT_PLAYER')) def test_load_player_with_faulty_save(self): rpgEngine = Rpg.Rpg() rpgEngine.initWorld(self.dbFile) rpgEngine.initSavedGame(self.idFaultySavedGame) with self.assertRaises(core.exception.exception) as raised: rpgEngine.initPlayer() self.assertEquals(str(raised.exception), _('ERROR_CONNECT_INVALID_CREDENTIALS')) def test_invalid_world(self): rpgEngine = Rpg.Rpg() rpgEngine.initWorld("tests/invalidDB") rpgEngine.initSavedGame(self.idSavedGame) self.assertRaises(sqlite3.OperationalError, rpgEngine.initPlayer) def test_invalid_action_format(self): with self.assertRaises(TypeError) as raised: self.rpg.setAction("Not list action") self.assertEquals(str(raised.exception), _('ERROR_INVALID_FORMAT_ACTION')) def test_invalid_action_text(self): self.rpg.setAction(["Unknown action"]) output = self.rpg._runAction() self.assertEquals(output, _('ERROR_UNKNOWN_COMMAND')) def test_invalid_action_json(self): self.rpg.setAction(["Unknown action"]) output = self.rpg._runAction(True) self.assertEquals(output, {'error': {'message': _('ERROR_UNKNOWN_COMMAND'), 'code': 1}}) def compareSavedGamesSaveOk(self): saves = saved_game.loadAll() expectedSaves = [ { 'id_saved_game': 1, 'snapshot_player': '{"id_gender": 1, "name": "TEST_PLAYER_SOME", "id_character": 4, "id_player": 3, "stat_defence": 2, "stat_attack": 4, "stat_max_hp": 20, "inventory": null, "id_area": 1, "stat_current_hp": 20, "login": "TEST_PLAYER_SOME", "stat_speed": 2, "id_species": 1, "stat_luck": 10}', 'id_player': 3, 'id_character': 4 }, { 'id_saved_game': 2, 'snapshot_player': '{"id_gender": 1, "name": "TEST_PLAYER2bis", "id_character": 3, "id_player": 2, "stat_defence": 2, "stat_attack": 4, "stat_max_hp": 20, "inventory": null, "id_area": 1, "stat_current_hp": 20, "login": "TEST_PLAYER2bis", "stat_speed": 2, "id_species": 1, "stat_luck": 10}', 'id_player': 2, 'id_character': 3 }, { 'id_saved_game': 3, 'snapshot_player': '', 'id_player': None, 'id_character': None } ] self.assertEquals(saves, expectedSaves) def compareSavedGamesSaveKo(self): saves = saved_game.loadAll() expectedSaves = [ { 'id_saved_game': 1, 'snapshot_player': '{"id_gender": 1, "name": "TEST_PLAYER", "id_character": 2, "id_player": 1, "stat_defence": 2, "stat_attack": 4, "stat_max_hp": 20, "inventory": null, "id_area": 1, "stat_current_hp": 20, "login": "TEST_PLAYER", "stat_speed": 2, "id_species": 1, "stat_luck": 10}', 'id_player': 1, 'id_character': 2 }, { 'id_saved_game': 2, 'snapshot_player': '{"id_gender": 1, "name": "TEST_PLAYER2bis", "id_character": 3, "id_player": 2, "stat_defence": 2, "stat_attack": 4, "stat_max_hp": 20, "inventory": null, "id_area": 1, "stat_current_hp": 20, "login": "TEST_PLAYER2bis", "stat_speed": 2, "id_species": 1, "stat_luck": 10}', 'id_player': 2, 'id_character': 3 }, { 'id_saved_game': 3, 'snapshot_player': '', 'id_player': None, 'id_character': None } ] self.assertEquals(saves, expectedSaves) def test_login_already_used(self): with self.assertRaises(models.player.exception) as raised: self.rpg.createPlayer('TEST_PLAYER', 1, 1) self.assertEquals(str(raised.exception), _('ERROR_SIGNUP_LOGIN_ALREADY_USED')) self.compareSavedGamesSaveKo() def test_invalid_gender(self): with self.assertRaises(models.player.exception) as raised: self.rpg.createPlayer('TEST_PLAYER_SOME', 'some gender', 1) self.assertEquals(str(raised.exception), _('ERROR_SIGNUP_INVALID_GENDER')) self.compareSavedGamesSaveKo() def test_invalid_species(self): with self.assertRaises(models.player.exception) as raised: self.rpg.createPlayer('TEST_PLAYER_SOME', 1, 'some species') self.assertEquals(str(raised.exception), _('ERROR_SIGNUP_INVALID_SPECIES')) self.compareSavedGamesSaveKo() def test_ok(self): self.rpg.createPlayer('TEST_PLAYER_SOME', '1', '1') self.compareSavedGamesSaveOk() def test_command_with_no_saved_game(self): rpgEngine = Rpg.Rpg() rpgEngine.setAction([_('LOOK_COMMAND')]) with self.assertRaises(core.exception.exception) as raised: rpgEngine._runAction(True) self.assertEquals(str(raised.exception), _('ERROR_SAVED_GAME_NEEDED_TO_RUN_ACTION')) def test_command_with_no_player(self): rpgEngine = Rpg.Rpg() rpgEngine.initWorld(self.dbFile) rpgEngine.initSavedGame(self.idEmptySavedGame) rpgEngine.setAction([_('LOOK_COMMAND')]) with self.assertRaises(core.exception.exception) as raised: rpgEngine._runAction(True) self.assertEquals(str(raised.exception), _('ERROR_CONNECTED_PLAYER_NEEDED_FOR_COMMAND')) def test_run_action_with_no_action(self): with self.assertRaises(core.exception.exception) as raised: self.rpg._runAction() self.assertEquals(str(raised.exception), _('ERROR_NO_ACTION_SET'))
0
0
0
6,098
0
0
0
-8
223
b6564c976990b7fa6fc560e5b2308ec16d5f0a89
492
py
Python
ABC/210/c.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
ABC/210/c.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
ABC/210/c.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
if __name__ == '__main__': main()
18.923077
37
0.497967
from collections import defaultdict def main(): # input N, K = map(int, input().split()) cs = [*map(int, input().split())] # compute ddict = defaultdict(int) for i in range(K): ddict[cs[i]] += 1 ans = len(ddict) for i in range(N-K): ddict[cs[i]] -= 1 if ddict[cs[i]] == 0: del ddict[cs[i]] ddict[cs[i+K]] += 1 ans = max(ans, len(ddict)) # output print(ans) if __name__ == '__main__': main()
0
0
0
0
0
393
0
14
45
da6567f46ca5114b211c9251f1de332e436be104
1,892
py
Python
code/model/intent_classification/intent_classifier_inference.py
vipulraheja/IteraTeR
80c1939969de909c39e41e16b8866355c038b6d2
[ "Apache-2.0" ]
11
2022-03-23T21:41:54.000Z
2022-03-26T13:41:01.000Z
code/model/intent_classification/intent_classifier_inference.py
vipulraheja/IteraTeR
80c1939969de909c39e41e16b8866355c038b6d2
[ "Apache-2.0" ]
null
null
null
code/model/intent_classification/intent_classifier_inference.py
vipulraheja/IteraTeR
80c1939969de909c39e41e16b8866355c038b6d2
[ "Apache-2.0" ]
1
2022-03-24T15:55:16.000Z
2022-03-24T15:55:16.000Z
import argparse if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', '-c', required=True, help='path to Pegasus model checkpoint') args = parser.parse_args() main(args)
35.037037
132
0.691332
import json import torch import argparse import numpy as np from transformers.modeling_outputs import SequenceClassifierOutput from transformers import Trainer, TrainingArguments, RobertaTokenizer, RobertaModel, RobertaConfig, RobertaForSequenceClassification def main(args): checkpoint = args.checkpoint model_name = 'roberta-large' model_cache_dir='roberta-large-model-cache/' model_type = RobertaForSequenceClassification config_type = RobertaConfig tokenizer_type = RobertaTokenizer tokenizer = tokenizer_type.from_pretrained( model_name, cache_dir=model_cache_dir ) id2label = {0: "clarity", 1: "fluency", 2: "coherence", 3: "style", 4: "meaning-changed"} device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") checkpoint = args.checkpoint model = model_type.from_pretrained(checkpoint) model.eval() model.to(device) before_text = 'I likes coffee.' after_text = 'I like coffee.' def score_text(before_text, after_text, tokenizer, model): input_ids = tokenizer(before_text, after_text, return_tensors='pt', padding=True, truncation=True) with torch.no_grad(): input_ids = input_ids.to(device) outputs = model(**input_ids) softmax_scores = torch.softmax(outputs.logits, dim=1) softmax_scores = softmax_scores[0].cpu().numpy() index = np.argmax(softmax_scores) return index, softmax_scores[index] index, confidence = score_text([before_text], [after_text], tokenizer, model) label = id2label[index] print(label) print(confidence) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', '-c', required=True, help='path to Pegasus model checkpoint') args = parser.parse_args() main(args)
0
0
0
0
0
1,370
0
134
133
740141a9f07306e45b5ebf41d61bb31b1b134c05
2,035
py
Python
Forms/mengban_seed.py
UlordChain/uwallet-client
c41f89f34dd17699cb4b285dbba9053f28be5603
[ "MIT" ]
19
2018-08-21T06:25:30.000Z
2018-08-21T12:34:14.000Z
Forms/mengban_seed.py
UlordChain/uwallet-client
c41f89f34dd17699cb4b285dbba9053f28be5603
[ "MIT" ]
1
2018-06-01T09:14:36.000Z
2018-06-01T09:20:49.000Z
Forms/mengban_seed.py
UlordChain/uwallet-client
c41f89f34dd17699cb4b285dbba9053f28be5603
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # @Time : 2017/12/18 # @Author : Shu # @Email : [email protected]
40.7
89
0.584767
# -*- coding: utf-8 -*- # @Time : 2017/12/18 # @Author : Shu # @Email : [email protected] from PyQt4.QtCore import * from PyQt4.QtGui import * from FormUI.ui_getseed import Ui_getseedWD class SeedWidget(QWidget, Ui_getseedWD): def __init__(self, parent=None): super(SeedWidget, self).__init__(parent) self.setupUi(self) self.parent = parent self.setStyleSheet("""QFrame#frame_left{border-image:url(:/images/heisemengban)} QFrame#frame_top{border-image:url(:/images/baisemengban)} QFrame#frame_rigth{background-color:white;} """) self.ted_setting_getseed.setReadOnly(True) self.btn_seed_password.clicked.connect(self.slot_password) self.frame_left.installEventFilter(self.parent) self.frame_top.installEventFilter(self.parent) def slot_password(self): """查看seed之前, 需要输入密码""" if self.led_seed_password.text().isEmpty(): self.led_seed_password.setStyleSheet("""border:1px solid red;""") else: self.led_seed_password.setStyleSheet("") password = unicode(self.led_seed_password.text()).encode('utf-8') try: args = ['getseed', '--client'] if password: args.append('-W') args.append(password) rs = self.parent.bwallet_main(*args, thread_safe=True) except Exception as e: print (e) if 'Incorrect password' in str(e): self.led_seed_password.setStyleSheet("""border:1px solid red;""") else: self.led_seed_password.setStyleSheet("""border:1px solid yellow;""") else: self.ted_setting_getseed.setText(rs) self.ted_setting_getseed.setVisible(True) self.led_seed_password.setVisible(False) self.btn_seed_password.setVisible(False)
30
0
0
1,804
0
0
0
30
90
f52c7e893c3ecdab0771489d791ee3bc29fa08c0
325
py
Python
test/test_json_equal.py
dakotahawkins/MCSchematicIntersection
a5bc130c9f887ca6a253c0a6508fcbca5f164df5
[ "MIT" ]
null
null
null
test/test_json_equal.py
dakotahawkins/MCSchematicIntersection
a5bc130c9f887ca6a253c0a6508fcbca5f164df5
[ "MIT" ]
null
null
null
test/test_json_equal.py
dakotahawkins/MCSchematicIntersection
a5bc130c9f887ca6a253c0a6508fcbca5f164df5
[ "MIT" ]
null
null
null
"""Tests two schematic json files to ensure they're equal """ import json import sys INPUT_A: str = sys.argv[1] INPUT_B: str = sys.argv[2] with open(INPUT_A, 'r') as infile_a: with open(INPUT_B, 'r') as infile_b: if json.load(infile_a)['nbt'] != json.load(infile_b)['nbt']: sys.exit(1) sys.exit(0)
21.666667
68
0.64
"""Tests two schematic json files to ensure they're equal """ import json import sys INPUT_A: str = sys.argv[1] INPUT_B: str = sys.argv[2] with open(INPUT_A, 'r') as infile_a: with open(INPUT_B, 'r') as infile_b: if json.load(infile_a)['nbt'] != json.load(infile_b)['nbt']: sys.exit(1) sys.exit(0)
0
0
0
0
0
0
0
0
0
ae2007157bf4f09f792df527fa386d5e97a2fa2a
54
py
Python
kenning/resources/reports/__init__.py
antmicro/edge-ai-tester
6b145145ed1cec206ae0229c846fb33d272f3ffa
[ "Apache-2.0" ]
20
2021-06-24T13:37:21.000Z
2022-03-25T10:50:26.000Z
kenning/resources/reports/__init__.py
antmicro/edge-ai-tester
6b145145ed1cec206ae0229c846fb33d272f3ffa
[ "Apache-2.0" ]
null
null
null
kenning/resources/reports/__init__.py
antmicro/edge-ai-tester
6b145145ed1cec206ae0229c846fb33d272f3ffa
[ "Apache-2.0" ]
1
2021-11-09T17:23:04.000Z
2021-11-09T17:23:04.000Z
""" Contains the templates for benchmark reports. """
13.5
45
0.722222
""" Contains the templates for benchmark reports. """
0
0
0
0
0
0
0
0
0
ae71a18b83fe0ab9540c787415a3e73b56ccb447
1,884
py
Python
fs.py
mission-liao/fin-stmt-additional
da9ef5299e6ff10406996d0cb0975b46498d3c39
[ "MIT" ]
null
null
null
fs.py
mission-liao/fin-stmt-additional
da9ef5299e6ff10406996d0cb0975b46498d3c39
[ "MIT" ]
null
null
null
fs.py
mission-liao/fin-stmt-additional
da9ef5299e6ff10406996d0cb0975b46498d3c39
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- if __name__ == '__main__': cli()
28.984615
75
0.685775
# -*- coding: utf-8 -*- import os import click from fstmt import TableAdaptorFactory, DashboardFactory, table def get_data_dir(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data') def get_database_path(): return os.path.join(get_data_dir(), 'fstmt.sqlite') @click.group() def cli(): pass @cli.command() @click.argument('target') @click.argument('market') @click.argument('symbol') @click.option('--year', type=int) @click.option('--quarter', type=int, default=4) @click.option('--col', type=(str, str), multiple=True) def insert(target, market, symbol, year, quarter, col): t = TableAdaptorFactory(get_database_path()).by_shortcut(target) market = market.upper() if isinstance(t, table.Stock): if year is not None: raise Exception("Providing 'year' when creating stocks") if col : raise Exception("Providing 'col' when creating stocks") t.insert(market, symbol) else: t.insert(market, symbol, year, quarter, col) @cli.command() @click.argument('target') @click.argument('market') @click.argument('symbol') @click.option('--year') @click.option('--quarter', type=int, default=4) def delete(target, market, symbol, year, quarter): t = TableAdaptorFactory(get_database_path()).by_shortcut(target) market = market.upper() t.delete(market, symbol, year, quarter) @cli.command() @click.argument('target') @click.argument('market') @click.argument('symbol') @click.option('--arg', type=(str, str), multiple=True) def query(target, market, symbol, arg): d = DashboardFactory(get_database_path()).by_shortcut(target) market = market.upper() d.draw(market, symbol, arg) @cli.command() @click.argument('target') def migrate(target): t = TableAdaptorFactory(get_database_path()).by_shortcut(target) t.migrate() if __name__ == '__main__': cli()
0
1,441
0
0
0
133
0
20
228
b3a45dcb40d939002cd6cc74fed37e8c87cd19b8
2,539
py
Python
rbtools/clients/tests/test_scanning.py
fangwentong/rbtools
c09f5c93fd61d447dee19b643ddfcf00ba92f920
[ "MIT" ]
null
null
null
rbtools/clients/tests/test_scanning.py
fangwentong/rbtools
c09f5c93fd61d447dee19b643ddfcf00ba92f920
[ "MIT" ]
null
null
null
rbtools/clients/tests/test_scanning.py
fangwentong/rbtools
c09f5c93fd61d447dee19b643ddfcf00ba92f920
[ "MIT" ]
1
2020-06-27T23:08:47.000Z
2020-06-27T23:08:47.000Z
"""Unit tests for client scanning.""" from __future__ import unicode_literals
35.760563
78
0.648681
"""Unit tests for client scanning.""" from __future__ import unicode_literals import os from rbtools.clients import scan_usable_client from rbtools.clients.git import GitClient from rbtools.clients.svn import SVNClient from rbtools.clients.tests import SCMClientTests from rbtools.utils.process import execute class ScanningTests(SCMClientTests): """Unit tests for client scanning.""" def test_scanning_nested_repos_1(self): """Testing scan_for_usable_client with nested repositories (git inside svn) """ git_dir = os.path.join(self.testdata_dir, 'git-repo') svn_dir = os.path.join(self.testdata_dir, 'svn-repo') # Check out SVN first. clone_dir = self.chdir_tmp() execute(['svn', 'co', 'file://%s' % svn_dir, 'svn-repo'], env=None, ignore_errors=False, extra_ignore_errors=()) svn_clone_dir = os.path.join(clone_dir, 'svn-repo') # Now check out git. git_clone_dir = os.path.join(svn_clone_dir, 'git-repo') os.mkdir(git_clone_dir) execute(['git', 'clone', git_dir, git_clone_dir], env=None, ignore_errors=False, extra_ignore_errors=()) os.chdir(git_clone_dir) repository_info, tool = scan_usable_client({}, self.options) self.assertEqual(repository_info.local_path, os.path.realpath(git_clone_dir)) self.assertEqual(type(tool), GitClient) def test_scanning_nested_repos_2(self): """Testing scan_for_usable_client with nested repositories (svn inside git) """ git_dir = os.path.join(self.testdata_dir, 'git-repo') svn_dir = os.path.join(self.testdata_dir, 'svn-repo') # Check out git first clone_dir = self.chdir_tmp() git_clone_dir = os.path.join(clone_dir, 'git-repo') os.mkdir(git_clone_dir) execute(['git', 'clone', git_dir, git_clone_dir], env=None, ignore_errors=False, extra_ignore_errors=()) # Now check out svn. svn_clone_dir = os.path.join(git_clone_dir, 'svn-repo') os.chdir(git_clone_dir) execute(['svn', 'co', 'file://%s' % svn_dir, 'svn-repo'], env=None, ignore_errors=False, extra_ignore_errors=()) os.chdir(svn_clone_dir) repository_info, tool = scan_usable_client({}, self.options) self.assertEqual(repository_info.local_path, os.path.realpath(svn_clone_dir)) self.assertEqual(type(tool), SVNClient)
0
0
0
2,202
0
0
0
100
157
0662e69a71e1cc9d3473c7b9d5a6fe55d4510954
2,858
py
Python
tests/test_archive.py
lgq2015/ubuntu-isign
2b72d0c260d13e1dce4a9438a9b0cb566a0fcdaf
[ "Apache-2.0" ]
null
null
null
tests/test_archive.py
lgq2015/ubuntu-isign
2b72d0c260d13e1dce4a9438a9b0cb566a0fcdaf
[ "Apache-2.0" ]
null
null
null
tests/test_archive.py
lgq2015/ubuntu-isign
2b72d0c260d13e1dce4a9438a9b0cb566a0fcdaf
[ "Apache-2.0" ]
1
2020-10-26T17:36:54.000Z
2020-10-26T17:36:54.000Z
import logging log = logging.getLogger(__name__)
32.477273
89
0.731631
from isign_base_test import IsignBaseTest from isign.archive import archive_factory, Archive, AppArchive, AppZipArchive, IpaArchive from isign.utils import PY3 import logging log = logging.getLogger(__name__) class TestArchive(IsignBaseTest): def _test_good(self, filename, klass): archive = archive_factory(filename) assert archive is not None assert archive.__class__ is klass assert isinstance(archive, Archive) def test_archive_factory_app(self): self._test_good(self.TEST_APP, AppArchive) def test_archive_factory_appzip(self): self._test_good(self.TEST_APPZIP, AppZipArchive) def test_archive_factory_ipa(self): self._test_good(self.TEST_IPA, IpaArchive) def test_archive_factory_nonapp_dir(self): archive = archive_factory(self.TEST_NONAPP_DIR) assert archive is None def test_archive_factory_nonapp_ipa(self): archive = archive_factory(self.TEST_NONAPP_IPA) assert archive is None def test_archive_factory_nonapp_txt(self): archive = archive_factory(self.TEST_NONAPP_TXT) assert archive is None def test_archive_factory_nonapp_simulator_app(self): archive = archive_factory(self.TEST_SIMULATOR_APP) assert archive is None class TestBundleInfo(IsignBaseTest): def _test_bundle_info(self, filename): archive = archive_factory(filename) assert archive is not None assert archive.bundle_info is not None if PY3: assert archive.bundle_info[b'CFBundleName'] == b'isignTestApp' else: assert archive.bundle_info['CFBundleName'] == 'isignTestApp' def test_app_archive_info(self): self._test_bundle_info(self.TEST_APP) def test_appzip_archive_info(self): self._test_bundle_info(self.TEST_APPZIP) def test_ipa_archive_info(self): self._test_bundle_info(self.TEST_IPA) class TestArchivePrecheck(IsignBaseTest): def test_precheck_app(self): assert AppArchive.precheck(self.TEST_APP) def test_precheck_appzip(self): assert AppZipArchive.precheck(self.TEST_APPZIP) def test_precheck_ipa(self): assert IpaArchive.precheck(self.TEST_IPA) def test_bad_precheck_app(self): assert AppArchive.precheck(self.TEST_NONAPP_DIR) is False assert AppArchive.precheck(self.TEST_APPZIP) is False assert AppArchive.precheck(self.TEST_IPA) is False def test_bad_precheck_appzip(self): assert AppZipArchive.precheck(self.TEST_APP) is False assert AppZipArchive.precheck(self.TEST_IPA) is False def test_bad_precheck_ipa(self): assert IpaArchive.precheck(self.TEST_APP) is False assert IpaArchive.precheck(self.TEST_APPZIP) is False assert IpaArchive.precheck(self.TEST_NONAPP_IPA) is False
0
0
0
2,576
0
0
0
94
135
628390e7b0e104bdccc43edd629d89f2f161d0b5
4,769
py
Python
cotrendy/lightcurves.py
PLATO-Mission/cotrendy
31d03f0cfd8329f72d897e84d2aa6c0ca8865dfe
[ "MIT" ]
null
null
null
cotrendy/lightcurves.py
PLATO-Mission/cotrendy
31d03f0cfd8329f72d897e84d2aa6c0ca8865dfe
[ "MIT" ]
null
null
null
cotrendy/lightcurves.py
PLATO-Mission/cotrendy
31d03f0cfd8329f72d897e84d2aa6c0ca8865dfe
[ "MIT" ]
null
null
null
""" Light curves components for Cotrendy """ import sys import logging import cotrendy.utils as cuts def load_photometry(config, apply_object_mask=True): """ Read in a photometry file Parameters ---------- config : dict Configuration file loaded via TOML apply_object_mask : boolean Mask our a subset of stars? Returns ------- times : array Array of times of observation lightcurves : list List of Lightcurve objects, one per star Raises ------ None """ root = config['global']['root'] time_file = config['data']['time_file'] flux_file = config['data']['flux_file'] error_file = config['data']['error_file'] times = cuts.depicklify(f"{root}/{time_file}") if times is None: logging.critical(f"Could not load {root}/{time_file}...") sys.exit(1) fluxes = cuts.depicklify(f"{root}/{flux_file}") if fluxes is None: logging.critical(f"Could not load {root}/{flux_file}...") sys.exit(1) errors = cuts.depicklify(f"{root}/{error_file}") if errors is None: logging.critical(f"Could not load {root}/{error_file}...") sys.exit(1) if fluxes.shape != errors.shape or len(times) != len(fluxes[0]): logging.critical("Data arrays have mismatched shapes...") sys.exit(1) # now apply the mask if needed if apply_object_mask: objects_mask_file = config['data']['objects_mask_file'] mask = cuts.depicklify(f"{root}/{objects_mask_file}") fluxes = fluxes[mask] errors = errors[mask] # now make list of Lightcurves objects lightcurves = [] n_stars = len(fluxes) i = 0 for star, star_err in zip(fluxes, errors): logging.info(f"{i+1}/{n_stars}") lightcurves.append(Lightcurve(star, star_err, config['data']['reject_outliers'])) i += 1 return times, lightcurves
29.993711
89
0.585657
""" Light curves components for Cotrendy """ import sys import logging import numpy as np from scipy.stats import median_absolute_deviation import cotrendy.utils as cuts def load_photometry(config, apply_object_mask=True): """ Read in a photometry file Parameters ---------- config : dict Configuration file loaded via TOML apply_object_mask : boolean Mask our a subset of stars? Returns ------- times : array Array of times of observation lightcurves : list List of Lightcurve objects, one per star Raises ------ None """ root = config['global']['root'] time_file = config['data']['time_file'] flux_file = config['data']['flux_file'] error_file = config['data']['error_file'] times = cuts.depicklify(f"{root}/{time_file}") if times is None: logging.critical(f"Could not load {root}/{time_file}...") sys.exit(1) fluxes = cuts.depicklify(f"{root}/{flux_file}") if fluxes is None: logging.critical(f"Could not load {root}/{flux_file}...") sys.exit(1) errors = cuts.depicklify(f"{root}/{error_file}") if errors is None: logging.critical(f"Could not load {root}/{error_file}...") sys.exit(1) if fluxes.shape != errors.shape or len(times) != len(fluxes[0]): logging.critical("Data arrays have mismatched shapes...") sys.exit(1) # now apply the mask if needed if apply_object_mask: objects_mask_file = config['data']['objects_mask_file'] mask = cuts.depicklify(f"{root}/{objects_mask_file}") fluxes = fluxes[mask] errors = errors[mask] # now make list of Lightcurves objects lightcurves = [] n_stars = len(fluxes) i = 0 for star, star_err in zip(fluxes, errors): logging.info(f"{i+1}/{n_stars}") lightcurves.append(Lightcurve(star, star_err, config['data']['reject_outliers'])) i += 1 return times, lightcurves class Lightcurve(): """ Lightcurve object of real object """ def __init__(self, flux, flux_err, filter_outliers=False): """ Initialise the class Parameters ---------- flux : array-like list of flux values flux_err : array-like list of flux error values filter_outliers : boolean turn on PLATO outlier rejection? default = False Returns ------- None Raises ------ None """ # Initialise variables to hold data when trend is applied self.flux_wtrend = flux self.fluxerr_wtrend = flux_err self.median_flux = np.median(flux) self.outlier_indices = None # store the lightcurve after removing outliers if filter_outliers: self.filter_outliers() def filter_outliers(self, alpha=5, beta=12): """ Filter out data points that are > alpha*local MAD within a window ±beta around a given data point. Replace the data point with the local median as to not introduce gaps Parameters ---------- alpha : int Scaling factor for number of MADs to reject outside beta : int Half width of sliding window for MAD rejection Returns ------- None Outliers indices are included in self.outlier_indices Raises ------ None """ # could imaging this having a voting system where each beta*2+1 slice # votes on an outlier and if >N votes it gets nuked outlier_indices = [] for i in np.arange(beta, len(self.flux_wtrend)-beta-1): window = self.flux_wtrend[i-beta: i+beta+1] med = np.median(window) mad = median_absolute_deviation(window) outlier_positions = np.where(((window >= med+alpha*mad) | (window <= med-alpha*mad)))[0] + i - beta # gather them up and then correct them with a median # window centered on them for outlier_position in outlier_positions: if outlier_position not in outlier_indices: outlier_indices.append(outlier_position) # now go back and fix the outliers for outlier in outlier_indices: lower = outlier-beta upper = outlier+beta+1 if lower < 0: lower = 0 if upper > len(self.flux_wtrend): upper = len(self.flux_wtrend) med = np.median(self.flux_wtrend[lower:upper]) self.flux_wtrend[outlier] = med self.outlier_indices = outlier_indices
2
0
0
2,747
0
0
0
25
67
c4d9e25825d0a67968b72afbc467451be752f281
1,954
py
Python
BigQuery_Script.py
rezaho/iipp_patstat2018
b83e913a124113052dfbfc5d43ef9d9f6a3f7af0
[ "Apache-2.0" ]
null
null
null
BigQuery_Script.py
rezaho/iipp_patstat2018
b83e913a124113052dfbfc5d43ef9d9f6a3f7af0
[ "Apache-2.0" ]
null
null
null
BigQuery_Script.py
rezaho/iipp_patstat2018
b83e913a124113052dfbfc5d43ef9d9f6a3f7af0
[ "Apache-2.0" ]
null
null
null
# Script for creating and loading PatStat2018b dataset into Big Query tables # coding: utf-8 ############################################### ###### Importing Libraries and functions ###### from google.cloud import bigquery from open_patstat.utils.gcp import create_table from open_patstat.utils.schema import Schema #################################################### ###### Initializing the Client anf Job Config ###### # Before running this line, make sure that you have defined the environment variable... # ..."GOOGLE_APPLICATION_CREDENTIALS" which points to the JSON file containing authentication key client = bigquery.Client() # Initializing the Job_config job_config = bigquery.LoadJobConfig() job_config.skip_leading_rows = 1 job_config.max_bad_records = 10 job_config.source_format = bigquery.SourceFormat.CSV dataset_ref = client.dataset('patstat') ########################################### ####### Creating and Adding Tables ######## # Tables list to be loaded tables_list = ['tls201', 'tls209', 'tls204', 'tls207', 'tls206', 'tls211', 'tls212'] # Google Bucket directory address, which contains all data files gs_add = 'gs://patstat_2018g/data_PATSTAT_Global_2018_Autumn/' # Loading the tables in the list for table in tables_list: # Creating the table create_table(client, dataset_id='patstat', table_id=table, schema=getattr(Schema(),table)) # Adding files to the table from GCP bucket table_ref = dataset_ref.table(table) job_config.schema = getattr(Schema(),table) # Adding files to the table from GCP bucket table_ref = dataset_ref.table(table) job_config.schema = getattr(Schema(),table) load_job = client.load_table_from_uri( source_uris=gs_add+table+'_*.gz', destination=table_ref, # job_id=job_id, job_id_prefix='lgs-', job_config=job_config, ) load_job.result()
34.892857
97
0.665814
# Script for creating and loading PatStat2018b dataset into Big Query tables # coding: utf-8 ############################################### ###### Importing Libraries and functions ###### from google.cloud import bigquery from open_patstat.utils.gcp import create_table, load_gcs_file, delete_table from open_patstat.utils.schema import Schema #################################################### ###### Initializing the Client anf Job Config ###### # Before running this line, make sure that you have defined the environment variable... # ..."GOOGLE_APPLICATION_CREDENTIALS" which points to the JSON file containing authentication key client = bigquery.Client() # Initializing the Job_config job_config = bigquery.LoadJobConfig() job_config.skip_leading_rows = 1 job_config.max_bad_records = 10 job_config.source_format = bigquery.SourceFormat.CSV dataset_ref = client.dataset('patstat') ########################################### ####### Creating and Adding Tables ######## # Tables list to be loaded tables_list = ['tls201', 'tls209', 'tls204', 'tls207', 'tls206', 'tls211', 'tls212'] # Google Bucket directory address, which contains all data files gs_add = 'gs://patstat_2018g/data_PATSTAT_Global_2018_Autumn/' # Loading the tables in the list for table in tables_list: # Creating the table create_table(client, dataset_id='patstat', table_id=table, schema=getattr(Schema(),table)) # Adding files to the table from GCP bucket table_ref = dataset_ref.table(table) job_config.schema = getattr(Schema(),table) # Adding files to the table from GCP bucket table_ref = dataset_ref.table(table) job_config.schema = getattr(Schema(),table) load_job = client.load_table_from_uri( source_uris=gs_add+table+'_*.gz', destination=table_ref, # job_id=job_id, job_id_prefix='lgs-', job_config=job_config, ) load_job.result()
0
0
0
0
0
0
0
29
0
fc24f84cff67f66fdbc72dc2ba547c523b3814fe
828
py
Python
external/cclib/bridge/cclib2pyquante.py
faribas/RMG-Py
6149e29b642bf8da9537e2db98f15121f0e040c7
[ "MIT" ]
1
2017-12-18T18:43:22.000Z
2017-12-18T18:43:22.000Z
external/cclib/bridge/cclib2pyquante.py
speth/RMG-Py
1d2c2b684580396e984459d9347628a5ceb80e2e
[ "MIT" ]
72
2016-06-06T18:18:49.000Z
2019-11-17T03:21:10.000Z
external/cclib/bridge/cclib2pyquante.py
speth/RMG-Py
1d2c2b684580396e984459d9347628a5ceb80e2e
[ "MIT" ]
3
2017-09-22T15:47:37.000Z
2021-12-30T23:51:47.000Z
""" cclib (http://cclib.sf.net) is (c) 2006, the cclib development team and licensed under the LGPL (http://www.gnu.org/copyleft/lgpl.html). """ __revision__ = "$Revision: 737 $" from PyQuante.Molecule import Molecule def makepyquante(atomcoords, atomnos, charge=0, mult=1): """Create a PyQuante Molecule. >>> import numpy >>> from PyQuante.hartree_fock import hf >>> atomnos = numpy.array([1,8,1],"i") >>> a = numpy.array([[-1,1,0],[0,0,0],[1,1,0]],"f") >>> pyqmol = makepyquante(a,atomnos) >>> en,orbe,orbs = hf(pyqmol) >>> print int(en * 10) / 10. # Should be around -73.8 -73.8 """ return Molecule("notitle", zip(atomnos, atomcoords), units="Angstrom", charge=charge, multiplicity=mult) if __name__ == "__main__": import doctest doctest.testmod()
29.571429
74
0.621981
""" cclib (http://cclib.sf.net) is (c) 2006, the cclib development team and licensed under the LGPL (http://www.gnu.org/copyleft/lgpl.html). """ __revision__ = "$Revision: 737 $" from PyQuante.Molecule import Molecule def makepyquante(atomcoords, atomnos, charge=0, mult=1): """Create a PyQuante Molecule. >>> import numpy >>> from PyQuante.hartree_fock import hf >>> atomnos = numpy.array([1,8,1],"i") >>> a = numpy.array([[-1,1,0],[0,0,0],[1,1,0]],"f") >>> pyqmol = makepyquante(a,atomnos) >>> en,orbe,orbs = hf(pyqmol) >>> print int(en * 10) / 10. # Should be around -73.8 -73.8 """ return Molecule("notitle", zip(atomnos, atomcoords), units="Angstrom", charge=charge, multiplicity=mult) if __name__ == "__main__": import doctest doctest.testmod()
0
0
0
0
0
0
0
0
0
f9a937ded3908623f9ea6aa4b476025ff2324f45
1,106
py
Python
NBATextAlerts/Alerts.py
kevinfjiang/NBATextAlerts
0ddd4fc0fa7a272191c422167350d8813581675b
[ "MIT" ]
1
2021-03-24T04:39:40.000Z
2021-03-24T04:39:40.000Z
NBATextAlerts/Alerts.py
kevinfjiang/NBATextAlerts
0ddd4fc0fa7a272191c422167350d8813581675b
[ "MIT" ]
1
2021-03-24T05:33:20.000Z
2021-03-24T05:36:28.000Z
NBATextAlerts/Alerts.py
kevinfjiang/NBATextAlerts
0ddd4fc0fa7a272191c422167350d8813581675b
[ "MIT" ]
null
null
null
""" https://www.twilio.com/ This link is the basis for the text messaging, make sure to sign up! After registering, press the home buton and click "Dashboard", both in the top left You will see the following lines "cellphone" -> Paste verified Twilio number as string "ACCOUNT SID" -> Paste that number into account as string "AUTH TOKEN" -> click show and paste that into token as string "PHONE NUMBER" -> Paste that into token as string Remember to verify your phone number """ cellphone = "" #Input the phone number you want to send texts too (the phone number verified by twilio) twilio_number = ""#Twilio provides a PHONE NUMBER, input it here account = ""#Input ACCOUNT SID token = ""#AUTH TOKEN, press show #Test message if calling alerts. Run Alerts.py to test the system is working if __name__ == "__main__": send_message("Test message. Did you receive it?")
30.722222
103
0.711573
""" https://www.twilio.com/ This link is the basis for the text messaging, make sure to sign up! After registering, press the home buton and click "Dashboard", both in the top left You will see the following lines "cellphone" -> Paste verified Twilio number as string "ACCOUNT SID" -> Paste that number into account as string "AUTH TOKEN" -> click show and paste that into token as string "PHONE NUMBER" -> Paste that into token as string Remember to verify your phone number """ from twilio.rest import Client cellphone = "" #Input the phone number you want to send texts too (the phone number verified by twilio) twilio_number = ""#Twilio provides a PHONE NUMBER, input it here account = ""#Input ACCOUNT SID token = ""#AUTH TOKEN, press show def send_message(message): client = Client(account, token) client.messages.create(to=cellphone, from_=twilio_number, body=message) #Test message if calling alerts. Run Alerts.py to test the system is working if __name__ == "__main__": send_message("Test message. Did you receive it?")
0
0
0
0
0
170
0
9
46
abfd30e1b28d8aa306ca97c0ff99e36c6c64c29c
2,546
py
Python
utils/timer.py
FanmingL/ESCP
518f13f8b002d142f670f52d9ef34778e2c2d59f
[ "MIT" ]
null
null
null
utils/timer.py
FanmingL/ESCP
518f13f8b002d142f670f52d9ef34778e2c2d59f
[ "MIT" ]
null
null
null
utils/timer.py
FanmingL/ESCP
518f13f8b002d142f670f52d9ef34778e2c2d59f
[ "MIT" ]
null
null
null
if __name__ == '__main__': test_timer()
33.064935
89
0.569521
import time import inspect import numpy as np class Timer: def __init__(self): self.check_points = {} self.points_time = {} self.need_summary = {} self.init_time = time.time() def reset(self): self.check_points = {} self.points_time = {} self.need_summary = {} @staticmethod def file_func_line(stack=1): frame = inspect.stack()[stack][0] info = inspect.getframeinfo(frame) return info.filename, info.function, info.lineno @staticmethod def line(stack=2, short=False): file, func, lineo = Timer.file_func_line(stack) if short: return f"line_{lineo}_func_{func}" return f"line: {lineo}, func: {func}, file: {file}" def register_point(self, tag=None, stack=3, short=True, need_summary=True, level=0): if tag is None: tag = self.line(stack, short) if False and not tag.startswith('__'): print(f'arrive {tag}, time: {time.time() - self.init_time}, level: {level}') if level not in self.check_points: self.check_points[level] = [] self.points_time[level] = [] self.need_summary[level] = set() self.check_points[level].append(tag) self.points_time[level].append(time.time()) if need_summary: self.need_summary[level].add(tag) def register_end(self, stack=4, level=0): self.register_point('__timer_end_unique', stack, need_summary=False, level=level) def summary(self): if len(self.check_points) == 0: return dict() res = {} for level in self.check_points: self.register_point('__timer_finale_unique', level=level) res_tmp = {} for ind, item in enumerate(self.check_points[level][:-1]): time_now = self.points_time[level][ind] time_next = self.points_time[level][ind + 1] if item in res_tmp: res_tmp[item].append(time_next - time_now) else: res_tmp[item] = [time_next - time_now] for k, v in res_tmp.items(): if k in self.need_summary[level]: res['period_' + k] = np.mean(v) self.reset() return res def test_timer(): timer = Timer() for i in range(4): timer.register_point() time.sleep(1) for k, v in timer.summary().items(): print(f'{k}, {v}') if __name__ == '__main__': test_timer()
0
376
0
1,873
0
160
0
-20
112
f7642e021866ac47a0bcd5fd062c3e4fbd79be21
4,042
py
Python
src/interface_py/h2o4gpu/util/lightgbm_dynamic.py
pnijhara/h2o4gpu
6257112c134136471420b68241f57190a445b67d
[ "Apache-2.0" ]
458
2017-09-20T08:32:10.000Z
2022-02-28T18:40:57.000Z
src/interface_py/h2o4gpu/util/lightgbm_dynamic.py
Jun-NIBS/h2o4gpu
9885416deb3285f5d0f33023d6c07373ac4fc0b7
[ "Apache-2.0" ]
461
2017-09-20T11:39:04.000Z
2021-11-21T15:51:42.000Z
src/interface_py/h2o4gpu/util/lightgbm_dynamic.py
Jun-NIBS/h2o4gpu
9885416deb3285f5d0f33023d6c07373ac4fc0b7
[ "Apache-2.0" ]
114
2017-09-20T12:08:07.000Z
2021-11-29T14:15:40.000Z
# pylint: skip-file import os import importlib.util got_cpu_lgb = False got_gpu_lgb = False from h2o4gpu.util.gpu import device_count _, ngpus_vis_global = device_count() enable_lightgbm_import = True if enable_lightgbm_import: lgb_loader = importlib.util.find_spec('lightgbm') lgb_found = lgb_loader is not None always_do_dynamic_lgb_selection = True # False will take existing lightgbm package if exists, True will always overwrite existing do_dynamic_lgb_selection = True link_method = False # False (default now) is to directly load from path if not lgb_found and do_dynamic_lgb_selection or always_do_dynamic_lgb_selection: numpy_loader = importlib.util.find_spec('numpy') found = numpy_loader is not None if found: numpy_path = os.path.dirname(numpy_loader.origin) dirname = "/".join(numpy_path.split("/")[:-1]) lgb_path_gpu = os.path.join(dirname, "lightgbm_gpu") lgb_path_cpu = os.path.join(dirname, "lightgbm_cpu") lgb_path_new = os.path.join(dirname, "lightgbm") got_lgb = False expt_gpu = "" expt_cpu = "" expt_other = "" # This locally leads to lgb as if did import lightgbm as lgb, but also any other file that imports lgb will immediately return with lgb even though no module name "lightgbm" has a path in site-packages. try: if ngpus_vis_global > 0: loader = importlib.machinery.SourceFileLoader('lightgbm', os.path.join(lgb_path_gpu, '__init__.py')) lgb = loader.load_module() print("Selected GPU version of lightgbm to import\n") got_lgb = True # This locally leads to lgb as if did import lightgbm as lgb, but also any other file that imports lgb will immediately return with lgb even though no module name "lightgbm" has a path in site-packages. got_gpu_lgb = True except Exception as e: expt_gpu = str(e) pass if not got_lgb: try: loader = importlib.machinery.SourceFileLoader('lightgbm', os.path.join(lgb_path_cpu, '__init__.py')) lgb = loader.load_module() if ngpus_vis_global > 0: print( "Selected CPU version of lightgbm to import (GPU selection failed due to %s)\n" % expt_gpu) else: print("Selected CPU version of lightgbm to import\n") got_lgb = True got_cpu_lgb = True except Exception as e: expt_cpu = str(e) pass if not got_lgb: try: loader = importlib.machinery.SourceFileLoader('lightgbm', os.path.join(lgb_path_new, '__init__.py')) lgb = loader.load_module() if ngpus_vis_global > 0: print( "Selected non-dynamic CPU version of lightgbm to import (GPU selection failed due to %s)\n" % expt_other) else: print("Selected non-dynamic CPU version of lightgbm to import\n") got_lgb = True got_cpu_lgb = True except Exception as e: expt_other = str(e) pass if not got_lgb: print( "Unable to dynamically or non-dynamically import either GPU or CPU version of lightgbm: expt_gpu=%s expt_cpu=%s expt_other=%s\n" % ( expt_gpu, expt_cpu, expt_other)) else: print("Did not find lightgbm or numpy\n")
47.552941
222
0.543295
# pylint: skip-file import os import importlib.util got_cpu_lgb = False got_gpu_lgb = False from h2o4gpu.util.gpu import device_count _, ngpus_vis_global = device_count() enable_lightgbm_import = True if enable_lightgbm_import: lgb_loader = importlib.util.find_spec('lightgbm') lgb_found = lgb_loader is not None always_do_dynamic_lgb_selection = True # False will take existing lightgbm package if exists, True will always overwrite existing do_dynamic_lgb_selection = True link_method = False # False (default now) is to directly load from path if not lgb_found and do_dynamic_lgb_selection or always_do_dynamic_lgb_selection: numpy_loader = importlib.util.find_spec('numpy') found = numpy_loader is not None if found: numpy_path = os.path.dirname(numpy_loader.origin) dirname = "/".join(numpy_path.split("/")[:-1]) lgb_path_gpu = os.path.join(dirname, "lightgbm_gpu") lgb_path_cpu = os.path.join(dirname, "lightgbm_cpu") lgb_path_new = os.path.join(dirname, "lightgbm") got_lgb = False expt_gpu = "" expt_cpu = "" expt_other = "" # This locally leads to lgb as if did import lightgbm as lgb, but also any other file that imports lgb will immediately return with lgb even though no module name "lightgbm" has a path in site-packages. try: if ngpus_vis_global > 0: loader = importlib.machinery.SourceFileLoader('lightgbm', os.path.join(lgb_path_gpu, '__init__.py')) lgb = loader.load_module() print("Selected GPU version of lightgbm to import\n") got_lgb = True # This locally leads to lgb as if did import lightgbm as lgb, but also any other file that imports lgb will immediately return with lgb even though no module name "lightgbm" has a path in site-packages. got_gpu_lgb = True except Exception as e: expt_gpu = str(e) pass if not got_lgb: try: loader = importlib.machinery.SourceFileLoader('lightgbm', os.path.join(lgb_path_cpu, '__init__.py')) lgb = loader.load_module() if ngpus_vis_global > 0: print( "Selected CPU version of lightgbm to import (GPU selection failed due to %s)\n" % expt_gpu) else: print("Selected CPU version of lightgbm to import\n") got_lgb = True got_cpu_lgb = True except Exception as e: expt_cpu = str(e) pass if not got_lgb: try: loader = importlib.machinery.SourceFileLoader('lightgbm', os.path.join(lgb_path_new, '__init__.py')) lgb = loader.load_module() if ngpus_vis_global > 0: print( "Selected non-dynamic CPU version of lightgbm to import (GPU selection failed due to %s)\n" % expt_other) else: print("Selected non-dynamic CPU version of lightgbm to import\n") got_lgb = True got_cpu_lgb = True except Exception as e: expt_other = str(e) pass if not got_lgb: print( "Unable to dynamically or non-dynamically import either GPU or CPU version of lightgbm: expt_gpu=%s expt_cpu=%s expt_other=%s\n" % ( expt_gpu, expt_cpu, expt_other)) else: print("Did not find lightgbm or numpy\n")
0
0
0
0
0
0
0
0
0
188ee1b65907db67dfd917f80e2a5d76fdb2dca5
1,967
py
Python
google-cloud-sdk/lib/surface/resource_manager/folders/undelete.py
KaranToor/MA450
c98b58aeb0994e011df960163541e9379ae7ea06
[ "Apache-2.0" ]
1
2017-11-29T18:52:27.000Z
2017-11-29T18:52:27.000Z
google-cloud-sdk/.install/.backup/lib/surface/resource_manager/folders/undelete.py
KaranToor/MA450
c98b58aeb0994e011df960163541e9379ae7ea06
[ "Apache-2.0" ]
null
null
null
google-cloud-sdk/.install/.backup/lib/surface/resource_manager/folders/undelete.py
KaranToor/MA450
c98b58aeb0994e011df960163541e9379ae7ea06
[ "Apache-2.0" ]
1
2020-07-25T12:09:01.000Z
2020-07-25T12:09:01.000Z
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command to undelete a folder."""
33.338983
74
0.744281
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command to undelete a folder.""" import textwrap from googlecloudsdk.api_lib.resource_manager import folders from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.resource_manager import flags from googlecloudsdk.command_lib.resource_manager import folders_base from googlecloudsdk.core import log @base.Hidden @base.ReleaseTracks(base.ReleaseTrack.ALPHA) class Undelete(folders_base.FolderCommand): """Undelete a folder. Undeletes the folder with the given folder ID. This command can fail for the following reasons: * There is no folder with the given ID. * The active account does not have Owner or Editor permissions for the given folder. * When the folder to be undeleted has the same display name as an active folder under this folder's parent. """ detailed_help = { 'EXAMPLES': textwrap.dedent("""\ The following command undeletes the folder with the ID `3589215982`: $ {command} 3589215982 """), } @staticmethod def Args(parser): flags.FolderIdArg('you want to undelete.').AddToParser(parser) def Run(self, args): service = folders.FoldersService() messages = folders.FoldersMessages() restored = service.Undelete( messages.CloudresourcemanagerFoldersUndeleteRequest( foldersId=args.id)) log.RestoredResource(restored)
0
1,026
0
0
0
0
0
152
157
5a28b79a46e2fcfa07d776568c13a7328fded066
417
py
Python
contract/tests/ownership.py
ebloc/eBlocBroker
52d507835a0fe3c930df2e2c816724d26a3484a7
[ "MIT" ]
7
2018-02-10T22:57:28.000Z
2020-11-20T14:46:18.000Z
contract/tests/ownership.py
ebloc/eBlocBroker
52d507835a0fe3c930df2e2c816724d26a3484a7
[ "MIT" ]
5
2020-10-30T18:43:27.000Z
2021-02-04T12:39:30.000Z
contract/tests/ownership.py
ebloc/eBlocBroker
52d507835a0fe3c930df2e2c816724d26a3484a7
[ "MIT" ]
5
2017-07-06T14:14:13.000Z
2019-02-22T14:40:16.000Z
#!/usr/bin/python3 import pytest from utils import ZERO_ADDRESS from brownie import accounts def test_ownership(Ebb): """Get Owner""" assert Ebb.getOwner() == accounts[0] with pytest.reverts(): # transferOwnership should revert Ebb.transferOwnership(ZERO_ADDRESS, {"from": accounts[0]}) Ebb.transferOwnership(accounts[1], {"from": accounts[0]}) assert Ebb.getOwner() == accounts[1]
23.166667
66
0.695444
#!/usr/bin/python3 import pytest from utils import ZERO_ADDRESS from brownie import accounts def test_ownership(Ebb): """Get Owner""" assert Ebb.getOwner() == accounts[0] with pytest.reverts(): # transferOwnership should revert Ebb.transferOwnership(ZERO_ADDRESS, {"from": accounts[0]}) Ebb.transferOwnership(accounts[1], {"from": accounts[0]}) assert Ebb.getOwner() == accounts[1]
0
0
0
0
0
0
0
0
0
d4bf808de2a868ba73315da564d256636fe0b32b
2,858
py
Python
gd/api/_property.py
scottwedge/gd.py
328c9833abc949b1c9ac0eabe276bd66fead4c2c
[ "MIT" ]
null
null
null
gd/api/_property.py
scottwedge/gd.py
328c9833abc949b1c9ac0eabe276bd66fead4c2c
[ "MIT" ]
null
null
null
gd/api/_property.py
scottwedge/gd.py
328c9833abc949b1c9ac0eabe276bd66fead4c2c
[ "MIT" ]
null
null
null
"""Automatic object property code generator.""" from gd.api.enums import (ColorChannelProperties, LevelDataEnum, LevelHeaderEnum, ObjectDataEnum) __all__ = ("_template", "_create", "_object_code", "_color_code", "_header_code", "_level_code") _template = """ @property def {name}(self): \"\"\":class:`{cls}`: Property ({desc}).\"\"\" return self.data.get({enum!r}) @{name}.setter def {name}(self, value): self.data[{enum!r}] = value @{name}.deleter def {name}(self): try: del self.data[{enum!r}] except KeyError: pass """.strip() _container = "_container = {}" _object_code = _create(ObjectDataEnum, "object") _color_code = _create(ColorChannelProperties, "color") _header_code = _create(LevelHeaderEnum, "header") _level_code = _create(LevelDataEnum, "level")
23.816667
96
0.573828
"""Automatic object property code generator.""" from gd.typing import Enum, Union from gd.api.enums import ( ColorChannelProperties, LevelDataEnum, LevelHeaderEnum, ObjectDataEnum, PlayerColor, ) from gd.api.parser import ( # type: ignore _INT, _BOOL, _FLOAT, _HSV, _ENUMS, _TEXT, _GROUPS, _COLOR_INT, _COLOR_BOOL, _COLOR_PLAYER, _COLOR_FLOAT, _COLOR_HSV, _HEADER_INT, _HEADER_BOOL, _HEADER_FLOAT, _HEADER_COLORS, _COLORS, _GUIDELINES, _HEADER_ENUMS, ) from gd.api.hsv import HSV __all__ = ("_template", "_create", "_object_code", "_color_code", "_header_code", "_level_code") _template = """ @property def {name}(self): \"\"\":class:`{cls}`: Property ({desc}).\"\"\" return self.data.get({enum!r}) @{name}.setter def {name}(self, value): self.data[{enum!r}] = value @{name}.deleter def {name}(self): try: del self.data[{enum!r}] except KeyError: pass """.strip() _container = "_container = {}" def _get_type(n: Union[int, str], ts: str = "object") -> str: t = { "object": { n in _INT: int, n in _BOOL: bool, n in _FLOAT: float, n in _HSV: HSV, n in _ENUMS: _ENUMS.get(n), n == _TEXT: str, n == _GROUPS: set, }, "color": { n in _COLOR_INT: int, n in _COLOR_BOOL: bool, n == _COLOR_PLAYER: PlayerColor, n == _COLOR_FLOAT: float, n == _COLOR_HSV: HSV, }, "header": { n in _HEADER_INT: int, n in _HEADER_BOOL: bool, n == _HEADER_FLOAT: float, n in _HEADER_COLORS: "ColorChannel", n == _COLORS: list, n == _GUIDELINES: list, n in _HEADER_ENUMS: _HEADER_ENUMS.get(n), }, "level": {True: "soon"}, # yikes! } r = t.get(ts, {}).get(1, str) try: return r.__name__ except AttributeError: return r def _create(enum: Enum, ts: str) -> str: final = [] for name, value in enum.as_dict().items(): desc = enum(value).desc value = str(value) cls = _get_type(value, ts=ts) final.append(_template.format(name=name, enum=value, desc=desc, cls=cls)) property_container = {} for name, value in enum.as_dict().items(): value = str(value) # we are going with str from now on if value not in property_container: property_container[value] = name final.append(_container.format(property_container)) return ("\n\n").join(final) _object_code = _create(ObjectDataEnum, "object") _color_code = _create(ColorChannelProperties, "color") _header_code = _create(LevelHeaderEnum, "header") _level_code = _create(LevelDataEnum, "level")
0
0
0
0
0
1,575
0
365
113
ffc6fc0c01a161fba017b7f74580eecc40db4a94
286
py
Python
test.py
picturate/picturate
9f8e69fef7b600b6d8c1ade41a0ccfc382992e8b
[ "Apache-2.0" ]
4
2020-08-03T04:16:53.000Z
2020-11-02T20:11:16.000Z
test.py
picturate/picturate
9f8e69fef7b600b6d8c1ade41a0ccfc382992e8b
[ "Apache-2.0" ]
6
2020-09-04T12:36:08.000Z
2021-06-18T04:31:29.000Z
test.py
picturate/picturate
9f8e69fef7b600b6d8c1ade41a0ccfc382992e8b
[ "Apache-2.0" ]
1
2020-07-24T07:29:46.000Z
2020-07-24T07:29:46.000Z
from picturate.config import CAttnGANConfig from picturate.nets import CAttnGAN config = CAttnGANConfig('bird') gan = CAttnGAN(config, pretrained=True) caption = "This little bird is blue with short beak and white underbelly" filename = 'bird' gan.generate_image(caption, filename)
23.833333
73
0.793706
from picturate.config import CAttnGANConfig from picturate.nets import CAttnGAN config = CAttnGANConfig('bird') gan = CAttnGAN(config, pretrained=True) caption = "This little bird is blue with short beak and white underbelly" filename = 'bird' gan.generate_image(caption, filename)
0
0
0
0
0
0
0
0
0
409729662516480907dfc439cb222223768f41e8
14,838
py
Python
tests/unit/test_maxmin.py
mzelling/syndata
bba1c4a7b142f1da332d6613baae30b8b97c4e9b
[ "MIT" ]
null
null
null
tests/unit/test_maxmin.py
mzelling/syndata
bba1c4a7b142f1da332d6613baae30b8b97c4e9b
[ "MIT" ]
null
null
null
tests/unit/test_maxmin.py
mzelling/syndata
bba1c4a7b142f1da332d6613baae30b8b97c4e9b
[ "MIT" ]
null
null
null
import pytest import numpy as np from syndata.maxmin import MaxMinClusters, MaxMinCov, MaxMinBal, maxmin_sampler # Test Cases for maxmin_sampler def test_maxmin_sampler(): """ Make sure the sampling mechanism doesn't break when wrong inputs are supplied. """ # Test cases throwing exceptions args_causing_exception = [ # negative vals {'n_samples': 10, 'ref': -2, 'min_val': 1, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 2, 'min_val': -1, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 2, 'min_val': 1, 'maxmin_ratio': -1.5}, # zeros vals {'n_samples': 0, 'ref': 2, 'min_val': 1, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 0, 'min_val': 1, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 2, 'min_val': 0, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 2, 'min_val': 1, 'maxmin_ratio': 0}, # ref < min {'n_samples': 10, 'ref': 1, 'min_val': 2, 'maxmin_ratio': 1.5}, # ref > max {'n_samples': 10, 'ref': 10, 'min_val': 1, 'maxmin_ratio': 1.5}, # maxmin_ratio < 1 {'n_samples': 10, 'ref': 2, 'min_val': 1, 'maxmin_ratio': 0.7}, # maxmin_ratio = 1, ref != min_val {'n_samples': 10, 'ref': 2, 'min_val': 1, 'maxmin_ratio': 1}, ] with pytest.raises(ValueError): for args in args_causing_exception: args['f_constrain'] = lambda x: 2*args['ref'] - x maxmin_sampler(**args) # Test cases with appropriate inputs (randomized) args_appropriate_input = [] max_ref_val = 10; max_min_val = 10 for i in range(100): min_val = np.random.default_rng(seed=i).uniform(0,max_min_val) ref = np.random.uniform(min_val, max_ref_val) maxmin_ratio = np.random.uniform(ref/min_val, 10*(ref/min_val)) args_appropriate_input.append( { # Do the first 10 tests on the edge case n_samples=1 'n_samples': np.random.choice(np.arange(2,15)) if i>10 else 1, 'min_val': min_val, 'ref': ref, 'maxmin_ratio': maxmin_ratio, } ) print('making the args', 'ref', ref, 'min_val', min_val, 'max_val', min_val*maxmin_ratio) # Add test case with large sample size args_appropriate_input.append({'n_samples': 10000, 'ref': 2, \ 'min_val': 1, 'maxmin_ratio': 3}) for args in args_appropriate_input: args['f_constrain'] = lambda x: 2*args['ref'] - x out = maxmin_sampler(**args) print(out) assert check_maxmin_sampler_output(out, args['f_constrain']) def check_maxmin_sampler_output(sampled_vals, f_constrain): """ Check that output satisfies lower and upper bounds. Check min, max values are related through the constraint. Check that output is sorted. """ return is_sorted(sampled_vals, order='ascending') \ and (f_constrain(np.max(sampled_vals) == np.min(sampled_vals))) \ and (f_constrain(np.min(sampled_vals) == np.max(sampled_vals))) def is_sorted(vals, order='ascending'): """ Check if values are sorted. """ if order=='ascending': return np.all(vals[1:] - vals[:-1] >= 0) elif order=='descending': return np.all(vals[1:] - vals[:-1] <= 0) # Test Cases for MaxMinCov def test_init_maxmincov(): """ Make sure that no illicit values can be used to construct MaxMinCov. """ # appropriate values of attributes interior_cases = np.random.uniform(1,10,size=(100,3)) # random appropriate values edge_cases = np.concatenate([2-np.eye(3),np.ones(3)[np.newaxis,:]],axis=0) # edge and corner cases Z_appropriate = np.concatenate([interior_cases,edge_cases],axis=0) args_appropriate = [{'ref_aspect': z[0], 'aspect_maxmin': z[1], 'radius_maxmin': z[2]} for z in Z_appropriate] for args in args_appropriate: my_maxmincov = MaxMinCov(**args) for attr in ['ref_aspect','aspect_maxmin','radius_maxmin']: assert hasattr(my_maxmincov, attr) # inappropriate values of attributes Z_inappropriate = np.concatenate([np.ones(3) - 0.5*np.eye(3), (1-0.01)*np.ones(3)[np.newaxis,:]]) args_inappropriate = [{'ref_aspect': z[0], 'aspect_maxmin': z[1], 'radius_maxmin': z[2]} for z in Z_inappropriate] with pytest.raises(ValueError): for args in args_inappropriate: MaxMinCov(**args) def test_make_cluster_aspects(setup_maxmincov): """ Make sure that valid cluster aspect ratios are sampled. Test the range of acceptable numbers of clusters, and make sure setting a seed works. """ maxmincov = setup_maxmincov with pytest.raises(ValueError): maxmincov.make_cluster_aspects(0,seed=None) maxmincov.make_cluster_aspects(0.99,seed=None) # test different numbers of clusters for n_clusters in range(1,100): cluster_aspects = maxmincov.make_cluster_aspects(n_clusters,seed=None) assert np.all(cluster_aspects >= 1) assert np.max(cluster_aspects) >= maxmincov.ref_aspect assert np.min(cluster_aspects) <= maxmincov.ref_aspect # test seed seed = 23 for i in range(10): cluster_aspects_new = maxmincov.make_cluster_aspects(2,seed=23) # make sure that each successive output is the same as the previous output if i >= 1: assert np.all(cluster_aspects_new == cluster_aspects_prev) cluster_aspects_prev = cluster_aspects_new def test_make_cluster_radii(setup_maxmincov): """ Make sure valid cluster radii are sampled. Test the range of acceptable inputs, and make sure setting a seed works. """ maxmincov = setup_maxmincov # test appropriate inputs interior_cases = np.concatenate([np.arange(1,20+1)[:,np.newaxis], np.random.uniform(0,10,size=20)[:,np.newaxis], np.random.choice(np.arange(2,100),size=20)[:,np.newaxis]], axis=1) edge_cases = np.array([[1,1e-3,2], [1,1e-3,1],[2,100,1]]) Z_appropriate = np.concatenate([interior_cases, edge_cases],axis=0) args_appropriate = [{'n_clusters': z[0], 'ref_radius': z[1], 'n_dim': z[2]} for z in Z_appropriate] for args in args_appropriate: tol = 1e-12 print(args) cluster_radii = maxmincov.make_cluster_radii(**args) print(cluster_radii) assert np.all(cluster_radii > 0) assert (np.min(cluster_radii) <= args['ref_radius'] + tol) and \ (np.max(cluster_radii) >= args['ref_radius'] - tol) # test inappropriate inputs with pytest.raises(ValueError): maxmincov.make_cluster_radii(n_clusters=0, ref_radius=1, n_dim=10) maxmincov.make_cluster_radii(n_clusters=1, ref_radius=0, n_dim=10) maxmincov.make_cluster_radii(n_clusters=1, ref_radius=1, n_dim=0) # test seeds seed = 717 for i in range(10): cluster_radii_new = maxmincov.make_cluster_radii(n_clusters=5,ref_radius=4,n_dim=25, seed=seed) if (i >= 1): assert np.all(cluster_radii_new == cluster_radii_prev) cluster_radii_prev = cluster_radii_new def test_make_axis_sd(setup_maxmincov): """ Make sure valid standard deviations are sampled (>0). Ensure sure ref_sd is between min and max, and that the maxmin ratio equals the desired aspect ratio. """ maxmincov = setup_maxmincov # test appropriate inputs interior_cases = np.concatenate([np.arange(2,50+2)[:,np.newaxis], np.random.uniform(0,10,size=50)[:,np.newaxis], np.random.uniform(1,10,size=50)[:,np.newaxis]], axis=1) edge_cases = np.array([[1,0.5,1.5], [1,0.5,1], [2,0.1,1]]) Z_appropriate = np.concatenate([interior_cases, edge_cases],axis=0) args_appropriate = [{'n_axes': z[0], 'sd': z[1], 'aspect': z[2]} for z in Z_appropriate] for args in args_appropriate: out = maxmincov.make_axis_sd(**args) assert (np.min(out) <= args['sd']) and (np.max(out) >= args['sd']) # test inappropriate inputs with pytest.raises(ValueError): maxmincov.make_axis_sd(n_axes=0, sd=1, aspect=2) maxmincov.make_axis_sd(n_axes=0.5, sd=0, aspect=2) maxmincov.make_axis_sd(n_axes=1, sd=1, aspect=0.5) maxmincov.make_axis_sd(n_axes=2, sd=1, aspect=-2) maxmincov.make_axis_sd(n_axes=2, sd=-1, aspect=2) # test seed seed = 123 for i in range(10): axis_sd_new = maxmincov.make_axis_sd(n_axes=5,sd=4,aspect=25, seed=seed) if (i >= 1): assert np.all(axis_sd_new == axis_sd_prev) axis_sd_prev = axis_sd_new def test_make_cov(setup_maxmincov, setup_clusterdata): """ Make sure axes are orthogonal Make sure cov = axis * sd**2 * axis', similar for cov_inv """ clusterdata = setup_clusterdata maxmincov = setup_maxmincov # ensure output makes mathematical sense for i in range(10): (axis, sd, cov, cov_inv) = maxmincov.make_cov(clusterdata) for cluster_idx in range(clusterdata.n_clusters): # test orthogonality of cluster axes assert np.all(np.allclose(axis[cluster_idx] @ np.transpose(axis[cluster_idx]), np.eye(axis[cluster_idx].shape[0]))) # test covariance matrix is correct assert np.all(np.allclose(cov[cluster_idx], np.transpose(axis[cluster_idx]) @ np.diag(sd[cluster_idx]**2) \ @ axis[cluster_idx])) # test inverse covariance matrix is correct assert np.all(np.allclose(cov_inv[cluster_idx], np.transpose(axis[cluster_idx]) @ np.diag(sd[cluster_idx]**(-2)) \ @ axis[cluster_idx])) # test seed seed = 123 for i in range(10): cov_structure_new = maxmincov.make_cov(clusterdata, seed=seed) if (i >= 1): for cluster_idx in range(clusterdata.n_clusters): for j in range(4): # iterate through axis, sd, cov, cov_inv assert np.all(np.allclose(cov_structure_prev[j][cluster_idx], cov_structure_new[j][cluster_idx])) # set previous covariance structure for next iteration: cov_structure_prev = cov_structure_new # Test Cases for MaxMinBal def test_init_maxminbal(setup_maxminbal): """ Ensure imbalance ratio is properly specified. """ maxminbal = setup_maxminbal assert maxminbal.imbal_ratio >= 1 # test input check for inappropriate arguments with pytest.raises(ValueError): MaxMinBal(imbal_ratio = 0.5) MaxMinBal(imbal_ratio = -2) def test_make_class_sizes(setup_maxminbal,setup_clusterdata): """ """ maxminbal = setup_maxminbal clusterdata = setup_clusterdata # test with appropriate input Z_appropriate = [[500,5],[200,1],[100,2],[1000,10],[1500,3], [100,100]] args_appropriate = [{'n_samples': z[0], 'n_clusters': z[1]} for z in Z_appropriate] for args in args_appropriate: clusterdata.n_samples = args['n_samples'] clusterdata.n_clusters = args['n_clusters'] out = maxminbal.make_class_sizes(clusterdata) assert np.issubdtype(out.dtype, np.integer) and np.all(out >= 1) and \ (np.sum(out) == args['n_samples']) # test with inappropriate input Z_inappropriate = [[500,0],[0,10],[100,-1],[-0.5,5],[10,11]] args_inappropriate = [{'n_samples': z[0], 'n_clusters': z[1]} for z in Z_inappropriate] for args in args_inappropriate: with pytest.raises(ValueError): clusterdata.n_clusters = args['n_clusters'] clusterdata.n_samples = args['n_samples'] maxminbal.make_class_sizes(clusterdata) def test_float_to_int(setup_maxminbal): """ float_class_sz, n_samples """ maxminbal = setup_maxminbal # test appropriate inputs for float_class_sz, n_samples in [(np.array([23.2, 254.7, 0.1, 35.6]), 100), \ (np.array([0.2, 0.7, 0.1, 0.5]), 10), (np.array([2.5,1.5,5.2]), 3), (np.array([0.5]), 1)]: out = maxminbal.float_to_int(float_class_sz,n_samples) print(len(float_class_sz), float_class_sz, n_samples) assert (np.sum(out) == n_samples) and (np.all(out >= 1)) \ and np.issubdtype(out.dtype,np.integer) # test inputs that should be left unchanged assert np.all(maxminbal.float_to_int(np.array([5,10,25,7]), 5+10+25+7) \ == np.sort(np.array([5,10,25,7]))) # test inappropriate inputs for float_class_sz, n_samples in [(np.array([0.5,1.5]), 1), (np.array([0.5,1.5]), 0), (np.array([2.5,1.5,5.2]), 2)]: with pytest.raises(ValueError): maxminbal.float_to_int(float_class_sz,n_samples) # Test Cases for MaxMinClusters def test_init_maxminclusters(): """ Make sure to throw an error when inappropriate arguments are given. """ # edge and interior test cases for n_clusters, n_samples, n_dim MaxMinClusters(n_clusters=1,n_samples=1,n_dim=1) MaxMinClusters(n_clusters=1,n_samples=1,n_dim=10) MaxMinClusters(n_clusters=2,n_samples=100,n_dim=2) MaxMinClusters(n_clusters=10,n_samples=200,n_dim=5) # edge and interior test cases for testing maxmin ratios MaxMinClusters(imbal_maxmin=1,aspect_maxmin=1,radius_maxmin=1, aspect_ref=1) MaxMinClusters(imbal_maxmin=1,aspect_maxmin=1.1,radius_maxmin=1.1,aspect_ref=1.5) MaxMinClusters(imbal_maxmin=1.2,aspect_maxmin=1,radius_maxmin=1.5,aspect_ref=7) MaxMinClusters(imbal_maxmin=3,aspect_maxmin=2,radius_maxmin=1,aspect_ref=5) MaxMinClusters(imbal_maxmin=3,aspect_maxmin=2,radius_maxmin=5,aspect_ref=1) MaxMinClusters(imbal_maxmin=3,aspect_maxmin=2,radius_maxmin=5,aspect_ref=4) # edge and interior test cases for overlap MaxMinClusters(alpha_max=0.5, alpha_min=0.01) MaxMinClusters(alpha_max=0.05, alpha_min=0) MaxMinClusters(alpha_max=0.1, alpha_min=0.0001) # testing the distributions MaxMinClusters(dist='exp') MaxMinClusters(dist='gaussian') MaxMinClusters(dist='t') # testing packing and scale MaxMinClusters(packing=0.5) MaxMinClusters(packing=0.01) MaxMinClusters(packing=0.99) MaxMinClusters(scale=0.01) MaxMinClusters(scale=0.05) MaxMinClusters(scale=5) MaxMinClusters(scale=10) with pytest.raises(ValueError): # must have n_dim, n_clusters, n_samples >= 1 # and n_clusters <= n_samples MaxMinClusters(n_clusters=10,n_samples=100,n_dim=0) MaxMinClusters(n_clusters=10,n_samples=9,n_dim=10) MaxMinClusters(n_clusters=0,n_samples=100,n_dim=10) MaxMinClusters(n_clusters=2,n_samples=1,n_dim=10) MaxMinClusters(n_clusters=2,n_samples=1,n_dim=10) # maxmin_ratios must be >= 1 MaxMinClusters(imbal_maxmin=0.98) MaxMinClusters(imbal_maxmin=-1.1) MaxMinClusters(aspect_maxmin=0.35) MaxMinClusters(aspect_maxmin=-1.5) MaxMinClusters(radius_maxmin=0.21) MaxMinClusters(radius_maxmin=-1) MaxMinClusters(aspect_ref=0.99) MaxMinClusters(aspect_ref=-2) # must have alpha_max > 0, alpha_min >= 0, alpha_max > alpha_min MaxMinClusters(alpha_max=0, alpha_min=0) MaxMinClusters(alpha_max=0.05, alpha_min=0.1) MaxMinClusters(alpha_max=0.1, alpha_min=0.0001) MaxMinClusters(alpha_max=0.025, alpha_min=-1.0) MaxMinClusters(alpha_max=-0.5, alpha_min=0.05) # packing must be strictly between 0 and 1, scale must be >0 MaxMinClusters(packing=0) MaxMinClusters(packing=1) MaxMinClusters(scale=0) MaxMinClusters(scale=-0.5) # currently only support dist in {'gaussian','exp','t'} MaxMinClusters(dist='foo') MaxMinClusters(dist='bar')
33.722727
100
0.709934
import pytest import numpy as np from syndata.core import ClusterData from syndata.maxmin import MaxMinClusters, MaxMinCov, MaxMinBal, maxmin_sampler # Test Cases for maxmin_sampler def test_maxmin_sampler(): """ Make sure the sampling mechanism doesn't break when wrong inputs are supplied. """ # Test cases throwing exceptions args_causing_exception = [ # negative vals {'n_samples': 10, 'ref': -2, 'min_val': 1, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 2, 'min_val': -1, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 2, 'min_val': 1, 'maxmin_ratio': -1.5}, # zeros vals {'n_samples': 0, 'ref': 2, 'min_val': 1, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 0, 'min_val': 1, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 2, 'min_val': 0, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 2, 'min_val': 1, 'maxmin_ratio': 0}, # ref < min {'n_samples': 10, 'ref': 1, 'min_val': 2, 'maxmin_ratio': 1.5}, # ref > max {'n_samples': 10, 'ref': 10, 'min_val': 1, 'maxmin_ratio': 1.5}, # maxmin_ratio < 1 {'n_samples': 10, 'ref': 2, 'min_val': 1, 'maxmin_ratio': 0.7}, # maxmin_ratio = 1, ref != min_val {'n_samples': 10, 'ref': 2, 'min_val': 1, 'maxmin_ratio': 1}, ] with pytest.raises(ValueError): for args in args_causing_exception: args['f_constrain'] = lambda x: 2*args['ref'] - x maxmin_sampler(**args) # Test cases with appropriate inputs (randomized) args_appropriate_input = [] max_ref_val = 10; max_min_val = 10 for i in range(100): min_val = np.random.default_rng(seed=i).uniform(0,max_min_val) ref = np.random.uniform(min_val, max_ref_val) maxmin_ratio = np.random.uniform(ref/min_val, 10*(ref/min_val)) args_appropriate_input.append( { # Do the first 10 tests on the edge case n_samples=1 'n_samples': np.random.choice(np.arange(2,15)) if i>10 else 1, 'min_val': min_val, 'ref': ref, 'maxmin_ratio': maxmin_ratio, } ) print('making the args', 'ref', ref, 'min_val', min_val, 'max_val', min_val*maxmin_ratio) # Add test case with large sample size args_appropriate_input.append({'n_samples': 10000, 'ref': 2, \ 'min_val': 1, 'maxmin_ratio': 3}) for args in args_appropriate_input: args['f_constrain'] = lambda x: 2*args['ref'] - x out = maxmin_sampler(**args) print(out) assert check_maxmin_sampler_output(out, args['f_constrain']) def check_maxmin_sampler_output(sampled_vals, f_constrain): """ Check that output satisfies lower and upper bounds. Check min, max values are related through the constraint. Check that output is sorted. """ return is_sorted(sampled_vals, order='ascending') \ and (f_constrain(np.max(sampled_vals) == np.min(sampled_vals))) \ and (f_constrain(np.min(sampled_vals) == np.max(sampled_vals))) def is_sorted(vals, order='ascending'): """ Check if values are sorted. """ if order=='ascending': return np.all(vals[1:] - vals[:-1] >= 0) elif order=='descending': return np.all(vals[1:] - vals[:-1] <= 0) # Test Cases for MaxMinCov def test_init_maxmincov(): """ Make sure that no illicit values can be used to construct MaxMinCov. """ # appropriate values of attributes interior_cases = np.random.uniform(1,10,size=(100,3)) # random appropriate values edge_cases = np.concatenate([2-np.eye(3),np.ones(3)[np.newaxis,:]],axis=0) # edge and corner cases Z_appropriate = np.concatenate([interior_cases,edge_cases],axis=0) args_appropriate = [{'ref_aspect': z[0], 'aspect_maxmin': z[1], 'radius_maxmin': z[2]} for z in Z_appropriate] for args in args_appropriate: my_maxmincov = MaxMinCov(**args) for attr in ['ref_aspect','aspect_maxmin','radius_maxmin']: assert hasattr(my_maxmincov, attr) # inappropriate values of attributes Z_inappropriate = np.concatenate([np.ones(3) - 0.5*np.eye(3), (1-0.01)*np.ones(3)[np.newaxis,:]]) args_inappropriate = [{'ref_aspect': z[0], 'aspect_maxmin': z[1], 'radius_maxmin': z[2]} for z in Z_inappropriate] with pytest.raises(ValueError): for args in args_inappropriate: MaxMinCov(**args) @pytest.fixture() def setup_maxmincov(): """ Initialize a valid MaxMinCov instance to test its methods. """ maxmincov = MaxMinCov(ref_aspect=1.5, aspect_maxmin=1.5, radius_maxmin=1.5) yield maxmincov def test_make_cluster_aspects(setup_maxmincov): """ Make sure that valid cluster aspect ratios are sampled. Test the range of acceptable numbers of clusters, and make sure setting a seed works. """ maxmincov = setup_maxmincov with pytest.raises(ValueError): maxmincov.make_cluster_aspects(0,seed=None) maxmincov.make_cluster_aspects(0.99,seed=None) # test different numbers of clusters for n_clusters in range(1,100): cluster_aspects = maxmincov.make_cluster_aspects(n_clusters,seed=None) assert np.all(cluster_aspects >= 1) assert np.max(cluster_aspects) >= maxmincov.ref_aspect assert np.min(cluster_aspects) <= maxmincov.ref_aspect # test seed seed = 23 for i in range(10): cluster_aspects_new = maxmincov.make_cluster_aspects(2,seed=23) # make sure that each successive output is the same as the previous output if i >= 1: assert np.all(cluster_aspects_new == cluster_aspects_prev) cluster_aspects_prev = cluster_aspects_new def test_make_cluster_radii(setup_maxmincov): """ Make sure valid cluster radii are sampled. Test the range of acceptable inputs, and make sure setting a seed works. """ maxmincov = setup_maxmincov # test appropriate inputs interior_cases = np.concatenate([np.arange(1,20+1)[:,np.newaxis], np.random.uniform(0,10,size=20)[:,np.newaxis], np.random.choice(np.arange(2,100),size=20)[:,np.newaxis]], axis=1) edge_cases = np.array([[1,1e-3,2], [1,1e-3,1],[2,100,1]]) Z_appropriate = np.concatenate([interior_cases, edge_cases],axis=0) args_appropriate = [{'n_clusters': z[0], 'ref_radius': z[1], 'n_dim': z[2]} for z in Z_appropriate] for args in args_appropriate: tol = 1e-12 print(args) cluster_radii = maxmincov.make_cluster_radii(**args) print(cluster_radii) assert np.all(cluster_radii > 0) assert (np.min(cluster_radii) <= args['ref_radius'] + tol) and \ (np.max(cluster_radii) >= args['ref_radius'] - tol) # test inappropriate inputs with pytest.raises(ValueError): maxmincov.make_cluster_radii(n_clusters=0, ref_radius=1, n_dim=10) maxmincov.make_cluster_radii(n_clusters=1, ref_radius=0, n_dim=10) maxmincov.make_cluster_radii(n_clusters=1, ref_radius=1, n_dim=0) # test seeds seed = 717 for i in range(10): cluster_radii_new = maxmincov.make_cluster_radii(n_clusters=5,ref_radius=4,n_dim=25, seed=seed) if (i >= 1): assert np.all(cluster_radii_new == cluster_radii_prev) cluster_radii_prev = cluster_radii_new def test_make_axis_sd(setup_maxmincov): """ Make sure valid standard deviations are sampled (>0). Ensure sure ref_sd is between min and max, and that the maxmin ratio equals the desired aspect ratio. """ maxmincov = setup_maxmincov # test appropriate inputs interior_cases = np.concatenate([np.arange(2,50+2)[:,np.newaxis], np.random.uniform(0,10,size=50)[:,np.newaxis], np.random.uniform(1,10,size=50)[:,np.newaxis]], axis=1) edge_cases = np.array([[1,0.5,1.5], [1,0.5,1], [2,0.1,1]]) Z_appropriate = np.concatenate([interior_cases, edge_cases],axis=0) args_appropriate = [{'n_axes': z[0], 'sd': z[1], 'aspect': z[2]} for z in Z_appropriate] for args in args_appropriate: out = maxmincov.make_axis_sd(**args) assert (np.min(out) <= args['sd']) and (np.max(out) >= args['sd']) # test inappropriate inputs with pytest.raises(ValueError): maxmincov.make_axis_sd(n_axes=0, sd=1, aspect=2) maxmincov.make_axis_sd(n_axes=0.5, sd=0, aspect=2) maxmincov.make_axis_sd(n_axes=1, sd=1, aspect=0.5) maxmincov.make_axis_sd(n_axes=2, sd=1, aspect=-2) maxmincov.make_axis_sd(n_axes=2, sd=-1, aspect=2) # test seed seed = 123 for i in range(10): axis_sd_new = maxmincov.make_axis_sd(n_axes=5,sd=4,aspect=25, seed=seed) if (i >= 1): assert np.all(axis_sd_new == axis_sd_prev) axis_sd_prev = axis_sd_new def test_make_cov(setup_maxmincov, setup_clusterdata): """ Make sure axes are orthogonal Make sure cov = axis * sd**2 * axis', similar for cov_inv """ clusterdata = setup_clusterdata maxmincov = setup_maxmincov # ensure output makes mathematical sense for i in range(10): (axis, sd, cov, cov_inv) = maxmincov.make_cov(clusterdata) for cluster_idx in range(clusterdata.n_clusters): # test orthogonality of cluster axes assert np.all(np.allclose(axis[cluster_idx] @ np.transpose(axis[cluster_idx]), np.eye(axis[cluster_idx].shape[0]))) # test covariance matrix is correct assert np.all(np.allclose(cov[cluster_idx], np.transpose(axis[cluster_idx]) @ np.diag(sd[cluster_idx]**2) \ @ axis[cluster_idx])) # test inverse covariance matrix is correct assert np.all(np.allclose(cov_inv[cluster_idx], np.transpose(axis[cluster_idx]) @ np.diag(sd[cluster_idx]**(-2)) \ @ axis[cluster_idx])) # test seed seed = 123 for i in range(10): cov_structure_new = maxmincov.make_cov(clusterdata, seed=seed) if (i >= 1): for cluster_idx in range(clusterdata.n_clusters): for j in range(4): # iterate through axis, sd, cov, cov_inv assert np.all(np.allclose(cov_structure_prev[j][cluster_idx], cov_structure_new[j][cluster_idx])) # set previous covariance structure for next iteration: cov_structure_prev = cov_structure_new # Test Cases for MaxMinBal @pytest.fixture(params = np.linspace(1,10,10)) def setup_maxminbal(request): return MaxMinBal(request.param) def test_init_maxminbal(setup_maxminbal): """ Ensure imbalance ratio is properly specified. """ maxminbal = setup_maxminbal assert maxminbal.imbal_ratio >= 1 # test input check for inappropriate arguments with pytest.raises(ValueError): MaxMinBal(imbal_ratio = 0.5) MaxMinBal(imbal_ratio = -2) def test_make_class_sizes(setup_maxminbal,setup_clusterdata): """ """ maxminbal = setup_maxminbal clusterdata = setup_clusterdata # test with appropriate input Z_appropriate = [[500,5],[200,1],[100,2],[1000,10],[1500,3], [100,100]] args_appropriate = [{'n_samples': z[0], 'n_clusters': z[1]} for z in Z_appropriate] for args in args_appropriate: clusterdata.n_samples = args['n_samples'] clusterdata.n_clusters = args['n_clusters'] out = maxminbal.make_class_sizes(clusterdata) assert np.issubdtype(out.dtype, np.integer) and np.all(out >= 1) and \ (np.sum(out) == args['n_samples']) # test with inappropriate input Z_inappropriate = [[500,0],[0,10],[100,-1],[-0.5,5],[10,11]] args_inappropriate = [{'n_samples': z[0], 'n_clusters': z[1]} for z in Z_inappropriate] for args in args_inappropriate: with pytest.raises(ValueError): clusterdata.n_clusters = args['n_clusters'] clusterdata.n_samples = args['n_samples'] maxminbal.make_class_sizes(clusterdata) def test_float_to_int(setup_maxminbal): """ float_class_sz, n_samples """ maxminbal = setup_maxminbal # test appropriate inputs for float_class_sz, n_samples in [(np.array([23.2, 254.7, 0.1, 35.6]), 100), \ (np.array([0.2, 0.7, 0.1, 0.5]), 10), (np.array([2.5,1.5,5.2]), 3), (np.array([0.5]), 1)]: out = maxminbal.float_to_int(float_class_sz,n_samples) print(len(float_class_sz), float_class_sz, n_samples) assert (np.sum(out) == n_samples) and (np.all(out >= 1)) \ and np.issubdtype(out.dtype,np.integer) # test inputs that should be left unchanged assert np.all(maxminbal.float_to_int(np.array([5,10,25,7]), 5+10+25+7) \ == np.sort(np.array([5,10,25,7]))) # test inappropriate inputs for float_class_sz, n_samples in [(np.array([0.5,1.5]), 1), (np.array([0.5,1.5]), 0), (np.array([2.5,1.5,5.2]), 2)]: with pytest.raises(ValueError): maxminbal.float_to_int(float_class_sz,n_samples) # Test Cases for MaxMinClusters def test_init_maxminclusters(): """ Make sure to throw an error when inappropriate arguments are given. """ # edge and interior test cases for n_clusters, n_samples, n_dim MaxMinClusters(n_clusters=1,n_samples=1,n_dim=1) MaxMinClusters(n_clusters=1,n_samples=1,n_dim=10) MaxMinClusters(n_clusters=2,n_samples=100,n_dim=2) MaxMinClusters(n_clusters=10,n_samples=200,n_dim=5) # edge and interior test cases for testing maxmin ratios MaxMinClusters(imbal_maxmin=1,aspect_maxmin=1,radius_maxmin=1, aspect_ref=1) MaxMinClusters(imbal_maxmin=1,aspect_maxmin=1.1,radius_maxmin=1.1,aspect_ref=1.5) MaxMinClusters(imbal_maxmin=1.2,aspect_maxmin=1,radius_maxmin=1.5,aspect_ref=7) MaxMinClusters(imbal_maxmin=3,aspect_maxmin=2,radius_maxmin=1,aspect_ref=5) MaxMinClusters(imbal_maxmin=3,aspect_maxmin=2,radius_maxmin=5,aspect_ref=1) MaxMinClusters(imbal_maxmin=3,aspect_maxmin=2,radius_maxmin=5,aspect_ref=4) # edge and interior test cases for overlap MaxMinClusters(alpha_max=0.5, alpha_min=0.01) MaxMinClusters(alpha_max=0.05, alpha_min=0) MaxMinClusters(alpha_max=0.1, alpha_min=0.0001) # testing the distributions MaxMinClusters(dist='exp') MaxMinClusters(dist='gaussian') MaxMinClusters(dist='t') # testing packing and scale MaxMinClusters(packing=0.5) MaxMinClusters(packing=0.01) MaxMinClusters(packing=0.99) MaxMinClusters(scale=0.01) MaxMinClusters(scale=0.05) MaxMinClusters(scale=5) MaxMinClusters(scale=10) with pytest.raises(ValueError): # must have n_dim, n_clusters, n_samples >= 1 # and n_clusters <= n_samples MaxMinClusters(n_clusters=10,n_samples=100,n_dim=0) MaxMinClusters(n_clusters=10,n_samples=9,n_dim=10) MaxMinClusters(n_clusters=0,n_samples=100,n_dim=10) MaxMinClusters(n_clusters=2,n_samples=1,n_dim=10) MaxMinClusters(n_clusters=2,n_samples=1,n_dim=10) # maxmin_ratios must be >= 1 MaxMinClusters(imbal_maxmin=0.98) MaxMinClusters(imbal_maxmin=-1.1) MaxMinClusters(aspect_maxmin=0.35) MaxMinClusters(aspect_maxmin=-1.5) MaxMinClusters(radius_maxmin=0.21) MaxMinClusters(radius_maxmin=-1) MaxMinClusters(aspect_ref=0.99) MaxMinClusters(aspect_ref=-2) # must have alpha_max > 0, alpha_min >= 0, alpha_max > alpha_min MaxMinClusters(alpha_max=0, alpha_min=0) MaxMinClusters(alpha_max=0.05, alpha_min=0.1) MaxMinClusters(alpha_max=0.1, alpha_min=0.0001) MaxMinClusters(alpha_max=0.025, alpha_min=-1.0) MaxMinClusters(alpha_max=-0.5, alpha_min=0.05) # packing must be strictly between 0 and 1, scale must be >0 MaxMinClusters(packing=0) MaxMinClusters(packing=1) MaxMinClusters(scale=0) MaxMinClusters(scale=-0.5) # currently only support dist in {'gaussian','exp','t'} MaxMinClusters(dist='foo') MaxMinClusters(dist='bar')
0
287
0
0
0
0
0
15
69
f547cb46376f6cd48fe72244973add9c82d457c0
122
py
Python
configs/scheduler_cfgs/multi_step_lr_cfg.py
slothfulxtx/TransLoc3D
0ac324b1dcec456c76d7db2f87d13c076f2d55e4
[ "MIT" ]
5
2021-09-30T08:12:26.000Z
2022-01-19T16:20:10.000Z
configs/scheduler_cfgs/multi_step_lr_cfg.py
slothfulxtx/TransLoc3D
0ac324b1dcec456c76d7db2f87d13c076f2d55e4
[ "MIT" ]
null
null
null
configs/scheduler_cfgs/multi_step_lr_cfg.py
slothfulxtx/TransLoc3D
0ac324b1dcec456c76d7db2f87d13c076f2d55e4
[ "MIT" ]
null
null
null
scheduler_type = 'MultiStepLR' scheduler_cfg = dict( gamma=0.5, milestones=(50, 100, 150, 200) ) end_epoch = 250
15.25
34
0.672131
scheduler_type = 'MultiStepLR' scheduler_cfg = dict( gamma=0.5, milestones=(50, 100, 150, 200) ) end_epoch = 250
0
0
0
0
0
0
0
0
0
d9f7438220a4ebe74beaea888af37f17f5bfb665
721
py
Python
levenshtein_distance.py
int2str/catbot
d6279845eb51eaa9c9e9f2aef2f7a521432d7851
[ "MIT" ]
null
null
null
levenshtein_distance.py
int2str/catbot
d6279845eb51eaa9c9e9f2aef2f7a521432d7851
[ "MIT" ]
null
null
null
levenshtein_distance.py
int2str/catbot
d6279845eb51eaa9c9e9f2aef2f7a521432d7851
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Sep 1 14:54:14 2020 @author: Mei """
18.487179
74
0.468793
# -*- coding: utf-8 -*- """ Created on Tue Sep 1 14:54:14 2020 @author: Mei """ def memoize(func): mem = {} def memoizer(*args, **kwargs): key = str(args) + str(kwargs) if key not in mem: mem[key] = func(*args, **kwargs) return mem[key] return memoizer @memoize def levenshtein(s, t): if s == "": return len(t) if t == "": return len(s) if s[-1] == t[-1]: cost = 0 else: cost = 1 res = min([levenshtein(s[:-1], t) + 1, # char is inserted levenshtein(s, t[:-1]) + 1, # char is deleted levenshtein(s[:-1], t[:-1]) + cost]) # char is substituted return res
0
390
0
0
0
201
0
0
46
b2e9ce95b9c470541c1124a564f290f253410919
9,658
py
Python
applications/FluidDynamicsApplication/tests/embedded_reservoir_test.py
AndreaVoltan/MyKratos7.0
e977752722e8ef1b606f25618c4bf8fd04c434cc
[ "BSD-4-Clause" ]
2
2020-04-30T19:13:08.000Z
2021-04-14T19:40:47.000Z
applications/FluidDynamicsApplication/tests/embedded_reservoir_test.py
AndreaVoltan/MyKratos7.0
e977752722e8ef1b606f25618c4bf8fd04c434cc
[ "BSD-4-Clause" ]
1
2020-04-30T19:19:09.000Z
2020-05-02T14:22:36.000Z
applications/FluidDynamicsApplication/tests/embedded_reservoir_test.py
AndreaVoltan/MyKratos7.0
e977752722e8ef1b606f25618c4bf8fd04c434cc
[ "BSD-4-Clause" ]
1
2020-06-12T08:51:24.000Z
2020-06-12T08:51:24.000Z
import KratosMultiphysics.kratos_utilities as KratosUtilities have_external_solvers = KratosUtilities.IsApplicationAvailable("ExternalSolversApplication") if __name__ == '__main__': test = EmbeddedReservoirTest() test.setUp() test.distance = 0.5 test.slip_level_set = False test.print_output = False test.print_reference_values = False test.work_folder = "EmbeddedReservoirTest" test.reference_file = "reference_slip_reservoir_2D" test.settings = "EmbeddedReservoir2DTest_parameters.json" test.setUpProblem() test.setUpDistanceField() test.runTest() test.tearDown() test.checkResults()
45.130841
203
0.657693
import KratosMultiphysics import KratosMultiphysics.FluidDynamicsApplication as KratosFluid import KratosMultiphysics.kratos_utilities as KratosUtilities have_external_solvers = KratosUtilities.IsApplicationAvailable("ExternalSolversApplication") import KratosMultiphysics.KratosUnittest as UnitTest @UnitTest.skipUnless(have_external_solvers,"Missing required application: ExternalSolversApplication") class EmbeddedReservoirTest(UnitTest.TestCase): def testEmbeddedReservoir2D(self): self.distance = 0.5 self.slip_level_set = False self.work_folder = "EmbeddedReservoirTest" self.reference_file = "reference_reservoir_2D" self.settings = "EmbeddedReservoir2DTest_parameters.json" self.ExecuteEmbeddedReservoirTest() def testEmbeddedReservoir3D(self): self.distance = 0.5 self.slip_level_set = False self.work_folder = "EmbeddedReservoirTest" self.reference_file = "reference_reservoir_3D" self.settings = "EmbeddedReservoir3DTest_parameters.json" self.ExecuteEmbeddedReservoirTest() def testEmbeddedSlipReservoir2D(self): self.distance = 0.5 self.slip_level_set = True self.work_folder = "EmbeddedReservoirTest" self.reference_file = "reference_slip_reservoir_2D" self.settings = "EmbeddedReservoir2DTest_parameters.json" self.ExecuteEmbeddedReservoirTest() def testEmbeddedSlipReservoir3D(self): self.distance = 0.5 self.slip_level_set = True self.work_folder = "EmbeddedReservoirTest" self.reference_file = "reference_slip_reservoir_3D" self.settings = "EmbeddedReservoir3DTest_parameters.json" self.ExecuteEmbeddedReservoirTest() def ExecuteEmbeddedReservoirTest(self): with UnitTest.WorkFolderScope(self.work_folder, __file__): self.setUp() self.setUpProblem() self.setUpDistanceField() self.runTest() self.tearDown() self.checkResults() def setUp(self): self.check_tolerance = 1e-6 self.print_output = False self.print_reference_values = False def tearDown(self): with UnitTest.WorkFolderScope(self.work_folder, __file__): KratosUtilities.DeleteFileIfExisting( self.ProjectParameters["solver_settings"]["model_import_settings"]["input_filename"].GetString()+'.time') def setUpProblem(self): with UnitTest.WorkFolderScope(self.work_folder, __file__): with open(self.settings, 'r') as parameter_file: self.ProjectParameters = KratosMultiphysics.Parameters(parameter_file.read()) self.model = KratosMultiphysics.Model() ## Solver construction import python_solvers_wrapper_fluid self.solver = python_solvers_wrapper_fluid.CreateSolver(self.model, self.ProjectParameters) ## Set the "is_slip" field in the json settings (to avoid duplication it is set to false in all tests) if self.slip_level_set and self.solver.settings.Has("is_slip"): self.ProjectParameters["solver_settings"]["is_slip"].SetBool(True) self.solver.AddVariables() ## Read the model - note that SetBufferSize is done here self.solver.ImportModelPart() self.solver.PrepareModelPart() ## Add AddDofs self.solver.AddDofs() ## Solver initialization self.solver.Initialize() ## Processes construction import process_factory self.list_of_processes = process_factory.KratosProcessFactory(self.model).ConstructListOfProcesses( self.ProjectParameters["processes"]["gravity"] ) self.list_of_processes += process_factory.KratosProcessFactory(self.model).ConstructListOfProcesses( self.ProjectParameters["processes"]["boundary_conditions_process_list"] ) ## Processes initialization for process in self.list_of_processes: process.ExecuteInitialize() self.main_model_part = self.model.GetModelPart(self.ProjectParameters["problem_data"]["model_part_name"].GetString()) def setUpDistanceField(self): # Set the distance function if (self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 2): for node in self.main_model_part.Nodes: distance = node.Y-self.distance node.SetSolutionStepValue(KratosMultiphysics.DISTANCE, 0, distance) elif (self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 3): for node in self.main_model_part.Nodes: distance = node.Z-self.distance node.SetSolutionStepValue(KratosMultiphysics.DISTANCE, 0, distance) # Set the ELEMENTAL_DISTANCES value n_nodes = len(self.main_model_part.Elements[1].GetNodes()) for element in self.main_model_part.Elements: elem_dist = KratosMultiphysics.Vector(n_nodes) elem_nodes = element.GetNodes() for i_node in range(0,n_nodes): elem_dist[i_node] = elem_nodes[i_node].GetSolutionStepValue(KratosMultiphysics.DISTANCE) element.SetValue(KratosMultiphysics.ELEMENTAL_DISTANCES, elem_dist) def runTest(self): with UnitTest.WorkFolderScope(self.work_folder, __file__): if (self.print_output): gid_mode = KratosMultiphysics.GiDPostMode.GiD_PostBinary multifile = KratosMultiphysics.MultiFileFlag.SingleFile deformed_mesh_flag = KratosMultiphysics.WriteDeformedMeshFlag.WriteUndeformed write_conditions = KratosMultiphysics.WriteConditionsFlag.WriteElementsOnly gid_io = KratosMultiphysics.GidIO(self.ProjectParameters["solver_settings"]["model_import_settings"]["input_filename"].GetString(),gid_mode,multifile,deformed_mesh_flag, write_conditions) mesh_name = 0.0 gid_io.InitializeMesh( mesh_name) gid_io.WriteMesh( self.main_model_part.GetMesh() ) gid_io.FinalizeMesh() gid_io.InitializeResults(mesh_name,(self.main_model_part).GetMesh()) end_time = self.ProjectParameters["problem_data"]["end_time"].GetDouble() time = 0.0 step = 0 for process in self.list_of_processes: process.ExecuteBeforeSolutionLoop() while(time <= end_time): time = self.solver.AdvanceInTime(time) for process in self.list_of_processes: process.ExecuteInitializeSolutionStep() self.solver.InitializeSolutionStep() self.solver.Predict() self.solver.SolveSolutionStep() self.solver.FinalizeSolutionStep() for process in self.list_of_processes: process.ExecuteFinalizeSolutionStep() for process in self.list_of_processes: process.ExecuteBeforeOutputStep() if (self.print_output): gid_io.WriteNodalResults(KratosMultiphysics.VELOCITY,self.main_model_part.Nodes,time,0) gid_io.WriteNodalResults(KratosMultiphysics.PRESSURE,self.main_model_part.Nodes,time,0) gid_io.WriteNodalResults(KratosMultiphysics.DISTANCE,self.main_model_part.Nodes,time,0) for process in self.list_of_processes: process.ExecuteAfterOutputStep() for process in self.list_of_processes: process.ExecuteFinalize() if (self.print_output): gid_io.FinalizeResults() def checkResults(self): with UnitTest.WorkFolderScope(self.work_folder, __file__): if self.print_reference_values: with open(self.reference_file+'.csv','w') as ref_file: ref_file.write("#ID, PRESSURE\n") for node in self.main_model_part.Nodes: pres = node.GetSolutionStepValue(KratosMultiphysics.PRESSURE) ref_file.write("{0}, {1}\n".format(node.Id, pres)) else: with open(self.reference_file+'.csv','r') as reference_file: reference_file.readline() # skip header line = reference_file.readline() for node in self.main_model_part.Nodes: values = [ float(i) for i in line.rstrip('\n ').split(',') ] node_id = values[0] reference_pres = values[1] pres = node.GetSolutionStepValue(KratosMultiphysics.PRESSURE) self.assertAlmostEqual(reference_pres, pres, delta = self.check_tolerance) line = reference_file.readline() if line != '': # If we did not reach the end of the reference file self.fail("The number of nodes in the mdpa is smaller than the number of nodes in the output file") if __name__ == '__main__': test = EmbeddedReservoirTest() test.setUp() test.distance = 0.5 test.slip_level_set = False test.print_output = False test.print_reference_values = False test.work_folder = "EmbeddedReservoirTest" test.reference_file = "reference_slip_reservoir_2D" test.settings = "EmbeddedReservoir2DTest_parameters.json" test.setUpProblem() test.setUpDistanceField() test.runTest() test.tearDown() test.checkResults()
0
8,846
0
0
0
0
0
79
90
68e1ed0ef59a3040f7e29f35297d861200c09805
454
py
Python
tests/conftest.py
BradleyKirton/ice3x
7a289b6b208a0bd07112744923cf5d315982ee31
[ "MIT" ]
null
null
null
tests/conftest.py
BradleyKirton/ice3x
7a289b6b208a0bd07112744923cf5d315982ee31
[ "MIT" ]
1
2021-01-18T09:38:53.000Z
2021-01-18T09:38:53.000Z
tests/conftest.py
BradleyKirton/ice3x
7a289b6b208a0bd07112744923cf5d315982ee31
[ "MIT" ]
1
2021-01-15T05:15:08.000Z
2021-01-15T05:15:08.000Z
import pytest def pytest_collection_modifyitems(config, items): """If async dependencies is not available skip async tests.""" try: skip_async = False except ImportError: skip_async = True skip_slow = pytest.mark.skip(reason="need --runslow option to run") for item in items: if "requires_async" in item.keywords and skip_async is True: item.add_marker(skip_slow)
23.894737
71
0.665198
import pytest def pytest_collection_modifyitems(config, items): """If async dependencies is not available skip async tests.""" try: import treq # noqa skip_async = False except ImportError: skip_async = True skip_slow = pytest.mark.skip(reason="need --runslow option to run") for item in items: if "requires_async" in item.keywords and skip_async is True: item.add_marker(skip_slow)
0
0
0
0
0
0
0
-10
38
1f318af426ba6effdcc824c35b1410a508967992
605
py
Python
python/train_model.py
bfakhri/dml_custom
1e908b10890df11e510d72c21f3125e3069a0eac
[ "CC-BY-4.0" ]
null
null
null
python/train_model.py
bfakhri/dml_custom
1e908b10890df11e510d72c21f3125e3069a0eac
[ "CC-BY-4.0" ]
null
null
null
python/train_model.py
bfakhri/dml_custom
1e908b10890df11e510d72c21f3125e3069a0eac
[ "CC-BY-4.0" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import sys print('PYTHON VERSION - ', sys.version) # For the DML random agent dataset import random_dataset # For the model that we will train import model # For debugging import os for i in range(10): print(os.getcwd()) ds = random_dataset.dml_dataset() model = model.Model(ds.shape) for i in range(1000000): batch = ds.get_batch() model.train_step(batch, i)
18.90625
39
0.771901
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import argparse import random import numpy as np import deepmind_lab import tensorflow as tf import sys print('PYTHON VERSION - ', sys.version) # For the DML random agent dataset import random_dataset # For the model that we will train import model # For debugging import os for i in range(10): print(os.getcwd()) ds = random_dataset.dml_dataset() model = model.Model(ds.shape) for i in range(1000000): batch = ds.get_batch() model.train_step(batch, i)
0
0
0
0
0
0
0
-17
111
61db0562dc232d4ff5aad924e5350c8b5a68b06a
503
py
Python
hub/models/types.py
harenlewis/api-hub
f79cd8b82e95c039269765a4542866286803a322
[ "MIT" ]
null
null
null
hub/models/types.py
harenlewis/api-hub
f79cd8b82e95c039269765a4542866286803a322
[ "MIT" ]
2
2020-06-05T19:41:09.000Z
2021-06-10T21:07:30.000Z
hub/models/types.py
harenlewis/api-hub
f79cd8b82e95c039269765a4542866286803a322
[ "MIT" ]
null
null
null
GET = 100 POST = 200 PUT = 300 DELETE = 400 METHOD_TYPES = ( (GET, 'GET'), (POST, 'POST'), (PUT, 'PUT'), (DELETE, 'DELETE'), ) METHOD_TYPES_DICT = { 'GET': GET, 'POST': POST, 'PUT': PUT, 'DELETE': DELETE, } JSON = 500 HTML = 600 TEXT = 700 RESP_TYPES = ( (JSON, 'JSON'), (HTML, 'HTML'), (TEXT, 'TEXT'), ) RESP_TYPES_DICT = { 'JSON': 'application/json; charset=utf-8', 'HTML': 'text/html; charset=utf-8', 'TEXT': 'text/plain; charset=utf-8', }
14.794118
46
0.532803
GET = 100 POST = 200 PUT = 300 DELETE = 400 METHOD_TYPES = ( (GET, 'GET'), (POST, 'POST'), (PUT, 'PUT'), (DELETE, 'DELETE'), ) METHOD_TYPES_DICT = { 'GET': GET, 'POST': POST, 'PUT': PUT, 'DELETE': DELETE, } JSON = 500 HTML = 600 TEXT = 700 RESP_TYPES = ( (JSON, 'JSON'), (HTML, 'HTML'), (TEXT, 'TEXT'), ) RESP_TYPES_DICT = { 'JSON': 'application/json; charset=utf-8', 'HTML': 'text/html; charset=utf-8', 'TEXT': 'text/plain; charset=utf-8', }
0
0
0
0
0
0
0
0
0
69dfa3f3f3c61dd8f1cd49fd9d62071055662676
3,962
py
Python
genome_designer/tests/integration/test_pipeline_integration.py
churchlab/millstone
ddb5d003a5b8a7675e5a56bafd5c432d9642b473
[ "MIT" ]
45
2015-09-30T14:55:33.000Z
2021-06-28T02:33:30.000Z
genome_designer/tests/integration/test_pipeline_integration.py
churchlab/millstone
ddb5d003a5b8a7675e5a56bafd5c432d9642b473
[ "MIT" ]
261
2015-06-03T20:41:56.000Z
2022-03-07T08:46:10.000Z
genome_designer/tests/integration/test_pipeline_integration.py
churchlab/millstone
ddb5d003a5b8a7675e5a56bafd5c432d9642b473
[ "MIT" ]
22
2015-06-04T20:43:10.000Z
2022-02-27T08:27:34.000Z
"""Alignment pipeline integration tests. """ import os from django.conf import settings TEST_FASTA = os.path.join(settings.PWD, 'test_data', 'fake_genome_and_reads', 'test_genome.fa') TEST_FASTQ1 = os.path.join(settings.PWD, 'test_data', 'fake_genome_and_reads', '38d786f2', 'test_genome_1.snps.simLibrary.1.fq') TEST_FASTQ2 = os.path.join(settings.PWD, 'test_data', 'fake_genome_and_reads', '38d786f2', 'test_genome_1.snps.simLibrary.2.fq')
38.096154
80
0.69687
"""Alignment pipeline integration tests. """ import os import time from django.conf import settings from djcelery_testworker.testcase import CeleryWorkerTestCase from main.models import AlignmentGroup from main.models import Dataset from main.models import ExperimentSample from main.testing_util import create_common_entities from pipeline.pipeline_runner import run_pipeline from utils.import_util import copy_and_add_dataset_source from utils.import_util import import_reference_genome_from_local_file from utils.import_util import import_reference_genome_from_ncbi from utils import internet_on TEST_FASTA = os.path.join(settings.PWD, 'test_data', 'fake_genome_and_reads', 'test_genome.fa') TEST_FASTQ1 = os.path.join(settings.PWD, 'test_data', 'fake_genome_and_reads', '38d786f2', 'test_genome_1.snps.simLibrary.1.fq') TEST_FASTQ2 = os.path.join(settings.PWD, 'test_data', 'fake_genome_and_reads', '38d786f2', 'test_genome_1.snps.simLibrary.2.fq') class TestAlignmentPipeline(CeleryWorkerTestCase): def setUp(self): common_entities = create_common_entities() self.project = common_entities['project'] self.reference_genome = import_reference_genome_from_local_file( self.project, 'ref_genome', TEST_FASTA, 'fasta') self.experiment_sample = ExperimentSample.objects.create( project=self.project, label='sample1') copy_and_add_dataset_source(self.experiment_sample, Dataset.TYPE.FASTQ1, Dataset.TYPE.FASTQ1, TEST_FASTQ1) copy_and_add_dataset_source(self.experiment_sample, Dataset.TYPE.FASTQ2, Dataset.TYPE.FASTQ2, TEST_FASTQ2) def test_run_pipeline(self): """Tests running the full pipeline. """ sample_list = [self.experiment_sample] alignment_group_obj, async_result = run_pipeline('name_placeholder', self.reference_genome, sample_list) # Block until pipeline finishes. while not async_result.ready(): time.sleep(1) if async_result.status == 'FAILURE': self.fail('Async task failed.') # Refresh the object. alignment_group_obj = AlignmentGroup.objects.get( id=alignment_group_obj.id) # Verify the AlignmentGroup object is created. self.assertEqual(1, len(alignment_group_obj.experimentsampletoalignment_set.all())) self.assertEqual(AlignmentGroup.STATUS.COMPLETED, alignment_group_obj.status) # Make sure the initial JBrowse config has been created. jbrowse_dir = self.reference_genome.get_jbrowse_directory_path() self.assertTrue(os.path.exists(jbrowse_dir)) self.assertTrue(os.path.exists(os.path.join(jbrowse_dir, 'indiv_tracks'))) def test_run_pipeline__genbank_from_ncbi_with_spaces_in_label(self): """Tests the pipeline where the genome is imported from NCBI with spaces in the name. """ if not internet_on(): return MG1655_ACCESSION = 'NC_000913.3' MG1655_LABEL = 'mg1655 look a space' ref_genome = import_reference_genome_from_ncbi(self.project, MG1655_LABEL, MG1655_ACCESSION, 'genbank') sample_list = [self.experiment_sample] alignment_group_obj, async_result = run_pipeline('name_placeholder', ref_genome, sample_list) # Block until pipeline finishes. while not async_result.ready(): time.sleep(1) if async_result.status == 'FAILURE': self.fail('Async task failed.') alignment_group_obj = AlignmentGroup.objects.get( id=alignment_group_obj.id) self.assertEqual(1, len(alignment_group_obj.experimentsampletoalignment_set.all())) self.assertEqual(AlignmentGroup.STATUS.COMPLETED, alignment_group_obj.status)
0
0
0
2,954
0
0
0
269
266
c03319542f2244c2d4ef46ea8722b2475a06c15b
793
py
Python
topics/Array/Best_Time_to_Buy_and_Sell_Stock_121/Best_Time_to_Buy_and_Sell_Stock_121.py
DmitryNaimark/leetcode-solutions-python
16af5f3a9cb8469d82b14c8953847f0e93a92324
[ "MIT" ]
1
2019-10-31T11:06:23.000Z
2019-10-31T11:06:23.000Z
topics/Array/Best_Time_to_Buy_and_Sell_Stock_121/Best_Time_to_Buy_and_Sell_Stock_121.py
DmitryNaimark/leetcode-solutions-python
16af5f3a9cb8469d82b14c8953847f0e93a92324
[ "MIT" ]
null
null
null
topics/Array/Best_Time_to_Buy_and_Sell_Stock_121/Best_Time_to_Buy_and_Sell_Stock_121.py
DmitryNaimark/leetcode-solutions-python
16af5f3a9cb8469d82b14c8953847f0e93a92324
[ "MIT" ]
null
null
null
# https://leetcode.com/problems/best-time-to-buy-and-sell-stock/ # --------------------------------------------------- # Runtime Complexity: O(N) # Space Complexity: O(1) # --------------------------------------------------- # Test Cases # --------------------------------------------------- solution = Solution() # 5 print(solution.maxProfit([7, 1, 5, 3, 6, 4])) # 0 print(solution.maxProfit([7, 6, 4, 3, 1]))
27.344828
64
0.461538
# https://leetcode.com/problems/best-time-to-buy-and-sell-stock/ # --------------------------------------------------- from typing import List # Runtime Complexity: O(N) # Space Complexity: O(1) class Solution: def maxProfit(self, prices: List[int]) -> int: if len(prices) == 0: return 0 cur_min = prices[0] max_diff = 0 for i in range(1, len(prices)): cur_min = min(prices[i], cur_min) max_diff = max(prices[i] - cur_min, max_diff) return max_diff # --------------------------------------------------- # Test Cases # --------------------------------------------------- solution = Solution() # 5 print(solution.maxProfit([7, 1, 5, 3, 6, 4])) # 0 print(solution.maxProfit([7, 6, 4, 3, 1]))
0
0
0
314
0
0
0
2
44
651987d7de3aff6142ce2f122b6b368e0940755f
6,839
py
Python
main.py
GunnarHolwerda/PiWallGuiController
cc90e5f6fd6f13fdfdcabcc8e6b195bf01cb440f
[ "MIT" ]
5
2017-03-29T20:44:42.000Z
2020-06-26T23:11:34.000Z
main.py
GunnarHolwerda/PiWallGuiController
cc90e5f6fd6f13fdfdcabcc8e6b195bf01cb440f
[ "MIT" ]
null
null
null
main.py
GunnarHolwerda/PiWallGuiController
cc90e5f6fd6f13fdfdcabcc8e6b195bf01cb440f
[ "MIT" ]
1
2021-03-08T14:57:09.000Z
2021-03-08T14:57:09.000Z
""" GUI Application to control the PiWall from """ #!/usr/bin/python3 # Author: Gunnar Holwerda # GUI to control a PiWall from tkinter import Tk # Run the GUI if __name__ == "__main__": tk_window = Tk(className="PiWall") frame = SelectorWindow(master=tk_window) tk_window.mainloop() frame.get_controller().stop_wall()
33.360976
90
0.619389
""" GUI Application to control the PiWall from """ #!/usr/bin/python3 # Author: Gunnar Holwerda # GUI to control a PiWall from tkinter import Frame, StringVar, OptionMenu, Listbox, Button, Label, Tk, END from piwallcontroller.piwallcontroller import PiWallController from piwallcontroller.playlist import Playlist from threading import Thread class SelectorWindow(Frame): """ GUI Class extending the tkinter.Frame class """ TIMEOUTS = { '1 hour ': 3600, '2 hours': 7200, '3 hours': 10800, 'Infinite': -1, } def __init__(self, master=None): Frame.__init__(self, master) self.__playlist = Playlist() self.__controller = PiWallController() self.__dropdown_selection = StringVar() self.__timeout_selection = StringVar() self.__command_thread = Thread( target=self.__controller.run_commands, args=(self.__playlist,)) self.grid() self.create_video_file_dropdown() self.create_timeout_dropdown() self.create_display_box() self.create_add_button() self.create_delete_button() self.create_play_button() self.create_reboot_button() self.create_status_label() self.create_stop_button() def create_video_file_dropdown(self): """ Creates the dropdown to display the video files from """ videos = self.__controller.get_video_file_list() if videos: self.__dropdown_selection.set(videos[0]) else: videos.append(None) self.video_dropdown = OptionMenu( None, self.__dropdown_selection, *videos) self.video_dropdown.config(width=10) self.video_dropdown.grid(row=0, column=0) def create_timeout_dropdown(self): """ Creates the dropdown that displays the timeouts """ timeouts = list(self.TIMEOUTS.keys()) timeouts.sort() self.__timeout_selection.set(timeouts[0]) self.timeout_dropdown = OptionMenu( None, self.__timeout_selection, *timeouts) self.timeout_dropdown.config(width=5) self.timeout_dropdown.grid(row=0, column=1) def create_display_box(self): """ Creates display box that displays all current items in the playlist """ self.display_box = Listbox(width=30, height=10) self.display_box.grid(row=0, column=2, columnspan=2) def create_play_button(self): """ Creates the play button """ self.submit_button = Button(text="Play", width=10) self.submit_button['command'] = self.play_wall self.submit_button.grid(row=1, column=2, pady=5) def create_add_button(self): """ Creates the button to add the current values in the video and timeout dropdown into the playlist """ self.add_button = Button(text='Add', fg='green', width=10) self.add_button['command'] = self.update_display_box self.add_button.grid(row=1, column=0, pady=5) def create_delete_button(self): """ Creates delete button to delete items from display blox """ self.delete_button = Button(text='Delete', fg='red', width=10) self.delete_button['command'] = self.delete_selected_item self.delete_button.grid(row=1, column=1, pady=5) def create_reboot_button(self): """ Creates button that reboots the pi's """ self.reboot_button = Button(text='Reboot Tiles', fg='red', width=10) self.reboot_button['command'] = self.reboot_pressed self.reboot_button.grid(row=1, column=3, pady=5) def create_status_label(self): """ Creates label to display current status of the wall """ self.status_label = Label(relief="ridge", width=11) self.set_status_label(0) self.status_label.grid(row=2, column=3, pady=5) def create_stop_button(self): """ Creates stop button to stop PiWall """ self.stop_button = Button(text='Stop Playing') self.set_status_label(0) self.stop_button['command'] = self.stop_pressed self.stop_button.grid(row=2, column=2, pady=5) def delete_selected_item(self): """ Deletes the currently selected item from the displaybox """ self.__playlist.remove_playlist_item(self.display_box.curselection()) self.display_box.delete(self.display_box.curselection()) def play_wall(self): """ Submits ths form to be played on the pi's """ if self.__playlist.is_empty(): return self.set_status_label(1) self.display_box.delete(0, END) # If there is a thread running, we need to stop the wall, which will # end the thread if self.__command_thread.isAlive(): print("Stopping Wall") self.__controller.stop_wall() self.__command_thread.join() self.__command_thread = Thread( target=self.__controller.run_commands, args=(self.__playlist,)) self.__command_thread.start() def update_display_box(self): """ Button listener for the Add Button (create_add_button) """ video_file = self.__dropdown_selection.get() timeout = self.__timeout_selection.get() self.__playlist.add_playlist_item(video_file, self.TIMEOUTS[timeout]) self.display_box.insert(END, "{0} {1}".format(timeout, video_file)) def stop_pressed(self): """ Button listener for the Stop Button (create_stop_button) """ self.__controller.stop_wall() self.set_status_label(0) def reboot_pressed(self): """ Button listener for the Reboot Button (create_reboot_button) """ self.set_status_label(0) self.__controller.reboot_pis() return True def set_status_label(self, state): """ Updates the status label to the current status of the PiWall """ if state == 1: self.status_label.config(text='Playing', fg='green') return True elif state == 0: self.status_label.config(text='Not Playing', fg='red') return True else: Exception( 'Status label state {0} not supported. Try 1 or 2'.format(state)) def get_controller(self): """ Returns the piwallcontrollers """ return self.__controller # Run the GUI if __name__ == "__main__": tk_window = Tk(className="PiWall") frame = SelectorWindow(master=tk_window) tk_window.mainloop() frame.get_controller().stop_wall()
0
0
0
6,276
0
0
0
132
89
4e411687a292bc56a0037b2e523555237471ea26
765
py
Python
libraries/botbuilder-schema/botbuilder/schema/_sign_in_enums.py
victor-kironde/botbuilder-python
e893d9b036d7cf33cf9c9afd1405450c354cdbcd
[ "MIT" ]
1
2020-07-12T21:04:08.000Z
2020-07-12T21:04:08.000Z
libraries/botbuilder-schema/botbuilder/schema/_sign_in_enums.py
Fortune-Adekogbe/botbuilder-python
4e48c874c32a2a7fe7f27a7a1f825e2aa39466c4
[ "MIT" ]
null
null
null
libraries/botbuilder-schema/botbuilder/schema/_sign_in_enums.py
Fortune-Adekogbe/botbuilder-python
4e48c874c32a2a7fe7f27a7a1f825e2aa39466c4
[ "MIT" ]
1
2020-10-01T07:34:07.000Z
2020-10-01T07:34:07.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # --------------------------------------------------------------------------
40.263158
94
0.60915
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- from enum import Enum class SignInConstants(str, Enum): # Name for the signin invoke to verify the 6-digit authentication code as part of sign-in. verify_state_operation_name = "signin/verifyState" # Name for signin invoke to perform a token exchange. token_exchange_operation_name = "signin/tokenExchange" # The EventActivity name when a token is sent to the bot. token_response_event_name = "tokens/response"
0
0
0
392
0
0
0
0
46
cedce4854061d9a8c9e7cb1c10204a423754caa1
220
py
Python
verifyage.py
cheesyc/basicpython
9a055e4f813c6caa601ba00da939439b0bc82a3f
[ "MIT" ]
null
null
null
verifyage.py
cheesyc/basicpython
9a055e4f813c6caa601ba00da939439b0bc82a3f
[ "MIT" ]
null
null
null
verifyage.py
cheesyc/basicpython
9a055e4f813c6caa601ba00da939439b0bc82a3f
[ "MIT" ]
null
null
null
from datetime import datetime # def days (d): # now = datetime.now if __name__ == "__main__": # u = int(input("What is your age?")) # d = int(input("What month were you born in?"") print (datetime.now)
22
52
0.613636
from datetime import datetime # def days (d): # now = datetime.now if __name__ == "__main__": # u = int(input("What is your age?")) # d = int(input("What month were you born in?"") print (datetime.now)
0
0
0
0
0
0
0
0
0
7d5e808698d08d5b754ad10b30667e0affcf369b
9,023
py
Python
predictive-horizontal-pod-autoscaler/short/analyse.py
jthomperoo/custom-pod-autoscaler-experiments
f065bee72391dff008a388d46cba40df3fb23c98
[ "Apache-2.0" ]
4
2020-02-26T14:00:01.000Z
2022-02-25T15:23:09.000Z
predictive-horizontal-pod-autoscaler/short/analyse.py
jthomperoo/custom-pod-autoscaler-experiments
f065bee72391dff008a388d46cba40df3fb23c98
[ "Apache-2.0" ]
1
2021-06-12T09:40:56.000Z
2021-06-12T09:51:45.000Z
predictive-horizontal-pod-autoscaler/short/analyse.py
jthomperoo/custom-pod-autoscaler-experiments
f065bee72391dff008a388d46cba40df3fb23c98
[ "Apache-2.0" ]
1
2021-07-07T09:58:23.000Z
2021-07-07T09:58:23.000Z
# Copyright 2020 Jamie Thompson. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. if __name__ == "__main__": main()
54.355422
161
0.729469
# Copyright 2020 Jamie Thompson. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import numpy as np from tabulate import tabulate from matplotlib import pyplot as plt def plot_replica_comparison(horizontal_replicas, predictive_replicas): plt.figure(figsize=[6, 6]) plt.plot(list(np.arange(0, 30, 0.5)), horizontal_replicas, "r", list(np.arange(0, 30, 0.5)), predictive_replicas, "b") plt.legend(["K8s HPA", "CPA Predictive HPA"]) plt.xlabel("time (minutes)") plt.ylabel("number of replicas") plt.savefig("results/predictive_vs_horizontal_replicas.svg") def plot_avg_latency_comparison(horizontal_latencies, predictive_latencies): horizontal_avg_latencies = [] for result in horizontal_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//") is None: continue horizontal_avg_latencies.append(result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//").get("avg_response_time")) predictive_avg_latencies = [] for result in predictive_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//") is None: continue predictive_avg_latencies.append(result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//").get("avg_response_time")) plt.figure(figsize=[6, 6]) plt.plot(list(np.arange(0, 30, 0.5)), horizontal_avg_latencies, "r", list(np.arange(0, 30, 0.5)), predictive_avg_latencies, "b") plt.legend(["K8s HPA", "CPA Predictive HPA"]) plt.xlabel("time (minutes)") plt.ylabel("average latency") plt.savefig("results/avg_latency_comparison.svg") def plot_max_latency_comparison(horizontal_latencies, predictive_latencies): horizontal_max_latencies = [] for result in horizontal_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//") is None: continue horizontal_max_latencies.append(result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//").get("max_response_time")) predictive_max_latencies = [] for result in predictive_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//") is None: continue predictive_max_latencies.append(result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//").get("max_response_time")) plt.figure(figsize=[6, 6]) plt.plot(list(np.arange(0, 30, 0.5)), horizontal_max_latencies, "r", list(np.arange(0, 30, 0.5)), predictive_max_latencies, "b") plt.legend(["K8s HPA", "CPA Predictive HPA"]) plt.xlabel("time (minutes)") plt.ylabel("maximum latency") plt.savefig("results/max_latency_comparison.svg") def plot_failed_to_success_request_percentage(horizontal_latencies, predictive_latencies): horizontal_fail_percentages = [] for result in horizontal_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//") is None: continue horizontal_fail_percentages.append(result["num_requests_fail"] / result["num_requests"] * 100) predictive_fail_percentages = [] for result in predictive_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//") is None: continue predictive_fail_percentages.append(result["num_requests_fail"] / result["num_requests"] * 100) plt.figure(figsize=[6, 6]) plt.plot(list(np.arange(0, 30, 0.5)), horizontal_fail_percentages, "r", list(np.arange(0, 30, 0.5)), predictive_fail_percentages, "b") plt.legend(["K8s HPA", "CPA Predictive HPA"]) plt.xlabel("time (minutes)") plt.ylabel("failed requests (%)") plt.savefig("results/fail_percentage_comparison.svg") def create_table(horizontal_replicas, predictive_replicas, horizontal_latencies, predictive_latencies): horizontal_num_requests = [] for result in horizontal_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//") is None: continue horizontal_num_requests.append(result["num_requests"]) predictive_num_requests = [] for result in predictive_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//") is None: continue predictive_num_requests.append(result["num_requests"]) horizontal_avg_latencies = [] for result in horizontal_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//") is None: continue horizontal_avg_latencies.append(result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//").get("avg_response_time")) predictive_avg_latencies = [] for result in predictive_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//") is None: continue predictive_avg_latencies.append(result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//").get("avg_response_time")) horizontal_max_latencies = [] for result in horizontal_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//") is None: continue horizontal_max_latencies.append(result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//").get("max_response_time")) predictive_max_latencies = [] for result in predictive_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//") is None: continue predictive_max_latencies.append(result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//").get("max_response_time")) horizontal_fail_percentages = [] for result in horizontal_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//") is None: continue horizontal_fail_percentages.append(result["num_requests_fail"] / result["num_requests"] * 100) predictive_fail_percentages = [] for result in predictive_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//") is None: continue predictive_fail_percentages.append(result["num_requests_fail"] / result["num_requests"] * 100) table = { "time (mins)": list(np.arange(0, 30, 0.5)), "hpa num requests": horizontal_num_requests, "phpa num requests": predictive_num_requests, "hpa replicas": horizontal_replicas, "phpa replicas": predictive_replicas, "hpa avg latencies": horizontal_avg_latencies, "phpa avg latencies": predictive_avg_latencies, "hpa max latencies": horizontal_max_latencies, "phpa max latencies": predictive_max_latencies, "hpa fail requests (%)": horizontal_fail_percentages, "phpa fail requests (%)": predictive_fail_percentages } with open("results/predictive_vs_horizontal_table.md", "w") as table_file: table_file.write(tabulate(table, tablefmt="pipe", headers="keys")) def main(): with open("results/results.json") as json_file: results = json.load(json_file) horizontal_replicas = results["horizontal"]["replicas"] predictive_replicas = results["predictive"]["replicas"] horizontal_latencies = results["horizontal"]["latency"] predictive_latencies = results["predictive"]["latency"] horizontal_latencies = sorted(horizontal_latencies, key=lambda k: k["start_time"]) predictive_latencies = sorted(predictive_latencies, key=lambda k: k["start_time"]) create_table(horizontal_replicas, predictive_replicas, horizontal_latencies, predictive_latencies) plot_replica_comparison(horizontal_replicas, predictive_replicas) plot_avg_latency_comparison(horizontal_latencies, predictive_latencies) plot_max_latency_comparison(horizontal_latencies, predictive_latencies) plot_failed_to_success_request_percentage(horizontal_latencies, predictive_latencies) if __name__ == "__main__": main()
0
0
0
0
0
8,167
0
10
226
21699970a803f9a1e84a84d986852609b75c11f8
2,747
py
Python
fmformatter/Sites2Query.py
wassermanlab/OpenFlexTyper
35edbf2c29f20ccec20baaaf46cc2382b7defda6
[ "MIT" ]
7
2019-11-26T00:01:58.000Z
2021-04-03T05:31:44.000Z
fmformatter/Sites2Query.py
wassermanlab/OpenFlexTyper_restore
f599011a8f856bd81e73e5472d50980b4695055c
[ "MIT" ]
33
2019-10-22T22:23:51.000Z
2020-10-02T20:14:17.000Z
fmformatter/Sites2Query.py
wassermanlab/OpenFlexTyper_restore
f599011a8f856bd81e73e5472d50980b4695055c
[ "MIT" ]
4
2019-11-29T23:16:57.000Z
2020-03-07T19:04:26.000Z
# Function which takes in a sites file and produces a query file. # Sites file looks like (these are 1-based coords): # 22:50988105:G:A # # Query file looks like: # #Index Reference Alternate Chrom Pos Ref Alt Identifier DataType #0 TTTCTCCAAATACAGATCCAATGTCTTCACTTGTCTATTAAATGCCTCCCATTCCAAATATGATTACCTCTCCCCAGCTCCAATTAAGTCCCTTCTTTCCCCTCTTACTACCGCTTTCTTCCATGTGCCTCTTACAACACCATGGAGACATTTTTCATTTGTGCTTCTTTCATGCAGTTAGCCAAGCTTGTCAAGTTTTTTTTTTTTTGAAAAAAAAAAAAAATACATACATATATATATATATAATTTTTTTTCCCCTCACTATGTTGCCCAGATTGGTCTTGAACTACCGGGCTCAAGT TTTCTCCAAATACAGATCCAATGTCTTCACTTGTCTATTAAATGCCTCCCATTCCAAATATGATTACCTCTCCCCAGCTCCAATTAAGTCCCTTCTTTCCCCTCTTACTACCGCTTTCTTCCATGTGCCTCTTACAACACCATGGAGACACTTTTCATTTGTGCTTCTTTCATGCAGTTAGCCAAGCTTGTCAAGTTTTTTTTTTTTTGAAAAAAAAAAAAAATACATACATATATATATATATAATTTTTTTTCCCCTCACTATGTTGCCCAGATTGGTCTTGAACTACCGGGCTCAAGT 16 27557749 T C rs7198785_S-3AAAA cytoscan # given 1-based pos coordinate, extract seqs and return the 2 seqs for query, one with the ref and one with the alt alleles # reftest,alttest = Site2Seqs(22,50988105,'G','A',ARGS.Fasta) # print(reftest) # print(alttest) if __name__=="__main__": Main()
41.621212
649
0.790681
import pybedtools import sys import argparse def GetArgs(): parser = argparse.ArgumentParser() parser.add_argument("-I","--Infile",help="Infile in the format of Sites: Chrom:position:ref:alt", required=True) parser.add_argument("-F","--Fasta",help="Input fasta file corresponding to the positions", required=True) parser.add_argument("-O","--Outfile",help="Output file for the queries for FlexTyper", required=True) parser.add_argument("-S","--Source",help="Source acquired from,e.g. PeddyGRCh37Sites", required=True) args = parser.parse_args() return args # Function which takes in a sites file and produces a query file. # Sites file looks like (these are 1-based coords): # 22:50988105:G:A # # Query file looks like: # #Index Reference Alternate Chrom Pos Ref Alt Identifier DataType #0 TTTCTCCAAATACAGATCCAATGTCTTCACTTGTCTATTAAATGCCTCCCATTCCAAATATGATTACCTCTCCCCAGCTCCAATTAAGTCCCTTCTTTCCCCTCTTACTACCGCTTTCTTCCATGTGCCTCTTACAACACCATGGAGACATTTTTCATTTGTGCTTCTTTCATGCAGTTAGCCAAGCTTGTCAAGTTTTTTTTTTTTTGAAAAAAAAAAAAAATACATACATATATATATATATAATTTTTTTTCCCCTCACTATGTTGCCCAGATTGGTCTTGAACTACCGGGCTCAAGT TTTCTCCAAATACAGATCCAATGTCTTCACTTGTCTATTAAATGCCTCCCATTCCAAATATGATTACCTCTCCCCAGCTCCAATTAAGTCCCTTCTTTCCCCTCTTACTACCGCTTTCTTCCATGTGCCTCTTACAACACCATGGAGACACTTTTCATTTGTGCTTCTTTCATGCAGTTAGCCAAGCTTGTCAAGTTTTTTTTTTTTTGAAAAAAAAAAAAAATACATACATATATATATATATAATTTTTTTTCCCCTCACTATGTTGCCCAGATTGGTCTTGAACTACCGGGCTCAAGT 16 27557749 T C rs7198785_S-3AAAA cytoscan def ParseSitesGetQuery(SitesInfile,Fasta,QueryOutfile,Source): infile = open(SitesInfile,'r') outfile = open(QueryOutfile,'w') counter = 0 outfile.write("#Index\tReference\tAlternate\tChrom\tPos\tRef\tAlt\tIdentifier\tDataType\n") for line in infile: line = line.strip('\n') cols=line.split(':') chrom = cols[0] pos = int(cols[1]) - 1 # 1-based transition ref = cols[2] alt = cols[3] Source='PeddySitesGRCh37' refSeq,altSeq = Site2Seqs(chrom,pos,ref,alt,Fasta) outfile.write("%d\t%s\t%s\t%s\t%d\t%s\t%s\t%s\t%s\n"%(counter,refSeq,altSeq,chrom,pos,ref,alt,line,Source)) counter += 1 # given 1-based pos coordinate, extract seqs and return the 2 seqs for query, one with the ref and one with the alt alleles def Site2Seqs(chrom,pos,ref,alt,fasta): pos = pos-1 refSeq = pybedtools.BedTool.seq((chrom,pos-150,pos+151),fasta) altSeqleft = pybedtools.BedTool.seq((chrom,pos-150,pos),fasta) altSeqright = pybedtools.BedTool.seq((chrom,pos+1,pos+151),fasta) altSeq = altSeqleft + alt + altSeqright return refSeq,altSeq def Main(): ARGS = GetArgs() ParseSitesGetQuery(ARGS.Infile,ARGS.Fasta,ARGS.Outfile,ARGS.Source) # test Site2Seqs # reftest,alttest = Site2Seqs(22,50988105,'G','A',ARGS.Fasta) # print(reftest) # print(alttest) if __name__=="__main__": Main()
0
0
0
0
0
1,466
0
-21
157
fac204b97e11e17794e1161b7bf560750117f3ce
49
py
Python
src/thekpi_node/__init__.py
keeplerteam/thekpi
082258c26909254caf46caec1da89438a43548c3
[ "MIT" ]
2
2022-01-21T14:37:50.000Z
2022-01-21T16:06:27.000Z
src/thekpi_node/__init__.py
keeplerteam/thekpi
082258c26909254caf46caec1da89438a43548c3
[ "MIT" ]
null
null
null
src/thekpi_node/__init__.py
keeplerteam/thekpi
082258c26909254caf46caec1da89438a43548c3
[ "MIT" ]
null
null
null
from .node import KpiNode __all__ = ["KpiNode"]
12.25
25
0.714286
from .node import KpiNode __all__ = ["KpiNode"]
0
0
0
0
0
0
0
0
0
1fa0e3b8383b8f9f172b6decfb3c6c2eff282ed3
4,727
py
Python
python/Tests/TestStatic.py
ugirumurera/ta_solver
c3bd83633aca4db785a4d0dc554f924bb26754e1
[ "BSD-3-Clause-LBNL" ]
null
null
null
python/Tests/TestStatic.py
ugirumurera/ta_solver
c3bd83633aca4db785a4d0dc554f924bb26754e1
[ "BSD-3-Clause-LBNL" ]
null
null
null
python/Tests/TestStatic.py
ugirumurera/ta_solver
c3bd83633aca4db785a4d0dc554f924bb26754e1
[ "BSD-3-Clause-LBNL" ]
null
null
null
#from Solvers.Decomposition_Solver import Decomposition_Solver
41.464912
121
0.675904
import unittest import numpy as np from Solvers.Frank_Wolfe_Solver_Static import Frank_Wolfe_Solver from Solvers.Path_Based_Frank_Wolfe_Solver import Path_Based_Frank_Wolfe_Solver #from Solvers.Decomposition_Solver import Decomposition_Solver from Model_Manager.Link_Model_Manager import Link_Model_Manager_class from Java_Connection import Java_Connection from Data_Types.Demand_Assignment_Class import Demand_Assignment_class import os import inspect class TestStatic(unittest.TestCase): @classmethod def setUpClass(cls): # make Java connection cls.connection = Java_Connection() # create a static/bpr model manager this_folder = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) configfile = os.path.join(this_folder, os.path.pardir, 'configfiles', 'seven_links.xml') bpr_coefficients = {0L: [1, 0, 0, 0, 1], 1L: [1, 0, 0, 0, 1], 2L: [5, 0, 0, 0, 5], 3L: [2, 0, 0, 0, 2], 4L: [2, 0, 0, 0, 2], 5L: [1, 0, 0, 0, 1], 6L: [5, 0, 0, 0, 5]} cls.model_manager = Link_Model_Manager_class(configfile, "static", cls.connection, None, "bpr", bpr_coefficients) # create a demand assignment api = TestStatic.model_manager.beats_api time_period = 1 # Only have one time period for static model paths_list = list(api.get_path_ids()) commodity_list = list(api.get_commodity_ids()) route_list = {} for path_id in paths_list: route_list[path_id] = api.get_subnetwork_with_id(path_id).get_link_ids() # Creating the demand assignment for initialization cls.demand_assignments = Demand_Assignment_class(route_list, commodity_list, time_period, dt=time_period) demands = {} demand_value = np.zeros(time_period) demand_value1 = np.zeros(time_period) demand_value[0] = 2 demand_value1[0] = 2 demands[(1L, 1L)] = demand_value demands[(2L, 1L)] = demand_value1 demands[(3L, 1L)] = demand_value cls.demand_assignments.set_all_demands(demands) def check_manager(self): self.assertTrue(TestStatic.model_manager.is_valid()) def test_model_run(self): traffic_model = TestStatic.model_manager.traffic_model link_states = traffic_model.Run_Model(TestStatic.demand_assignments) self.assertTrue(self.check_assignments(link_states)) def test_link_cost(self): traffic_model = TestStatic.model_manager.traffic_model link_states = traffic_model.Run_Model(TestStatic.demand_assignments) link_costs = TestStatic.model_manager.cost_function.evaluate_Cost_Function(link_states) self.assertTrue(self.check_link_costs(link_costs)) def test_link_based_fw(self): frank_sol = Frank_Wolfe_Solver(self.model_manager) def test_path_based_fw(self): num_steps = 1 eps = 1e-2 frank_sol = Frank_Wolfe_Solver(self.model_manager) assignment_seq = Path_Based_Frank_Wolfe_Solver(self.model_manager, num_steps) # Cost resulting from the path_based Frank-Wolfe link_states = self.model_manager.traffic_model.Run_Model(assignment_seq) cost_path_based = self.model_manager.cost_function.evaluate_BPR_Potential(link_states) # Cost resulting from link-based Frank-Wolfe cost_link_based = self.model_manager.cost_function.evaluate_BPR_Potential_FW(frank_sol) self.assertTrue(np.abs(cost_link_based-cost_path_based) < eps) ''' def test_decomposition_solver(self): number_of_subproblems = 1 start_time1 = timeit.default_timer() assignment_dec, error = Decomposition_Solver(self.traffic_scenario, self.Cost_Function, number_of_subproblems) print "Decomposition finished with error ", error elapsed1 = timeit.default_timer() - start_time1 print ("Decomposition Path-based took %s seconds" % elapsed1) ''' def check_assignments(self, link_states): links_flows = {(0L,1L): [6], (1L,1L): [4], (2L,1L): [2], (3L,1L): [2], (4L,1L): [2], (5L,1L): [2], (6L,1L): [4]} states = link_states.get_all_states() for key in states.keys(): if states[key][0].get_flow() != links_flows[key][0]: return False return True def check_link_costs(self, link_costs): cost_links = {(0L,1L): [1297], (1L,1L): [257], (2L,1L): [85], (3L,1L): [34], (4L,1L): [34], (5L,1L): [17], (6L,1L): [1285]} states = link_costs.get_all_costs() for key in states.keys(): if states[key][0] != cost_links[key][0]: return False return True
0
1,578
0
2,670
0
0
0
192
224
7c364bc32aba99d22e5967788cc363abdd9e9b31
484
py
Python
api/setup.py
jim8786453/kiln_share
2d70c8863f7db18069d13cdea319cd113a2d0bbb
[ "BSD-3-Clause" ]
1
2018-03-21T12:27:56.000Z
2018-03-21T12:27:56.000Z
api/setup.py
jim8786453/kiln_share
2d70c8863f7db18069d13cdea319cd113a2d0bbb
[ "BSD-3-Clause" ]
null
null
null
api/setup.py
jim8786453/kiln_share
2d70c8863f7db18069d13cdea319cd113a2d0bbb
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python import os from setuptools import setup from pip.req import parse_requirements req_file = 'requirements.txt' install_reqs = parse_requirements(req_file, session=False) reqs = [str(ir.req) for ir in install_reqs] del os.link setup( author='Jim Kennedy', author_email='[email protected]', description='Api for kilnshare.co.uk', install_requires=reqs, name='kiln_share', packages=['kiln_share'], version='0.0.1', )
22
58
0.727273
#!/usr/bin/env python import os import platform from setuptools import setup from pip.req import parse_requirements req_file = 'requirements.txt' install_reqs = parse_requirements(req_file, session=False) reqs = [str(ir.req) for ir in install_reqs] del os.link setup( author='Jim Kennedy', author_email='[email protected]', description='Api for kilnshare.co.uk', install_requires=reqs, name='kiln_share', packages=['kiln_share'], version='0.0.1', )
0
0
0
0
0
0
0
-6
22
a7da0dc79993ceee28e11231a75e0d28a5195097
784
py
Python
back/infolica/alembic/versions/20210906_5a8069c68433.py
maltaesousa/infolica
9b510b706daba8f8a04434d281c1f8730651f25f
[ "MIT" ]
null
null
null
back/infolica/alembic/versions/20210906_5a8069c68433.py
maltaesousa/infolica
9b510b706daba8f8a04434d281c1f8730651f25f
[ "MIT" ]
327
2019-10-29T13:35:25.000Z
2022-03-03T10:01:46.000Z
back/infolica/alembic/versions/20210906_5a8069c68433.py
maltaesousa/infolica
9b510b706daba8f8a04434d281c1f8730651f25f
[ "MIT" ]
5
2019-11-07T15:49:05.000Z
2021-03-08T08:59:56.000Z
"""fix affaire abandon default value Revision ID: 5a8069c68433 Revises: ee79f1259c77 Create Date: 2021-09-06 16:28:58.437853 """ # revision identifiers, used by Alembic. revision = '5a8069c68433' down_revision = 'ee79f1259c77' branch_labels = None depends_on = None
25.290323
65
0.655612
"""fix affaire abandon default value Revision ID: 5a8069c68433 Revises: ee79f1259c77 Create Date: 2021-09-06 16:28:58.437853 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '5a8069c68433' down_revision = 'ee79f1259c77' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('affaire', 'abandon', existing_type=sa.BOOLEAN(), nullable=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('affaire', 'abandon', existing_type=sa.BOOLEAN(), nullable=True) # ### end Alembic commands ###
0
0
0
0
0
421
0
3
90
36df2a65cfecf0f2d8cef146751f1d40789fd2ae
1,128
py
Python
Code_Python/Exercicio-03/Leia-três-numeros.py
gabrielf7/code-exercises
b3a8661fadc133395f3c6fb7e926317acf7fa539
[ "MIT" ]
null
null
null
Code_Python/Exercicio-03/Leia-três-numeros.py
gabrielf7/code-exercises
b3a8661fadc133395f3c6fb7e926317acf7fa539
[ "MIT" ]
null
null
null
Code_Python/Exercicio-03/Leia-três-numeros.py
gabrielf7/code-exercises
b3a8661fadc133395f3c6fb7e926317acf7fa539
[ "MIT" ]
null
null
null
#questo 4 num1 = float(input("Digite o primeiro valor: \n")) num2 = float(input("Digite o segundo valor: \n")) num3 = float(input("Digite o terceiro valor: \n")) if(num1 > num2 > num3 or num1 == num2 > num3 or num1 > num2 == num3): maior = num1 segundo = num2 menor = num3 elif num1 > num2 < num3 or num1 == num2 < num3 or num1 > num2 == num3: maior = num1 segundo = num3 menor = num2 if(num2 > num1 > num3 or num2 == num1 > num3 or num2 > num1 == num3): maior = num2 segundo = num1 menor = num3 elif (num2 > num1 < num3 or num2 == num1 < num3 or num2 > num1 == num3): maior = num2 segundo = num3 menor = num1 if(num3 > num1 > num2 or num3 == num1 > num2 or num3 > num1 == num2): maior = num3 segundo = num1 menor = num2 elif (num3 > num1 < num2 or num3 == num1 < num2 or num3 > num1 == num2): maior = num3 segundo = num2 menor = num1 if num1 == num2 == num3: maior = num1 iguais = maior print("Iguais: [", iguais,"]") exit() print("Maior: [", maior, "] | Segundo: [", segundo, "] | Menor: ", [menor])
31.333333
75
0.565603
#questão 4 num1 = float(input("Digite o primeiro valor: \n")) num2 = float(input("Digite o segundo valor: \n")) num3 = float(input("Digite o terceiro valor: \n")) if(num1 > num2 > num3 or num1 == num2 > num3 or num1 > num2 == num3): maior = num1 segundo = num2 menor = num3 elif num1 > num2 < num3 or num1 == num2 < num3 or num1 > num2 == num3: maior = num1 segundo = num3 menor = num2 if(num2 > num1 > num3 or num2 == num1 > num3 or num2 > num1 == num3): maior = num2 segundo = num1 menor = num3 elif (num2 > num1 < num3 or num2 == num1 < num3 or num2 > num1 == num3): maior = num2 segundo = num3 menor = num1 if(num3 > num1 > num2 or num3 == num1 > num2 or num3 > num1 == num2): maior = num3 segundo = num1 menor = num2 elif (num3 > num1 < num2 or num3 == num1 < num2 or num3 > num1 == num2): maior = num3 segundo = num2 menor = num1 if num1 == num2 == num3: maior = num1 iguais = maior print("Iguais: [", iguais,"]") exit() print("Maior: [", maior, "] | Segundo: [", segundo, "] | Menor: ", [menor])
2
0
0
0
0
0
0
0
0
ec43363c255f6adb5d1411a40a6f397b07037274
383
py
Python
Economic_Dispatch/plot_results.py
asuncionjc/Pyomo_Playground
b81a12905fb6cdd041b11f89ee4bbbc20168d4d2
[ "Apache-2.0" ]
1
2019-04-12T14:47:58.000Z
2019-04-12T14:47:58.000Z
Economic_Dispatch/plot_results.py
asuncionjc/Pyomo_Playground
b81a12905fb6cdd041b11f89ee4bbbc20168d4d2
[ "Apache-2.0" ]
null
null
null
Economic_Dispatch/plot_results.py
asuncionjc/Pyomo_Playground
b81a12905fb6cdd041b11f89ee4bbbc20168d4d2
[ "Apache-2.0" ]
1
2021-02-14T18:40:13.000Z
2021-02-14T18:40:13.000Z
# -*- coding: utf-8 -*- """ Created on Wed Apr 10 15:53:54 2019 @author: Asun """
25.533333
99
0.665796
# -*- coding: utf-8 -*- """ Created on Wed Apr 10 15:53:54 2019 @author: Asun """ import matplotlib.pyplot as plt import numpy as np def plot_results(model): x = np.arange(0, 3) y = [model.flow[generating_unit,1].value for generating_unit in model.indexes_generating_units] plt.plot(x, y, color = 'red', marker = 'o', linestyle = "--") plt.savefig('flow_plot.pdf')
0
0
0
0
0
226
0
7
68
de05130838373479be28ff8059892d8eb6a14633
1,787
py
Python
download_hype.py
woctezuma/steam-hype
cb885f8c1c2a4e7b8d344401207e3a7634f52317
[ "MIT" ]
1
2019-08-15T18:52:55.000Z
2019-08-15T18:52:55.000Z
download_hype.py
woctezuma/steam-hype
cb885f8c1c2a4e7b8d344401207e3a7634f52317
[ "MIT" ]
10
2019-08-15T19:05:10.000Z
2020-07-24T05:07:28.000Z
download_hype.py
woctezuma/steam-hype
cb885f8c1c2a4e7b8d344401207e3a7634f52317
[ "MIT" ]
1
2019-08-20T03:32:25.000Z
2019-08-20T03:32:25.000Z
if __name__ == '__main__': main()
20.078652
75
0.604365
import time import requests from utils import save_results def get_steam_hype_url(): # This is not my API. Please use with moderation! url = 'https://steamhype-api.herokuapp.com/calendar' return url def get_time_stamp(): time_stamp = int(time.time() * 1000) return time_stamp def get_steam_hype_params(num_followers=0): params = dict() params['start'] = get_time_stamp() params['current'] = 0 params['followers'] = num_followers params['includedlc'] = 'false' params['price'] = 100 params['discount'] = 0 params['reviews'] = 0 params['score'] = 0 return params def request_data(params=None): if params is None: params = get_steam_hype_params() resp_data = requests.get(url=get_steam_hype_url(), params=params) result = resp_data.json() return result def batch_request_data(params, save_results_to_disk=True, verbose=False): results = dict() while True: print('Request n°{}'.format(params['current'] + 1)) result = request_data(params) if len(result) == 0: break else: for game in result: app_id = game['id'] results[app_id] = game params['current'] += 1 if verbose: print(results) if save_results_to_disk: save_results(results=results) return results def main(num_followers=5000, save_results_to_disk=True): params = get_steam_hype_params(num_followers=num_followers) results = batch_request_data(params=params, save_results_to_disk=save_results_to_disk) return True if __name__ == '__main__': main()
2
0
0
0
0
1,541
0
-7
206
538fa6ef11f1d9c920a5d631b5035786fcade951
2,881
py
Python
examples/sine.py
bjodah/finitediff
bfb1940cf5c7ce5c9a3b440d1efd8f8c4128fed8
[ "BSD-2-Clause" ]
27
2016-09-14T11:40:35.000Z
2022-03-05T18:48:26.000Z
examples/sine.py
tutoushaonian/finitediff
bfb1940cf5c7ce5c9a3b440d1efd8f8c4128fed8
[ "BSD-2-Clause" ]
4
2016-04-08T03:55:14.000Z
2018-06-27T11:18:58.000Z
examples/sine.py
tutoushaonian/finitediff
bfb1940cf5c7ce5c9a3b440d1efd8f8c4128fed8
[ "BSD-2-Clause" ]
5
2017-05-25T06:50:40.000Z
2021-09-13T14:16:59.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division, print_function # Python 3 behaviour in Py2 import numpy as np from finitediff import derivatives_at_point_by_finite_diff, interpolate_by_finite_diff def demo_usage(n_data=50, n_fit=537, nhead=5, ntail=5, plot=False, alt=0): """ Plots a noisy sine curve and the fitting to it. Also presents the error and the error in the approximation of its first derivative (cosine curve) Usage example for benchmarking: $ time python sine.py --nhead 3 --ntail 3 --n-fit 500000 --n-data 50000 Usage example for plotting: $ python sine.py --nhead 1 --ntail 1 --plot """ x0, xend = 0, 5 # shaky linspace -5% to +5% noise x_data = ( np.linspace(x0, xend, n_data) + np.random.rand(n_data) * (xend - x0) / n_data / 1.5 ) y_data = np.sin(x_data) * (1.0 + 0.1 * (np.random.rand(n_data) - 0.5)) x_fit = np.linspace(x0, xend, n_fit) # Edges behave badly, work around: x_fit[0] = x_fit[0] + (x_fit[1] - x_fit[0]) / 2 x_fit[-1] = x_fit[-2] + (x_fit[-1] - x_fit[-2]) / 2 if alt: y_fit = np.empty(n_fit) dydx_fit = np.empty(n_fit) for i, xf in enumerate(x_fit): # get index j of first data point beyond xf j = np.where(x_data > xf)[0][0] lower_bound = max(0, j - alt) upper_bound = min(n_data - 1, j + alt) y_fit[i] = derivatives_at_point_by_finite_diff( x_data[lower_bound:upper_bound], y_data[lower_bound:upper_bound], xf, 0 ) dydx_fit[i] = derivatives_at_point_by_finite_diff( x_data[lower_bound:upper_bound], y_data[lower_bound:upper_bound], xf, 1 )[1] else: interp = interpolate_by_finite_diff(x_data, y_data, x_fit, 1, nhead, ntail) y_fit = interp[:, 0] dydx_fit = interp[:, 1] if plot: import matplotlib.pyplot as plt plt.subplot(221) plt.plot(x_data, y_data, "x", label="Data points (sin)") plt.plot(x_fit, y_fit, "-", label="Fitted curve (order=0)") plt.plot(x_data, np.sin(x_data), "-", label="Analytic sin(x)") plt.legend() plt.subplot(222) plt.plot(x_fit, y_fit - np.sin(x_fit), label="Error in order=0") plt.legend() plt.subplot(223) plt.plot(x_fit, dydx_fit, "-", label="Fitted derivative (order=1)") plt.plot(x_data, np.cos(x_data), "-", label="Analytic cos(x)") plt.legend() plt.subplot(224) plt.plot(x_fit, dydx_fit - np.cos(x_fit), label="Error in order=1") plt.legend() plt.show() if __name__ == "__main__": try: from argh import dispatch_command except ImportError: dispatch_command(demo_usage)
30.648936
87
0.596321
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division, print_function # Python 3 behaviour in Py2 import numpy as np from finitediff import derivatives_at_point_by_finite_diff, interpolate_by_finite_diff def demo_usage(n_data=50, n_fit=537, nhead=5, ntail=5, plot=False, alt=0): """ Plots a noisy sine curve and the fitting to it. Also presents the error and the error in the approximation of its first derivative (cosine curve) Usage example for benchmarking: $ time python sine.py --nhead 3 --ntail 3 --n-fit 500000 --n-data 50000 Usage example for plotting: $ python sine.py --nhead 1 --ntail 1 --plot """ x0, xend = 0, 5 # shaky linspace -5% to +5% noise x_data = ( np.linspace(x0, xend, n_data) + np.random.rand(n_data) * (xend - x0) / n_data / 1.5 ) y_data = np.sin(x_data) * (1.0 + 0.1 * (np.random.rand(n_data) - 0.5)) x_fit = np.linspace(x0, xend, n_fit) # Edges behave badly, work around: x_fit[0] = x_fit[0] + (x_fit[1] - x_fit[0]) / 2 x_fit[-1] = x_fit[-2] + (x_fit[-1] - x_fit[-2]) / 2 if alt: y_fit = np.empty(n_fit) dydx_fit = np.empty(n_fit) for i, xf in enumerate(x_fit): # get index j of first data point beyond xf j = np.where(x_data > xf)[0][0] lower_bound = max(0, j - alt) upper_bound = min(n_data - 1, j + alt) y_fit[i] = derivatives_at_point_by_finite_diff( x_data[lower_bound:upper_bound], y_data[lower_bound:upper_bound], xf, 0 ) dydx_fit[i] = derivatives_at_point_by_finite_diff( x_data[lower_bound:upper_bound], y_data[lower_bound:upper_bound], xf, 1 )[1] else: interp = interpolate_by_finite_diff(x_data, y_data, x_fit, 1, nhead, ntail) y_fit = interp[:, 0] dydx_fit = interp[:, 1] if plot: import matplotlib.pyplot as plt plt.subplot(221) plt.plot(x_data, y_data, "x", label="Data points (sin)") plt.plot(x_fit, y_fit, "-", label="Fitted curve (order=0)") plt.plot(x_data, np.sin(x_data), "-", label="Analytic sin(x)") plt.legend() plt.subplot(222) plt.plot(x_fit, y_fit - np.sin(x_fit), label="Error in order=0") plt.legend() plt.subplot(223) plt.plot(x_fit, dydx_fit, "-", label="Fitted derivative (order=1)") plt.plot(x_data, np.cos(x_data), "-", label="Analytic cos(x)") plt.legend() plt.subplot(224) plt.plot(x_fit, dydx_fit - np.cos(x_fit), label="Error in order=1") plt.legend() plt.show() if __name__ == "__main__": try: from argh import dispatch_command except ImportError: def dispatch_command(cb): return cb() dispatch_command(demo_usage)
0
0
0
0
0
28
0
0
31
9271f1a5455a7ecdd71cc83dbca5ba4c204b255a
1,173
py
Python
packages/mdspan/package.py
pdidev/spack
32151f29738895e1f7d96e496c084d6349a9277b
[ "Apache-2.0", "MIT" ]
2
2020-04-09T11:39:41.000Z
2021-12-10T17:45:42.000Z
packages/mdspan/package.py
pdidev/spack
32151f29738895e1f7d96e496c084d6349a9277b
[ "Apache-2.0", "MIT" ]
1
2021-08-12T10:03:26.000Z
2021-08-12T10:03:26.000Z
packages/mdspan/package.py
pdidev/spack
32151f29738895e1f7d96e496c084d6349a9277b
[ "Apache-2.0", "MIT" ]
3
2020-03-27T15:41:45.000Z
2022-02-01T15:03:11.000Z
# Copyright (C) 2020 Commissariat a l'energie atomique et aux energies alternatives (CEA) # and others. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT)
35.545455
115
0.695652
# Copyright (C) 2020 Commissariat a l'energie atomique et aux energies alternatives (CEA) # and others. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Mdspan(CMakePackage): """Reference implementation of mdspan targeting C++23.""" homepage = "https://github.com/Kokkos/mdspan" git = "https://github.com/Kokkos/mdspan.git" url = "https://github.com/kokkos/mdspan/archive/refs/tags/mdspan-0.2.0.tar.gz" maintainers = ['crtrott'] version('stable', branch='stable', preferred=True) version('0.2.0', sha256='1ce8e2be0588aa6f2ba34c930b06b892182634d93034071c0157cb78fa294212', extension='tar.gz') version('0.1.0', sha256='24c1e4be4870436c6c5e80d38870721b0b6252185b8288d00d8f3491dfba754b', extension='tar.gz') depends_on("[email protected]:", type='build') variant('cxx_standard', default='DETECT', description="Override the default CXX_STANDARD to compile with.", values=('DETECT', '14', '17', '20')) def cmake_args(self): args = [ self.define_from_variant('MDSPAN_CXX_STANDARD', 'cxx_standard') ] return args
0
0
0
929
0
0
0
-2
46
cdb3f49fb732beb3ef7f5d4eef3c47dfc48b1951
307
py
Python
examples/docs_snippets_crag/docs_snippets_crag/concepts/solids_pipelines/linear_pipeline.py
dbatten5/dagster
d76e50295054ffe5a72f9b292ef57febae499528
[ "Apache-2.0" ]
1
2021-07-03T09:05:58.000Z
2021-07-03T09:05:58.000Z
examples/docs_snippets_crag/docs_snippets_crag/concepts/solids_pipelines/linear_pipeline.py
dbatten5/dagster
d76e50295054ffe5a72f9b292ef57febae499528
[ "Apache-2.0" ]
1
2021-06-21T18:30:02.000Z
2021-06-25T21:18:39.000Z
examples/docs_snippets_crag/docs_snippets_crag/concepts/solids_pipelines/linear_pipeline.py
dbatten5/dagster
d76e50295054ffe5a72f9b292ef57febae499528
[ "Apache-2.0" ]
1
2021-09-26T07:29:17.000Z
2021-09-26T07:29:17.000Z
# pylint: disable=unused-argument # start_marker # end_marker
13.347826
43
0.710098
# pylint: disable=unused-argument # start_marker from dagster import pipeline, solid @solid def return_one(context) -> int: return 1 @solid def add_one(context, number: int) -> int: return number + 1 @pipeline def linear_pipeline(): add_one(add_one(add_one(return_one()))) # end_marker
0
134
0
0
0
0
0
14
91
ac9f99f6f60b9becd44d5f1c6fefe4639be389b0
474
py
Python
xastropy/relativity/__init__.py
bpholden/xastropy
66aff0995a84c6829da65996d2379ba4c946dabe
[ "BSD-3-Clause" ]
3
2015-08-23T00:32:58.000Z
2020-12-31T02:37:52.000Z
xastropy/relativity/__init__.py
Kristall-WangShiwei/xastropy
723fe56cb48d5a5c4cdded839082ee12ef8c6732
[ "BSD-3-Clause" ]
104
2015-07-17T18:31:54.000Z
2018-06-29T17:04:09.000Z
xastropy/relativity/__init__.py
Kristall-WangShiwei/xastropy
723fe56cb48d5a5c4cdded839082ee12ef8c6732
[ "BSD-3-Clause" ]
16
2015-07-17T15:50:37.000Z
2019-04-21T03:42:47.000Z
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ astropy.cosmology contains classes and functions for cosmological distance measures and other cosmology-related calculations. See the `Astropy documentation <http://docs.astropy.org/en/latest/cosmology/index.html>`_ for more detailed usage examples and references. """ from __future__ import (absolute_import, division, print_function, unicode_literals)
36.461538
69
0.767932
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ astropy.cosmology contains classes and functions for cosmological distance measures and other cosmology-related calculations. See the `Astropy documentation <http://docs.astropy.org/en/latest/cosmology/index.html>`_ for more detailed usage examples and references. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from .velocities import *
0
0
0
0
0
0
0
4
23
4bfa262067e0d0cd970b7cd29211db1db46e96fe
651
py
Python
app/migrations/0003_auto_20181022_1601.py
Evohmike/Nyumba-Kumi-App
80ba9ded12bda6e41c9395a4e439e80f8840d295
[ "MIT" ]
null
null
null
app/migrations/0003_auto_20181022_1601.py
Evohmike/Nyumba-Kumi-App
80ba9ded12bda6e41c9395a4e439e80f8840d295
[ "MIT" ]
null
null
null
app/migrations/0003_auto_20181022_1601.py
Evohmike/Nyumba-Kumi-App
80ba9ded12bda6e41c9395a4e439e80f8840d295
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-10-22 13:01 from __future__ import unicode_literals
25.038462
71
0.605223
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-10-22 13:01 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0002_neighbourhood_hood_photo'), ] operations = [ migrations.AddField( model_name='neighbourhood', name='health', field=models.CharField(default='071000000', max_length=15), ), migrations.AddField( model_name='neighbourhood', name='police', field=models.CharField(default='9999', max_length=15), ), ]
0
0
0
474
0
0
0
19
46
30d1cfa49c2d708d5f169d7bff5b66ab9dc3fbca
2,138
py
Python
test_laylib/test_default_engine.py
Layto888/laylib-1.0.1
c7317c29659a476adf6e90eb729b09ce4c49e219
[ "MIT" ]
1
2018-08-04T14:44:42.000Z
2018-08-04T14:44:42.000Z
test_laylib/test_default_engine.py
Layto888/laylib-1.0
c7317c29659a476adf6e90eb729b09ce4c49e219
[ "MIT" ]
null
null
null
test_laylib/test_default_engine.py
Layto888/laylib-1.0
c7317c29659a476adf6e90eb729b09ce4c49e219
[ "MIT" ]
null
null
null
# test module default_engine.py import logging import os import inspect import sys current_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir = os.path.dirname(current_dir) sys.path.insert(0, parent_dir) logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s') """ @pytest.fixture def surface_env(scope="function"): pg.init() if not pg.display.get_init(): logging.info('unable to init display pygame') set_env = pg.display.set_mode((200, 200)) yield set_env # pg.quit() """
26.395062
87
0.755379
# test module default_engine.py import pytest import logging import os import inspect import sys current_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir = os.path.dirname(current_dir) sys.path.insert(0, parent_dir) from laylib import default_engine logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s') """ @pytest.fixture def surface_env(scope="function"): pg.init() if not pg.display.get_init(): logging.info('unable to init display pygame') set_env = pg.display.set_mode((200, 200)) yield set_env # pg.quit() """ class _ObjClass(default_engine.DefaultEngine): pass @pytest.fixture def class_default_engine(): new_class = _ObjClass() return new_class @pytest.mark.skip(reason="unskip this test if you're not using travis CI.") def test_surface_env(surface_env): # the screen should not be none. assert surface_env is not None assert surface_env.get_size() == (200, 200) def test_default_engine_attr(class_default_engine): assert isinstance(class_default_engine, default_engine.DefaultEngine) assert class_default_engine.running is True assert class_default_engine.playing is False assert class_default_engine._time_unit == 1000.0 def test_time_setget(class_default_engine): class_default_engine.time_unit = 20.0 assert class_default_engine.time_unit == 20.0 class_default_engine.time_unit = -50.0 assert class_default_engine.time_unit == 1000.0 @pytest.mark.skip(reason="We can't exit the main_loop this way") def test_delta_time_main_loop(class_default_engine): pass @pytest.mark.skip(reason="will not be tested. User interaction") def test_event_listener(): pass @pytest.mark.skip(reason="will be tested with resources module.") def test_load_game(): pass def test_destroy_game(class_default_engine): class_default_engine._destroy_game() assert class_default_engine.all_sprites is not None assert class_default_engine.img is None assert class_default_engine.snd is None assert class_default_engine.fnt is None
0
539
0
34
0
715
0
4
252
e0296db2c64142c0262d853517a11e247c329f34
3,886
py
Python
lingvo/core/base_decoder.py
pizzahan/lingvo
9b85b7ba5d037701302efa807841c05223bc7d1d
[ "Apache-2.0" ]
4
2019-06-08T00:19:06.000Z
2020-08-03T16:28:53.000Z
lingvo/core/base_decoder.py
pizzahan/lingvo
9b85b7ba5d037701302efa807841c05223bc7d1d
[ "Apache-2.0" ]
null
null
null
lingvo/core/base_decoder.py
pizzahan/lingvo
9b85b7ba5d037701302efa807841c05223bc7d1d
[ "Apache-2.0" ]
5
2018-12-11T08:05:16.000Z
2020-05-30T03:40:13.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Common decoder interface.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
37.728155
80
0.717962
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Common decoder interface.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from lingvo.core import base_layer from lingvo.core import beam_search_helper from lingvo.core import target_sequence_sampler class BaseDecoder(base_layer.BaseLayer): """Base class for all decoders.""" @classmethod def Params(cls): p = super(BaseDecoder, cls).Params() p.Define( 'packed_input', False, 'If True, decoder and all layers support ' 'multiple examples in a single sequence.') return p def FProp(self, theta, encoder_outputs, targets): """Decodes `targets` given encoded source. Args: theta: A `.NestedMap` object containing weights' values of this layer and its children layers. encoder_outputs: a NestedMap computed by encoder. targets: A dict of string to tensors representing the targets one try to predict. Returns: A map from metric name (a python string) to a tuple (value, weight). Both value and weight are scalar Tensors. """ predictions = self.ComputePredictions(theta, encoder_outputs, targets) return self.ComputeLoss(theta, predictions, targets)[0] def ComputePredictions(self, theta, encoder_outputs, targets): raise NotImplementedError('Abstract method: %s' % type(self)) def ComputeLoss(self, theta, predictions, targets): raise NotImplementedError('Abstract method: %s' % type(self)) class BaseBeamSearchDecoder(BaseDecoder): """Decoder that does beam search.""" @classmethod def Params(cls): p = super(BaseBeamSearchDecoder, cls).Params() p.Define('target_sos_id', 1, 'Id of the target sequence sos symbol.') p.Define('target_eos_id', 2, 'Id of the target sequence eos symbol.') # TODO(rpang): remove target_seq_len and use beam_search.target_seq_len # instead. p.Define('target_seq_len', 0, 'Target seq length.') p.Define('beam_search', beam_search_helper.BeamSearchHelper.Params(), 'BeamSearchHelper params.') p.Define('target_sequence_sampler', target_sequence_sampler.TargetSequenceSampler.Params(), 'TargetSequenceSampler params.') return p @base_layer.initializer def __init__(self, params): super(BaseBeamSearchDecoder, self).__init__(params) p = self.params p.beam_search.target_seq_len = p.target_seq_len p.beam_search.target_sos_id = p.target_sos_id p.beam_search.target_eos_id = p.target_eos_id self.CreateChild('beam_search', p.beam_search) p.target_sequence_sampler.target_seq_len = p.target_seq_len p.target_sequence_sampler.target_sos_id = p.target_sos_id p.target_sequence_sampler.target_eos_id = p.target_eos_id self.CreateChild('target_sequence_sampler', p.target_sequence_sampler) def BeamSearchDecode(self, encoder_outputs): # pylint: disable=line-too-long """Performs beam search based decoding. Args: encoder_outputs: the outputs of the encoder. returns: `.BeamSearchDecodeOutput`, A namedtuple whose elements are tensors. """ # pylint: enable=line-too-long raise NotImplementedError('Abstract method')
0
1,416
0
1,464
0
0
0
60
113
85d102b6cba4ef055e73d753952668f328b5a301
1,225
py
Python
tests/runtime/asset/test_persistent.py
formlio/forml
fd070da74a0107e37c0c643dd8df8680618fef74
[ "Apache-2.0" ]
78
2020-11-04T18:27:20.000Z
2022-02-07T03:32:53.000Z
tests/runtime/asset/test_persistent.py
formlio/forml
fd070da74a0107e37c0c643dd8df8680618fef74
[ "Apache-2.0" ]
3
2020-11-05T20:42:15.000Z
2021-01-13T19:57:01.000Z
tests/runtime/asset/test_persistent.py
formlio/forml
fd070da74a0107e37c0c643dd8df8680618fef74
[ "Apache-2.0" ]
7
2020-11-18T17:18:15.000Z
2021-03-24T05:14:29.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ ForML persistent unit tests. """ # pylint: disable=no-self-use
38.28125
120
0.75102
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ ForML persistent unit tests. """ # pylint: disable=no-self-use from forml.runtime import asset class TestRegistry: """Registry unit tests.""" def test_get(self, registry: asset.Registry, project_name: asset.Project.Key, populated_lineage: asset.Lineage.Key): """Test lineage get.""" lineage = asset.Directory(registry).get(project_name).get(populated_lineage) assert lineage.key == populated_lineage
0
0
0
316
0
0
0
10
45
6929622484867a36adedfe910766d009df4df761
491
py
Python
teste_requests.py
stevillis/gu-escola
2b26ec53e63fb70447c7a0eb13ab9c6e473122e0
[ "MIT" ]
null
null
null
teste_requests.py
stevillis/gu-escola
2b26ec53e63fb70447c7a0eb13ab9c6e473122e0
[ "MIT" ]
null
null
null
teste_requests.py
stevillis/gu-escola
2b26ec53e63fb70447c7a0eb13ab9c6e473122e0
[ "MIT" ]
null
null
null
import requests BASE_URL = 'http://localhost:8000/api/v2/' # GET Avaliacoes """ response = requests.get(f'{BASE_URL}avaliacoes') print(response) print(response.status_code) avaliacoes = response.json() print(avaliacoes) print(avaliacoes.get('count')) print(avaliacoes.get('results')) """ # GET Cursos headers = { 'Authorization': 'Token 6e6ab3885e67fcc06fabc926a277b07c3bd86be8' } response = requests.get(f'{BASE_URL}cursos', headers=headers) print(response.json().get('results'))
19.64
69
0.745418
import requests BASE_URL = 'http://localhost:8000/api/v2/' # GET Avaliacoes """ response = requests.get(f'{BASE_URL}avaliacoes') print(response) print(response.status_code) avaliacoes = response.json() print(avaliacoes) print(avaliacoes.get('count')) print(avaliacoes.get('results')) """ # GET Cursos headers = { 'Authorization': 'Token 6e6ab3885e67fcc06fabc926a277b07c3bd86be8' } response = requests.get(f'{BASE_URL}cursos', headers=headers) print(response.json().get('results'))
0
0
0
0
0
0
0
0
0
d5b5b6fef388dc9909b4b8f5f7507dcc08300c41
4,852
py
Python
submissions/aartiste/myKMeans.py
dillonpoff/aima-python
2eadb43f6ede9c7a2e211ea38dff3fa5fd5c91df
[ "MIT" ]
1
2018-08-24T14:04:18.000Z
2018-08-24T14:04:18.000Z
submissions/aartiste/myKMeans.py
dillonpoff/aima-python
2eadb43f6ede9c7a2e211ea38dff3fa5fd5c91df
[ "MIT" ]
null
null
null
submissions/aartiste/myKMeans.py
dillonpoff/aima-python
2eadb43f6ede9c7a2e211ea38dff3fa5fd5c91df
[ "MIT" ]
null
null
null
from sklearn.cluster import KMeans import traceback from submissions.aartiste import election from submissions.aartiste import county_demographics trumpECHP = DataFrame() ''' Extract data from the CORGIS elections, and merge it with the CORGIS demographics. Both data sets are organized by county and state. ''' joint = {} elections = election.get_results() for county in elections: try: st = county['Location']['State Abbreviation'] countyST = county['Location']['County'] + st trump = county['Vote Data']['Donald Trump']['Percent of Votes'] joint[countyST] = {} joint[countyST]['ST']= st joint[countyST]['Trump'] = trump except: traceback.print_exc() demographics = county_demographics.get_all_counties() for county in demographics: try: countyNames = county['County'].split() cName = ' '.join(countyNames[:-1]) st = county['State'] countyST = cName + st # elderly = # college = # home = # poverty = if countyST in joint: joint[countyST]['Elderly'] = county['Age']["Percent 65 and Older"] joint[countyST]['HighSchool'] = county['Education']["High School or Higher"] joint[countyST]['College'] = county['Education']["Bachelor's Degree or Higher"] joint[countyST]['White'] = county['Ethnicities']["White Alone, not Hispanic or Latino"] joint[countyST]['Persons'] = county['Housing']["Persons per Household"] joint[countyST]['Home'] = county['Housing']["Homeownership Rate"] joint[countyST]['Income'] = county['Income']["Median Houseold Income"] joint[countyST]['Poverty'] = county['Income']["Persons Below Poverty Level"] joint[countyST]['Sales'] = county['Sales']["Retail Sales per Capita"] except: traceback.print_exc() ''' Remove the counties that did not appear in both samples. ''' intersection = {} for countyST in joint: if 'College' in joint[countyST]: intersection[countyST] = joint[countyST] trumpECHP.data = [] ''' Build the input frame, row by row. ''' for countyST in intersection: # choose the input values row = [] for key in intersection[countyST]: if key in ['ST', 'Trump']: continue row.append(intersection[countyST][key]) trumpECHP.data.append(row) firstCounty = next(iter(intersection.keys())) firstRow = intersection[firstCounty] trumpECHP.feature_names = list(firstRow.keys()) trumpECHP.feature_names.remove('ST') trumpECHP.feature_names.remove('Trump') ''' Build the target list, one entry for each row in the input frame. The Naive Bayesian network is a classifier, i.e. it sorts data points into bins. The best it can do to estimate a continuous variable is to break the domain into segments, and predict the segment into which the variable's value will fall. In this example, I'm breaking Trump's % into two arbitrary segments. ''' trumpECHP.target = [] for countyST in intersection: # choose the target tt = trumpTarget(intersection[countyST]['Trump']) trumpECHP.target.append(tt) trumpECHP.target_names = [ 'Trump <= 45%', 'Trump > 45%', ] ''' Try scaling the data. ''' trumpScaled = DataFrame() setupScales(trumpECHP.data) trumpScaled.data = scaleGrid(trumpECHP.data) trumpScaled.feature_names = trumpECHP.feature_names trumpScaled.target = trumpECHP.target trumpScaled.target_names = trumpECHP.target_names ''' Make a customn classifier, ''' km = KMeans( n_clusters=2, # max_iter=300, # n_init=10, # init='k-means++', # algorithm='auto', # precompute_distances='auto', # tol=1e-4, # n_jobs=-1, # random_state=numpy.RandomState, # verbose=0, # copy_x=True, ) Examples = { 'Trump': { 'frame': trumpScaled, }, 'TrumpCustom': { 'frame': trumpScaled, 'kmeans': km }, }
27.568182
99
0.620569
from sklearn.cluster import KMeans import traceback from submissions.aartiste import election from submissions.aartiste import county_demographics class DataFrame: data = [] feature_names = [] target = [] target_names = [] trumpECHP = DataFrame() ''' Extract data from the CORGIS elections, and merge it with the CORGIS demographics. Both data sets are organized by county and state. ''' joint = {} elections = election.get_results() for county in elections: try: st = county['Location']['State Abbreviation'] countyST = county['Location']['County'] + st trump = county['Vote Data']['Donald Trump']['Percent of Votes'] joint[countyST] = {} joint[countyST]['ST']= st joint[countyST]['Trump'] = trump except: traceback.print_exc() demographics = county_demographics.get_all_counties() for county in demographics: try: countyNames = county['County'].split() cName = ' '.join(countyNames[:-1]) st = county['State'] countyST = cName + st # elderly = # college = # home = # poverty = if countyST in joint: joint[countyST]['Elderly'] = county['Age']["Percent 65 and Older"] joint[countyST]['HighSchool'] = county['Education']["High School or Higher"] joint[countyST]['College'] = county['Education']["Bachelor's Degree or Higher"] joint[countyST]['White'] = county['Ethnicities']["White Alone, not Hispanic or Latino"] joint[countyST]['Persons'] = county['Housing']["Persons per Household"] joint[countyST]['Home'] = county['Housing']["Homeownership Rate"] joint[countyST]['Income'] = county['Income']["Median Houseold Income"] joint[countyST]['Poverty'] = county['Income']["Persons Below Poverty Level"] joint[countyST]['Sales'] = county['Sales']["Retail Sales per Capita"] except: traceback.print_exc() ''' Remove the counties that did not appear in both samples. ''' intersection = {} for countyST in joint: if 'College' in joint[countyST]: intersection[countyST] = joint[countyST] trumpECHP.data = [] ''' Build the input frame, row by row. ''' for countyST in intersection: # choose the input values row = [] for key in intersection[countyST]: if key in ['ST', 'Trump']: continue row.append(intersection[countyST][key]) trumpECHP.data.append(row) firstCounty = next(iter(intersection.keys())) firstRow = intersection[firstCounty] trumpECHP.feature_names = list(firstRow.keys()) trumpECHP.feature_names.remove('ST') trumpECHP.feature_names.remove('Trump') ''' Build the target list, one entry for each row in the input frame. The Naive Bayesian network is a classifier, i.e. it sorts data points into bins. The best it can do to estimate a continuous variable is to break the domain into segments, and predict the segment into which the variable's value will fall. In this example, I'm breaking Trump's % into two arbitrary segments. ''' trumpECHP.target = [] def trumpTarget(percentage): if percentage > 45: return 1 return 0 for countyST in intersection: # choose the target tt = trumpTarget(intersection[countyST]['Trump']) trumpECHP.target.append(tt) trumpECHP.target_names = [ 'Trump <= 45%', 'Trump > 45%', ] ''' Try scaling the data. ''' trumpScaled = DataFrame() def setupScales(grid): global min, max min = list(grid[0]) max = list(grid[0]) for row in range(1, len(grid)): for col in range(len(grid[row])): cell = grid[row][col] if cell < min[col]: min[col] = cell if cell > max[col]: max[col] = cell def scaleGrid(grid): newGrid = [] for row in range(len(grid)): newRow = [] for col in range(len(grid[row])): try: cell = grid[row][col] scaled = (cell - min[col]) \ / (max[col] - min[col]) newRow.append(scaled) except: pass newGrid.append(newRow) return newGrid setupScales(trumpECHP.data) trumpScaled.data = scaleGrid(trumpECHP.data) trumpScaled.feature_names = trumpECHP.feature_names trumpScaled.target = trumpECHP.target trumpScaled.target_names = trumpECHP.target_names ''' Make a customn classifier, ''' km = KMeans( n_clusters=2, # max_iter=300, # n_init=10, # init='k-means++', # algorithm='auto', # precompute_distances='auto', # tol=1e-4, # n_jobs=-1, # random_state=numpy.RandomState, # verbose=0, # copy_x=True, ) Examples = { 'Trump': { 'frame': trumpScaled, }, 'TrumpCustom': { 'frame': trumpScaled, 'kmeans': km }, }
0
0
0
70
0
759
0
0
92
f45d5ecb43560f81497d317a23712bf1eaf8d15f
603
py
Python
initialize_points_w.py
NCBI-Hackathons/McDiff
43037967e65e8dbdda18c891175c93537b98a238
[ "MIT" ]
3
2018-06-21T15:16:25.000Z
2018-06-21T22:42:17.000Z
initialize_points_w.py
NCBI-Hackathons/McDiff
43037967e65e8dbdda18c891175c93537b98a238
[ "MIT" ]
null
null
null
initialize_points_w.py
NCBI-Hackathons/McDiff
43037967e65e8dbdda18c891175c93537b98a238
[ "MIT" ]
1
2018-06-25T16:17:04.000Z
2018-06-25T16:17:04.000Z
# import random # import numpy as np # numParticles = 120 # point_list = [[0,0],[0,1],[1,1],[1,0]] # poly = geometry.Polygon(point_list) # print generate_random_points(numParticles, poly)
25.125
71
0.706468
from shapely import geometry # import random # import numpy as np # numParticles = 120 # point_list = [[0,0],[0,1],[1,1],[1,0]] # poly = geometry.Polygon(point_list) def generate_random_points(N, poly): list_of_points = np.zeros((2, N)) minx,miny,maxx,maxy = poly.bounds counter = 0 while counter < N: punto = (np.random.uniform(minx, maxx), np.random.uniform(miny,maxy)) p = geometry.Point(punto) if poly.contains(p): list_of_points[0,counter] = punto[0] list_of_points[1,counter] = punto[1] counter += 1 return list_of_points # print generate_random_points(numParticles, poly)
0
0
0
0
0
360
0
7
45
c67cc3624a702cafd7e7246abe8b88132e111d61
53
py
Python
modules/__init__.py
richardHaw/nagare
4909c4ba8833e7cf5152e39a7bc58a558aaa2c7c
[ "MIT" ]
null
null
null
modules/__init__.py
richardHaw/nagare
4909c4ba8833e7cf5152e39a7bc58a558aaa2c7c
[ "MIT" ]
null
null
null
modules/__init__.py
richardHaw/nagare
4909c4ba8833e7cf5152e39a7bc58a558aaa2c7c
[ "MIT" ]
null
null
null
# this file is needed for python2, delete for python3
53
53
0.792453
# this file is needed for python2, delete for python3
0
0
0
0
0
0
0
0
0
54cd06ce2ea0585ac5ee273e70cb010a30aa3f06
9,713
py
Python
python/SAGEMAKER_NOTEBOOK_NO_DIRECT_INTERNET_ACCESS/SAGEMAKER_NOTEBOOK_NO_DIRECT_INTERNET_ACCESS_test.py
docebo/aws-config-rules
75f92bcad644bd71f19bbc15cf99e6d6de6b8227
[ "CC0-1.0" ]
1,295
2016-03-01T23:06:33.000Z
2022-03-31T07:17:53.000Z
python/SAGEMAKER_NOTEBOOK_NO_DIRECT_INTERNET_ACCESS/SAGEMAKER_NOTEBOOK_NO_DIRECT_INTERNET_ACCESS_test.py
tied/aws-config-rules
7c66e109c1225111d2ab8d1811d6e80dea0affcb
[ "CC0-1.0" ]
287
2016-03-01T19:51:43.000Z
2022-01-06T04:59:55.000Z
python/SAGEMAKER_NOTEBOOK_NO_DIRECT_INTERNET_ACCESS/SAGEMAKER_NOTEBOOK_NO_DIRECT_INTERNET_ACCESS_test.py
tied/aws-config-rules
7c66e109c1225111d2ab8d1811d6e80dea0affcb
[ "CC0-1.0" ]
744
2016-03-01T18:33:00.000Z
2022-03-31T18:46:44.000Z
# Copyright 2017-2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may # not use this file except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # the specific language governing permissions and limitations under the License. import sys try: from unittest.mock import MagicMock except ImportError: from mock import MagicMock ############## # Parameters # ############## # Define the default resource to report to Config Rules DEFAULT_RESOURCE_TYPE = 'AWS::::Account' ############# # Main Code # ############# CONFIG_CLIENT_MOCK = MagicMock() STS_CLIENT_MOCK = MagicMock() SAGEMAKER_CLIENT_MOCK = MagicMock() sys.modules['boto3'] = Boto3Mock() RULE = __import__('SAGEMAKER_NOTEBOOK_NO_DIRECT_INTERNET_ACCESS') #################### # Helper Functions # ####################
50.853403
182
0.724699
# Copyright 2017-2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may # not use this file except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # the specific language governing permissions and limitations under the License. import sys import unittest try: from unittest.mock import MagicMock except ImportError: from mock import MagicMock ############## # Parameters # ############## # Define the default resource to report to Config Rules DEFAULT_RESOURCE_TYPE = 'AWS::::Account' ############# # Main Code # ############# CONFIG_CLIENT_MOCK = MagicMock() STS_CLIENT_MOCK = MagicMock() SAGEMAKER_CLIENT_MOCK = MagicMock() class Boto3Mock(): @staticmethod def client(client_name, *args, **kwargs): if client_name == 'config': return CONFIG_CLIENT_MOCK if client_name == 'sts': return STS_CLIENT_MOCK if client_name == 'sagemaker': return SAGEMAKER_CLIENT_MOCK raise Exception("Attempting to create an unknown client") sys.modules['boto3'] = Boto3Mock() RULE = __import__('SAGEMAKER_NOTEBOOK_NO_DIRECT_INTERNET_ACCESS') class ComplianceTest(unittest.TestCase): notebook_instances_list = [{'NotebookInstances': [{'NotebookInstanceName': 'trial12'}, {'NotebookInstanceName': 'trial123'}]}] notebooks_direct_internet = [{'NotebookInstanceName': 'trial12', 'DirectInternetAccess': 'Enabled'}, {'NotebookInstanceName': 'trial123', 'DirectInternetAccess': 'Enabled'}] notebooks_no_direct_internet = [{'NotebookInstanceName': 'trial12', 'DirectInternetAccess': 'Disabled'}, {'NotebookInstanceName': 'trial123', 'DirectInternetAccess': 'Disabled'}] notebooks_both = [{'NotebookInstanceName': 'trial12', 'DirectInternetAccess': 'Disabled'}, {'NotebookInstanceName': 'trial123', 'DirectInternetAccess': 'Enabled'}] #SCENARIO 1: No Amazon SageMaker notebook instances exist def test_scenario_1_no_notebooks(self): notebook_instances_list = [{'NotebookInstances': []}] RULE.ASSUME_ROLE_MODE = False SAGEMAKER_CLIENT_MOCK.configure_mock(**{ "get_paginator.return_value": SAGEMAKER_CLIENT_MOCK, "paginate.return_value": notebook_instances_list}) response = RULE.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [build_expected_response('NOT_APPLICABLE', '123456789012', 'AWS::::Account')] assert_successful_evaluation(self, response, resp_expected) #SCENARIO 2: DirectInternetAccess is set to Enabled for the Amazon SageMaker notebook instances def test_scenario_2_direct_internet_access(self): RULE.ASSUME_ROLE_MODE = False annotation = "This Amazon SageMaker Notebook Instance has direct internet access." SAGEMAKER_CLIENT_MOCK.configure_mock(**{ "get_paginator.return_value": SAGEMAKER_CLIENT_MOCK, "paginate.return_value": self.notebook_instances_list}) SAGEMAKER_CLIENT_MOCK.describe_notebook_instance = MagicMock(side_effect=self.notebooks_direct_internet) response = RULE.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [build_expected_response('NON_COMPLIANT', compliance_resource_id='trial12', annotation=annotation), build_expected_response('NON_COMPLIANT', compliance_resource_id='trial123', annotation=annotation)] assert_successful_evaluation(self, response, resp_expected, evaluations_count=2) #SCENARIO 3: DirectInternetAccess is set to Disabled for the Amazon SageMaker notebook instances def test_scenario_3_no_direct_internet_access(self): RULE.ASSUME_ROLE_MODE = False SAGEMAKER_CLIENT_MOCK.configure_mock(**{ "get_paginator.return_value": SAGEMAKER_CLIENT_MOCK, "paginate.return_value": self.notebook_instances_list}) SAGEMAKER_CLIENT_MOCK.describe_notebook_instance = MagicMock(side_effect=self.notebooks_no_direct_internet) response = RULE.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [build_expected_response('COMPLIANT', compliance_resource_id='trial12'), build_expected_response('COMPLIANT', compliance_resource_id='trial123')] assert_successful_evaluation(self, response, resp_expected, evaluations_count=2) #Test for a mix of compliance types def test_scenario_2_and_3(self): RULE.ASSUME_ROLE_MODE = False annotation = "This Amazon SageMaker Notebook Instance has direct internet access." SAGEMAKER_CLIENT_MOCK.configure_mock(**{ "get_paginator.return_value": SAGEMAKER_CLIENT_MOCK, "paginate.return_value": self.notebook_instances_list}) SAGEMAKER_CLIENT_MOCK.describe_notebook_instance = MagicMock(side_effect=self.notebooks_both) response = RULE.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [build_expected_response('COMPLIANT', compliance_resource_id='trial12'), build_expected_response('NON_COMPLIANT', compliance_resource_id='trial123', annotation=annotation)] assert_successful_evaluation(self, response, resp_expected, evaluations_count=2) #################### # Helper Functions # #################### def build_lambda_configurationchange_event(invoking_event, rule_parameters=None): event_to_return = { 'configRuleName':'myrule', 'executionRoleArn':'roleArn', 'eventLeftScope': False, 'invokingEvent': invoking_event, 'accountId': '123456789012', 'configRuleArn': 'arn:aws:config:us-east-1:123456789012:config-rule/config-rule-8fngan', 'resultToken':'token' } if rule_parameters: event_to_return['ruleParameters'] = rule_parameters return event_to_return def build_lambda_scheduled_event(rule_parameters=None): invoking_event = '{"messageType":"ScheduledNotification","notificationCreationTime":"2017-12-23T22:11:18.158Z"}' event_to_return = { 'configRuleName':'myrule', 'executionRoleArn':'roleArn', 'eventLeftScope': False, 'invokingEvent': invoking_event, 'accountId': '123456789012', 'configRuleArn': 'arn:aws:config:us-east-1:123456789012:config-rule/config-rule-8fngan', 'resultToken':'token' } if rule_parameters: event_to_return['ruleParameters'] = rule_parameters return event_to_return def build_expected_response(compliance_type, compliance_resource_id, compliance_resource_type=DEFAULT_RESOURCE_TYPE, annotation=None): if not annotation: return { 'ComplianceType': compliance_type, 'ComplianceResourceId': compliance_resource_id, 'ComplianceResourceType': compliance_resource_type } return { 'ComplianceType': compliance_type, 'ComplianceResourceId': compliance_resource_id, 'ComplianceResourceType': compliance_resource_type, 'Annotation': annotation } def assert_successful_evaluation(test_class, response, resp_expected, evaluations_count=1): if isinstance(response, dict): test_class.assertEquals(resp_expected['ComplianceResourceType'], response['ComplianceResourceType']) test_class.assertEquals(resp_expected['ComplianceResourceId'], response['ComplianceResourceId']) test_class.assertEquals(resp_expected['ComplianceType'], response['ComplianceType']) test_class.assertTrue(response['OrderingTimestamp']) if 'Annotation' in resp_expected or 'Annotation' in response: test_class.assertEquals(resp_expected['Annotation'], response['Annotation']) elif isinstance(response, list): test_class.assertEquals(evaluations_count, len(response)) for i, response_expected in enumerate(resp_expected): test_class.assertEquals(response_expected['ComplianceResourceType'], response[i]['ComplianceResourceType']) test_class.assertEquals(response_expected['ComplianceResourceId'], response[i]['ComplianceResourceId']) test_class.assertEquals(response_expected['ComplianceType'], response[i]['ComplianceType']) test_class.assertTrue(response[i]['OrderingTimestamp']) if 'Annotation' in response_expected or 'Annotation' in response[i]: test_class.assertEquals(response_expected['Annotation'], response[i]['Annotation']) def assert_customer_error_response(test_class, response, customer_error_code=None, customer_error_message=None): if customer_error_code: test_class.assertEqual(customer_error_code, response['customerErrorCode']) if customer_error_message: test_class.assertEqual(customer_error_message, response['customerErrorMessage']) test_class.assertTrue(response['customerErrorCode']) test_class.assertTrue(response['customerErrorMessage']) if "internalErrorMessage" in response: test_class.assertTrue(response['internalErrorMessage']) if "internalErrorDetails" in response: test_class.assertTrue(response['internalErrorDetails']) def sts_mock(): assume_role_response = { "Credentials": { "AccessKeyId": "string", "SecretAccessKey": "string", "SessionToken": "string"}} STS_CLIENT_MOCK.reset_mock(return_value=True) STS_CLIENT_MOCK.assume_role = MagicMock(return_value=assume_role_response)
0
326
0
4,029
0
4,000
0
-6
232
0e295a939cb3bb447622e932af4f06083d13ea4b
75
py
Python
starling_sim/basemodel/topology/__init__.py
tellae/starling
56121c728eb5de3dfc77cdf08da89548f3315c87
[ "CECILL-B" ]
19
2021-02-16T12:32:22.000Z
2022-01-06T11:16:44.000Z
starling_sim/basemodel/topology/__init__.py
tellae/starling
56121c728eb5de3dfc77cdf08da89548f3315c87
[ "CECILL-B" ]
20
2021-01-13T20:58:07.000Z
2022-03-21T15:53:07.000Z
starling_sim/basemodel/topology/__init__.py
tellae/starling
56121c728eb5de3dfc77cdf08da89548f3315c87
[ "CECILL-B" ]
null
null
null
""" This package contains the modules related to simulation topologies """
18.75
66
0.773333
""" This package contains the modules related to simulation topologies """
0
0
0
0
0
0
0
0
0
7a9c4005ae9ed6fcb141368f64486d286ecf01ed
3,288
py
Python
networking_onos/extensions/callback.py
sanghoshin/networking-onos
2baec5f74e2721e5f8dffd57b3ef7a27034fa54a
[ "Apache-2.0" ]
null
null
null
networking_onos/extensions/callback.py
sanghoshin/networking-onos
2baec5f74e2721e5f8dffd57b3ef7a27034fa54a
[ "Apache-2.0" ]
null
null
null
networking_onos/extensions/callback.py
sanghoshin/networking-onos
2baec5f74e2721e5f8dffd57b3ef7a27034fa54a
[ "Apache-2.0" ]
1
2017-10-19T04:23:14.000Z
2017-10-19T04:23:14.000Z
# Copyright (c) 2017 SK Telecom Ltd # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from neutron_lib.callbacks import events from neutron_lib.callbacks import resources from networking_onos.extensions import constant as onos_const _OPERATION_MAPPING = { events.PRECOMMIT_CREATE: onos_const.ONOS_CREATE, events.PRECOMMIT_UPDATE: onos_const.ONOS_UPDATE, events.PRECOMMIT_DELETE: onos_const.ONOS_DELETE, events.AFTER_CREATE: onos_const.ONOS_CREATE, events.AFTER_UPDATE: onos_const.ONOS_UPDATE, events.AFTER_DELETE: onos_const.ONOS_DELETE, } _RESOURCE_MAPPING = { resources.SECURITY_GROUP: onos_const.ONOS_SG, resources.SECURITY_GROUP_RULE: onos_const.ONOS_SG_RULE, }
39.614458
79
0.680961
# Copyright (c) 2017 SK Telecom Ltd # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from neutron_lib.callbacks import events from neutron_lib.callbacks import registry from neutron_lib.callbacks import resources from networking_onos.extensions import constant as onos_const _OPERATION_MAPPING = { events.PRECOMMIT_CREATE: onos_const.ONOS_CREATE, events.PRECOMMIT_UPDATE: onos_const.ONOS_UPDATE, events.PRECOMMIT_DELETE: onos_const.ONOS_DELETE, events.AFTER_CREATE: onos_const.ONOS_CREATE, events.AFTER_UPDATE: onos_const.ONOS_UPDATE, events.AFTER_DELETE: onos_const.ONOS_DELETE, } _RESOURCE_MAPPING = { resources.SECURITY_GROUP: onos_const.ONOS_SG, resources.SECURITY_GROUP_RULE: onos_const.ONOS_SG_RULE, } class OnosSecurityGroupHandler(object): def __init__(self, precommit, postcommit): assert postcommit is not None self._precommit = precommit self._postcommit = postcommit self._subscribe() def _subscribe(self): if self._precommit is not None: for event in (events.PRECOMMIT_CREATE, events.PRECOMMIT_DELETE): registry.subscribe(self.sg_callback_precommit, resources.SECURITY_GROUP, event) registry.subscribe(self.sg_callback_precommit, resources.SECURITY_GROUP_RULE, event) registry.subscribe(self.sg_callback_precommit, resources.SECURITY_GROUP, events.PRECOMMIT_UPDATE) for event in (events.AFTER_CREATE, events.AFTER_DELETE): registry.subscribe(self.sg_callback_postcommit, resources.SECURITY_GROUP, event) registry.subscribe(self.sg_callback_postcommit, resources.SECURITY_GROUP_RULE, event) registry.subscribe(self.sg_callback_postcommit, resources.SECURITY_GROUP, events.AFTER_UPDATE) def _sg_callback(self, callback, resource, event, trigger, **kwargs): context = kwargs['context'] res = kwargs.get(resource) res_id = kwargs.get("%s_id" % resource) if res_id is None: res_id = res.get('id') ops = _OPERATION_MAPPING[event] res_type = _RESOURCE_MAPPING[resource] res_dict = res callback(context, ops, res_type, res_id, res_dict) def sg_callback_precommit(self, resource, event, trigger, **kwargs): self._sg_callback(self._precommit, resource, event, trigger, **kwargs) def sg_callback_postcommit(self, resource, event, trigger, **kwargs): self._sg_callback(self._postcommit, resource, event, trigger, **kwargs)
0
0
0
1,972
0
0
0
21
45
2e38813849e7b8d4b409de57f658a7d182ad66aa
3,682
py
Python
play.py
ksu-is/guesswordgame
65478e24c1fc834e43ab9dd3d00c8429fbe96f22
[ "Apache-2.0" ]
7
2015-10-03T04:10:57.000Z
2021-04-02T14:43:21.000Z
play.py
ksu-is/guesswordgame
65478e24c1fc834e43ab9dd3d00c8429fbe96f22
[ "Apache-2.0" ]
1
2016-04-20T17:11:22.000Z
2016-04-26T18:08:23.000Z
play.py
ksu-is/guesswordgame
65478e24c1fc834e43ab9dd3d00c8429fbe96f22
[ "Apache-2.0" ]
5
2016-02-26T09:42:48.000Z
2021-05-09T17:32:04.000Z
import game.main as game import time import sys if __name__ == "__main__": try: main() except (KeyboardInterrupt, SystemExit): print "\n Recieved Interrupt Signal. Bye...." import sys sys.exit()
32.017391
110
0.560565
import game.main as game import time import sys def main(): play = "--++playtheguesswordgame++--" if len(sys.argv) > 1 and sys.argv[1] == "tut": print """ Enter your guess that must be containing 4 letters: """ time.sleep(3) print """ # now the player types the word 'buff' """ time.sleep(5) print """ Enter your guess that must be containing 4 letters: buff _ _ _ _ ** """ time.sleep(6) print """ # the above is the clues for the player from his word buff # that is, the computer is saying that there are two characters # in the word 'buff' that exactly exists (and buff wasn't that # word) in the word the computer has in it's mind. # Now the player tries to find which are those two characters # were exactly in its place and which two aren't part of the word # that computer have in its mind. loading ....... """ time.sleep(20) print """ # Now again the user tries the word 'lube' Enter your guess that must be containing 4 letters: lube _ _ _ _ *!! """ time.sleep(6) print """ # from the above clue the player gets to know that the character 'u' # lies exactly at the second position on the word that he has to guess # and 'b' should be at the first position, from the previous clue (no 'f' here). # The player has now only a one ! to figure out. i,e either 'l' or 'b' exists in the # word but misplaced. now he is going to figure it out by trying the word 'bulk'. """ time.sleep(10) print """ Enter your guess that must be containing 4 letters: bulk _ _ _ _ *** """ print """ # Here, the player knows, one '*' for 'b', one '*' for 'u' and the last star for 'l' (from # previous clue). Now, he knows first three chars and he thinks the word might be 'bulb' """ print """ Enter your guess that must be containing 4 letters: bulb Congrats! you've got the right word. To continue playing the game please enter 1 and to quit enter 2: 1. play 2. quit # so, that's it we guess! """ play = raw_input("Do you want to play the game now! (y/n) :") while play != 'y' and play != 'Y' and play != 'n' and play != 'N': print "please type either 'y' or 'n' without single quote" play = raw_input("Do you want to play the game now! (y/n) :") if play == "--++playtheguesswordgame++--" or play == 'y' or play == 'Y': print """ Welcome to Guess Word game Game: Computer will think a word and you should guess it. It would be easy to win the game if you apply the basic logic. Play the game by typing your guess word. For each word you type, the game will output the number of characters that exactly match the word that computer have in its mind (yes! the mind) as the number of stars and the number of characters that exist in the word but not in the appropriate position with the number of exclamation symbol. """ guess_word = game.GuessWord() guess_word.start_game() else: print "Good bye!" if __name__ == "__main__": try: main() except (KeyboardInterrupt, SystemExit): print "\n Recieved Interrupt Signal. Bye...." import sys sys.exit()
0
0
0
0
0
3,423
0
0
23
b7325eaebdbd28f2ed8cbfb180708a24650dee3d
5,258
py
Python
mysite/users/models.py
2021fallCMPUT404/group-cmput404-project
985b76dc6c554caf77e7cf5788355cca22a26e74
[ "Apache-2.0" ]
2
2021-12-06T06:42:41.000Z
2022-03-29T21:40:14.000Z
mysite/users/models.py
2021fallCMPUT404/group-cmput404-project
985b76dc6c554caf77e7cf5788355cca22a26e74
[ "Apache-2.0" ]
7
2021-10-29T20:31:44.000Z
2021-12-05T06:55:58.000Z
mysite/users/models.py
2021fallCMPUT404/group-cmput404-project
985b76dc6c554caf77e7cf5788355cca22a26e74
[ "Apache-2.0" ]
null
null
null
SITE_URL = "https://cmput404-socialdist-project.herokuapp.com" ''' #TODO: MERGE USER_PROFILE INTO USER class User(AbstractUser): pass ''' # Create your models here.
38.661765
105
0.621909
from django.db import models from django.contrib.auth.models import User from django.contrib.auth.models import AbstractUser from django.http import HttpResponse import uuid from django import forms from django.forms.widgets import Textarea import datetime from posts.models import Post, Like, CommentLike#, InboxLike from django.urls import reverse SITE_URL = "https://cmput404-socialdist-project.herokuapp.com" ''' #TODO: MERGE USER_PROFILE INTO USER class User(AbstractUser): pass ''' def user_directory_path(instance, filename): # file will be uploaded to MEDIA_ROOT / user_<id>/<filename> #return 'user_{0}/{1}'.format(instance.user.id, filename) return 'images/users/user_{0}/{1}'.format(instance.user.id, filename) # Create your models here. class Create_user(forms.Form): username = forms.CharField(initial='') password = forms.CharField(widget=forms.PasswordInput()) confirm_password = forms.CharField(widget=forms.PasswordInput()) class User_Profile(models.Model): type = "author" user = models.OneToOneField(User, on_delete=models.CASCADE, related_name='user_profile') host = SITE_URL + '/' url = SITE_URL displayName = models.CharField(max_length=60, blank=True) email = models.CharField(max_length=60, blank=True) first_name = models.CharField(max_length=69, blank=True) last_name = models.CharField(max_length=69, blank=True) profileImage = models.ImageField( upload_to='profile_picture', blank=True, default='profile_picture/default_picture.png') github = models.CharField(blank=True, default="", max_length=100) #user = models.ForeignKey(User, on_delete=models.CASCADE) bio = models.CharField(max_length=256, unique=False) #user_posts = models.ForeignKey(Post, on_delete=models.CASCADE, null=True) def __str__(self): return ', '.join((self.displayName, str(self.id), str(self.user.id))) def get_absolute_url(self): return SITE_URL + reverse('users:user_crud', args=[str(self.user.id)]) class Inbox(models.Model): type = 'inbox' author = models.ForeignKey(User, on_delete=models.CASCADE) post = models.ManyToManyField(Post, null=True, blank=True) follow = models.ManyToManyField("users.FriendRequest", null=True, blank=True) like = models.ManyToManyField(Like, null=True, blank=True) #comment_like = models.ManyToManyField(CommentLike, null=True, blank=True, on_delete=models.CASCADE) #inbox_like = models.ManyToManyField(InboxLike, null=True, blank=True, on_delete=models.CASCADE) class UserFollows(models.Model): #following actor = models.ForeignKey(User_Profile, related_name="following", on_delete=models.CASCADE, default='') #Got followed object = models.ForeignKey(User_Profile, related_name="followers", on_delete=models.CASCADE, default='') #Creates new instance of Userfollow with the actor following the object #Parameters are User_Profile objects def create_user_follow(actor, object): UserFollows.objects.get_or_create(actor=actor, object=object) #The actor will stop following the object def delete_user_follow(actor, object): instance = UserFollows.objects.filter(actor=actor, object=object) if instance.exists(): instance.delete() return None class FriendRequest(models.Model): type = "Follow" actor = models.ForeignKey(User_Profile, on_delete=models.CASCADE, related_name="actor", default='') object = models.ForeignKey(User_Profile, on_delete=models.CASCADE, related_name="object", default='') def create_friend_request(actor, object): '''Creates a friend request instance with the actor being the person who follows and the object is the person whom is being followed. The actor and object paramaters are user_profile objects.''' print(actor, object) if UserFollows.objects.filter(actor=object, object=actor).exists( ): #Checks if the object is already following the actor # Returns so it doesn't create constant friend requests print("{} is already following {}".format(object.displayName, actor.displayName)) return f_request, created = FriendRequest.objects.get_or_create(actor=actor, object=object) print("Friend request created") print(f_request.summary()) return f_request def summary(self): return '{} wants to follow {}'.format(self.actor.displayName, self.object.displayName)
0
0
0
4,322
0
229
0
118
393
ff134e64e57b7ca7080b40af0e3f390aa9a3db33
1,305
py
Python
.env/lib/python2.7/site-packages/skimage/viewer/tests/test_utils.py
ViduraPrasangana/faster-rcnn-caffe
af6f5ee89c6e82d295bddd192d9dfcebd60d7c52
[ "MIT" ]
1
2019-01-12T13:17:32.000Z
2019-01-12T13:17:32.000Z
.env/lib/python2.7/site-packages/skimage/viewer/tests/test_utils.py
ViduraPrasangana/faster-rcnn-caffe
af6f5ee89c6e82d295bddd192d9dfcebd60d7c52
[ "MIT" ]
30
2020-04-15T19:37:40.000Z
2020-04-22T21:19:35.000Z
.env/lib/python2.7/site-packages/skimage/viewer/tests/test_utils.py
ViduraPrasangana/faster-rcnn-caffe
af6f5ee89c6e82d295bddd192d9dfcebd60d7c52
[ "MIT" ]
2
2020-03-12T23:20:22.000Z
2021-02-15T21:54:02.000Z
# -*- coding: utf-8 -*-
31.071429
76
0.724904
# -*- coding: utf-8 -*- from skimage.viewer import utils from skimage.viewer.utils import dialogs from skimage.viewer.qt import QtCore, QtWidgets, has_qt from skimage._shared import testing @testing.skipif(not has_qt, reason="Qt not installed") def test_event_loop(): utils.init_qtapp() timer = QtCore.QTimer() timer.singleShot(10, QtWidgets.QApplication.quit) utils.start_qtapp() @testing.skipif(not has_qt, reason="Qt not installed") def test_format_filename(): fname = dialogs._format_filename(('apple', 2)) assert fname == 'apple' fname = dialogs._format_filename('') assert fname is None @testing.skipif(True, reason="Can't automatically close window. See #3081.") @testing.skipif(not has_qt, reason="Qt not installed") def test_open_file_dialog(): QApp = utils.init_qtapp() timer = QtCore.QTimer() timer.singleShot(100, lambda: QApp.quit()) filename = dialogs.open_file_dialog() assert filename is None @testing.skipif(True, reason="Can't automatically close window. See #3081.") @testing.skipif(not has_qt, reason="Qt not installed") def test_save_file_dialog(): QApp = utils.init_qtapp() timer = QtCore.QTimer() timer.singleShot(100, lambda: QApp.quit()) filename = dialogs.save_file_dialog() assert filename is None
0
1,019
0
0
0
0
0
78
180
e4eed4150a0020f361e02176075753236176288a
269
py
Python
RasaNLU/pending_actions.py
naikshubham/Rasa-Introduction
93b1c6428879e49ddd93d7a5ec5a4eb52fb9bab2
[ "BSD-2-Clause" ]
1
2021-06-15T09:58:15.000Z
2021-06-15T09:58:15.000Z
RasaNLU/pending_actions.py
naikshubham/Rasa-Introduction
93b1c6428879e49ddd93d7a5ec5a4eb52fb9bab2
[ "BSD-2-Clause" ]
null
null
null
RasaNLU/pending_actions.py
naikshubham/Rasa-Introduction
93b1c6428879e49ddd93d7a5ec5a4eb52fb9bab2
[ "BSD-2-Clause" ]
null
null
null
# Pending actions # we can improve user experience of our bot by asking the user simple yes or no followup questions # one easy way to handle these followup is to define pending actions which gets executed as soon as user says "yes" # and wiped if the user says "no"
44.833333
115
0.769517
# Pending actions # we can improve user experience of our bot by asking the user simple yes or no followup questions # one easy way to handle these followup is to define pending actions which gets executed as soon as user says "yes" # and wiped if the user says "no"
0
0
0
0
0
0
0
0
0
28ea666798dad6da46886eee004f74017eb3e201
2,573
py
Python
get_ip_pool.py
vbertcen/ajk_sp_sale_rent_ratio
bd477441fde3ccbe396b68dba2418ec0b9aa558e
[ "Apache-2.0" ]
1
2019-08-30T10:54:06.000Z
2019-08-30T10:54:06.000Z
get_ip_pool.py
vbertcen/ajk_sp_sale_rent_ratio
bd477441fde3ccbe396b68dba2418ec0b9aa558e
[ "Apache-2.0" ]
null
null
null
get_ip_pool.py
vbertcen/ajk_sp_sale_rent_ratio
bd477441fde3ccbe396b68dba2418ec0b9aa558e
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 import sys import datetime reload(sys) sys.setdefaultencoding('utf8') now_str = datetime.datetime.now().strftime('%Y-%m-%d') headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 OPR/57.0.3098.116", } if __name__ == '__main__': init_ip_pool()
34.306667
156
0.539059
# coding=utf-8 import sys import pymysql import requests import datetime from lxml import etree reload(sys) sys.setdefaultencoding('utf8') now_str = datetime.datetime.now().strftime('%Y-%m-%d') headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 OPR/57.0.3098.116", } def init_ip_pool(): conn = pymysql.connect(host='localhost', user='root', password='Scholl7fcb', database='house_spider') cursor = conn.cursor() cursor.execute("truncate ip_pool") conn.commit() cursor.close() index = 1 while True: print "当前查询到第{}页".format(index) url = 'http://www.66ip.cn/{}.html'.format(index) html = requests.get(url=url, headers=headers) selector = etree.HTML(html.content) page_count = len(selector.xpath('//*[@id="main"]/div/div[1]/table/tr')) if page_count == 0: break print page_count ip = '//*[@id="main"]/div/div[1]/table/tr[{}]/td[1]' port = '//*[@id="main"]/div/div[1]/table/tr[{}]/td[2]' location = '//*[@id="main"]/div/div[1]/table/tr[{}]/td[3]' for i in range(2, page_count): ip_text = selector.xpath(ip.format(i))[0].text port_text = selector.xpath(port.format(i))[0].text location_text = selector.xpath(location.format(i))[0].text cursor = conn.cursor() if verify_available(ip_text, port_text): cursor.execute( "insert into ip_pool values(null,'{}','{}','{}',1,'{}')".format(ip_text, port_text, location_text, now_str)) print "ip={},available={}".format(ip_text, "true") else: cursor.execute( "insert into ip_pool values(null,'{}','{}','{}',0,'{}')".format(ip_text, port_text, location_text, now_str)) print "ip={},available={}".format(ip_text, "false") cursor.close() conn.commit() index += 1 conn.close() def verify_available(ip, port): pro = dict() pro['http'] = "http://{}:{}".format(ip, port) try: html = requests.get(url='http://www.baidu.com', headers=headers, proxies=pro, timeout=2) except Exception: return False else: return html.content.count('百度') > 0 if __name__ == '__main__': init_ip_pool()
27
0
0
0
0
2,103
0
-12
113
dd8bdd0ca9cd34cb385f46afc75b4e9cf95ab521
476
py
Python
jython/jython/java_usage_examples.py
JohannesDienst/polyglot_integration
ee0936539282e82d4d0605ed564389c0539ede40
[ "MIT" ]
null
null
null
jython/jython/java_usage_examples.py
JohannesDienst/polyglot_integration
ee0936539282e82d4d0605ed564389c0539ede40
[ "MIT" ]
null
null
null
jython/jython/java_usage_examples.py
JohannesDienst/polyglot_integration
ee0936539282e82d4d0605ed564389c0539ede40
[ "MIT" ]
null
null
null
from java.lang import System as javasystem javasystem.out.println("Hello") from java.util import Random r = rand(100, 23) for i in range(10): print r.nextDouble()
23.8
56
0.653361
from java.lang import System as javasystem javasystem.out.println("Hello") from java.util import Random class rand(Random): def __init__(self, multiplier=1.0, seed=None): self.multiplier = multiplier if seed is None: Random.__init__(self) else: Random.__init__(self, seed) def nextDouble(self): return Random.nextDouble(self) * self.multiplier r = rand(100, 23) for i in range(10): print r.nextDouble()
0
0
0
284
0
0
0
0
23
da4b679b11109485dccab6378be56da7adfaca21
321
py
Python
5-loops/exercise_3.1.py
wgatharia/csci131
50d76603863c9a9932634fdf2e48594f8dc673d2
[ "MIT" ]
null
null
null
5-loops/exercise_3.1.py
wgatharia/csci131
50d76603863c9a9932634fdf2e48594f8dc673d2
[ "MIT" ]
null
null
null
5-loops/exercise_3.1.py
wgatharia/csci131
50d76603863c9a9932634fdf2e48594f8dc673d2
[ "MIT" ]
null
null
null
""" File: exercise_3.1.py Author: William Gatharia This code demonstrates using a for loop. """ #loop and print numbers from 1 to 10 using a for loop and range # range creates a list of numbers # starting from 1 to 10. # Note the 11 = 10 + 1 is the upper limit form range for i in range(1, 11): print(i)
24.692308
63
0.682243
""" File: exercise_3.1.py Author: William Gatharia This code demonstrates using a for loop. """ #loop and print numbers from 1 to 10 using a for loop and range # range creates a list of numbers # starting from 1 to 10. # Note the 11 = 10 + 1 is the upper limit form range for i in range(1, 11): print(i)
0
0
0
0
0
0
0
0
0
cd438ed3e070272f3b23e2778ba9493fd02837f8
1,919
py
Python
Data_preparation/test/video_subcrop.py
Rukaume/LRCN
0d1928cc72544f59a4335fea7febc561d3dfc118
[ "MIT" ]
1
2020-11-07T05:57:32.000Z
2020-11-07T05:57:32.000Z
Data_preparation/test/video_subcrop.py
Rukaume/LRCN
0d1928cc72544f59a4335fea7febc561d3dfc118
[ "MIT" ]
1
2020-11-07T00:30:22.000Z
2021-01-26T02:22:16.000Z
Data_preparation/test/video_subcrop.py
Rukaume/LRCN
0d1928cc72544f59a4335fea7febc561d3dfc118
[ "MIT" ]
1
2020-11-07T05:57:52.000Z
2020-11-07T05:57:52.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 27 21:19:37 2020 @author: miyazakishinichi """ from tkinter import messagebox from tkinter import filedialog import tkinter import os, sys, cv2 from tqdm import tqdm ####Tk root generate#### root = tkinter.Tk() root.withdraw() ####ROI setting#### messagebox.showinfo('selectfiles', 'select csvfile for ROI setting') ROI_file_path = tkinter.filedialog.askopenfilename(initialdir = dir) if ROI_file_path == "": messagebox.showinfo('cancel', 'stop before ROI setting') sys.exit() roi_data = csv_file_read(ROI_file_path) roi_data['left'] = roi_data['BX'] roi_data['right'] = roi_data['BX'] + roi_data['Width'] roi_data['low'] = roi_data['BY'] roi_data['high'] = roi_data['BY'] + roi_data['Height'] roi = roi_data.loc[3]['left':'high'] ####file select & directory setting#### messagebox.showinfo('selectfiles', 'select image files') path = filedialog.askopenfilename() if path != False: pass else: messagebox.showinfo('quit', 'stop the script') sys.exit() folderpath = os.path.dirname(path) os.chdir(folderpath) imlist = os.listdir("./") os.makedirs("../chamber3", exist_ok = True) for i in tqdm(range(len(imlist))): tempimage = cv2.imread(imlist[i]) left, right, low, high = int(roi['left']),\ int(roi['right']),int(roi['low']),int(roi['high']) subimage = tempimage[low:high,left:right] cv2.imwrite("../chamber3/{}.jpg".format(str(i).zfill(5)), subimage)
27.028169
71
0.668056
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 27 21:19:37 2020 @author: miyazakishinichi """ import pandas as pd from tkinter import messagebox from tkinter import filedialog import tkinter import numpy as np from scipy import stats import matplotlib.pyplot as plt import os, sys, cv2 from tqdm import tqdm def csv_file_read(filepath): file_dir, file_name = os.path.split(filepath) base, ext = os.path.splitext(file_name) if ext == '.csv': data = pd.read_csv(filepath, index_col = 0) return data else: return messagebox.showinfo('error', 'selected file is not csv file') ####Tk root generate#### root = tkinter.Tk() root.withdraw() ####ROI setting#### messagebox.showinfo('selectfiles', 'select csvfile for ROI setting') ROI_file_path = tkinter.filedialog.askopenfilename(initialdir = dir) if ROI_file_path == "": messagebox.showinfo('cancel', 'stop before ROI setting') sys.exit() roi_data = csv_file_read(ROI_file_path) roi_data['left'] = roi_data['BX'] roi_data['right'] = roi_data['BX'] + roi_data['Width'] roi_data['low'] = roi_data['BY'] roi_data['high'] = roi_data['BY'] + roi_data['Height'] roi = roi_data.loc[3]['left':'high'] ####file select & directory setting#### messagebox.showinfo('selectfiles', 'select image files') path = filedialog.askopenfilename() if path != False: pass else: messagebox.showinfo('quit', 'stop the script') sys.exit() folderpath = os.path.dirname(path) os.chdir(folderpath) imlist = os.listdir("./") os.makedirs("../chamber3", exist_ok = True) for i in tqdm(range(len(imlist))): tempimage = cv2.imread(imlist[i]) left, right, low, high = int(roi['left']),\ int(roi['right']),int(roi['low']),int(roi['high']) subimage = tempimage[low:high,left:right] cv2.imwrite("../chamber3/{}.jpg".format(str(i).zfill(5)), subimage)
0
0
0
0
0
310
0
7
112
aedaa1eb60c8454a5adaa3d060aa87eba4684ba7
207
py
Python
getFrame.py
divakar-lakhera/Partial-Encryption
0fc6537b4a23848b21618e906a22920bd00b7c41
[ "MIT" ]
null
null
null
getFrame.py
divakar-lakhera/Partial-Encryption
0fc6537b4a23848b21618e906a22920bd00b7c41
[ "MIT" ]
null
null
null
getFrame.py
divakar-lakhera/Partial-Encryption
0fc6537b4a23848b21618e906a22920bd00b7c41
[ "MIT" ]
null
null
null
import cv2 INPUT_FILE='input_encode.avi' FRAME_NUMBER=70 cap=cv2.VideoCapture(INPUT_FILE) cap.set(cv2.CAP_PROP_POS_FRAMES, FRAME_NUMBER) ret,frame=cap.read() cv2.imwrite("frame_"+INPUT_FILE+".png",frame)
18.818182
46
0.797101
import cv2 INPUT_FILE='input_encode.avi' FRAME_NUMBER=70 cap=cv2.VideoCapture(INPUT_FILE) cap.set(cv2.CAP_PROP_POS_FRAMES, FRAME_NUMBER) ret,frame=cap.read() cv2.imwrite("frame_"+INPUT_FILE+".png",frame)
0
0
0
0
0
0
0
0
0
78169f18b371e12087115a1c033f6919a0a32815
27,978
py
Python
brainda/algorithms/decomposition/csp.py
TBC-TJU/MetaBCI-brainda
d2dc655163b771ca22e43432d886ece3d98235c8
[ "MIT" ]
null
null
null
brainda/algorithms/decomposition/csp.py
TBC-TJU/MetaBCI-brainda
d2dc655163b771ca22e43432d886ece3d98235c8
[ "MIT" ]
null
null
null
brainda/algorithms/decomposition/csp.py
TBC-TJU/MetaBCI-brainda
d2dc655163b771ca22e43432d886ece3d98235c8
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Authors: Swolf <[email protected]> # Date: 2021/1/07 # License: MIT License """ Common Spatial Patterns and his happy little buddies! """ from typing import Tuple import numpy as np from numpy import ndarray from scipy.linalg import eigh from .base import robust_pattern from ..utils.covariance import nearestPD, covariances def csp_kernel(X: ndarray, y: ndarray) -> Tuple[ndarray, ndarray, ndarray]: """The kernel in CSP algorithm based on paper [1]_. Parameters ---------- X: ndarray eeg data, shape (n_trials, n_channels, n_samples). y: ndarray labels of X, shape (n_trials,). Returns ------- W: ndarray Spatial filters, shape (n_channels, n_filters). D: ndarray Eigenvalues of spatial filters, shape (n_filters,). A: ndarray Spatial patterns, shape (n_channels, n_patterns). References ---------- .. [1] Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement[J]. IEEE transactions on rehabilitation engineering, 2000, 8(4): 441-446. """ X, y = np.copy(X), np.copy(y) labels = np.unique(y) X = X - np.mean(X, axis=-1, keepdims=True) if len(labels) != 2: raise ValueError("the current kernel is for 2-class problem.") C1 = covariances(X[y==labels[0]]) C2 = covariances(X[y==labels[1]]) # # trace normalization # # this operation equals to trial normalization # C1 = C1 / np.trace(C1, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] # C2 = C2 / np.trace(C2, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] C1 = np.mean(C1, axis=0) C2 = np.mean(C2, axis=0) Cc = C1 + C2 # check positive-definiteness Cc = nearestPD(Cc) # generalized eigenvalue problem D, W = eigh(C1, Cc) ix = np.argsort(D)[::-1] W = W[:, ix] D = D[ix] A = robust_pattern(W, C1, W.T@C1@W) return W, D, A def csp_feature(W: ndarray, X: ndarray, n_components: int = 2) -> ndarray: """Return CSP features in paper [1]_. Parameters ---------- W : ndarray spatial filters from csp_kernel, shape (n_channels, n_filters) X : ndarray eeg data, shape (n_trials, n_channels, n_samples) n_components : int, optional the first k components to use, usually even number, by default 2 Returns ------- ndarray features of shape (n_trials, n_features) Raises ------ ValueError n_components should less than the number of channels References ---------- .. [1] Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement[J]. IEEE transactions on rehabilitation engineering, 2000, 8(4): 441-446. """ W, X = np.copy(W), np.copy(X) max_components = W.shape[1] if n_components > max_components: raise ValueError("n_components should less than the number of channels") eps = np.finfo(X.dtype).eps X = X - np.mean(X, axis=-1, keepdims=True) # normalized variance features = np.mean(np.square(np.matmul(W[:, :n_components].T, X)), axis=-1) features = features / (np.sum(features, axis=-1, keepdims=True) + eps) # log-transformation features = np.log(np.clip(features, eps, None)) return features def _rjd(X, eps=1e-9, n_iter_max=1000): """Approximate joint diagonalization based on jacobi angle. Parameters ---------- X : ndarray A set of covariance matrices to diagonalize, shape (n_trials, n_channels, n_channels). eps : float, optional Tolerance for stopping criterion (default 1e-8). n_iter_max : int, optional The maximum number of iteration to reach convergence (default 1000). Returns ------- V : ndarray The diagonalizer, shape (n_channels, n_filters), usually n_filters == n_channels. D : ndarray The set of quasi diagonal matrices, shape (n_trials, n_channels, n_channels). Notes ----- This is a direct implementation of the Cardoso AJD algorithm [1]_ used in JADE. The code is a translation of the matlab code provided in the author website. References ---------- .. [1] Cardoso, Jean-Francois, and Antoine Souloumiac. Jacobi angles for simultaneous diagonalization. SIAM journal on matrix analysis and applications 17.1 (1996): 161-164. """ # reshape input matrix A = np.concatenate(X, 0).T # init variables m, nm = A.shape V = np.eye(m) encore = True k = 0 while encore: encore = False k += 1 if k > n_iter_max: break for p in range(m - 1): for q in range(p + 1, m): Ip = np.arange(p, nm, m) Iq = np.arange(q, nm, m) # computation of Givens angle g = np.array([A[p, Ip] - A[q, Iq], A[p, Iq] + A[q, Ip]]) gg = np.dot(g, g.T) ton = gg[0, 0] - gg[1, 1] toff = gg[0, 1] + gg[1, 0] theta = 0.5 * np.arctan2(toff, ton + np.sqrt(ton * ton + toff * toff)) c = np.cos(theta) s = np.sin(theta) encore = encore | (np.abs(s) > eps) if (np.abs(s) > eps): tmp = A[:, Ip].copy() A[:, Ip] = c * A[:, Ip] + s * A[:, Iq] A[:, Iq] = c * A[:, Iq] - s * tmp tmp = A[p, :].copy() A[p, :] = c * A[p, :] + s * A[q, :] A[q, :] = c * A[q, :] - s * tmp tmp = V[:, p].copy() V[:, p] = c * V[:, p] + s * V[:, q] V[:, q] = c * V[:, q] - s * tmp D = np.reshape(A, (m, int(nm / m), m)).transpose(1, 0, 2) return V, D def _ajd_pham(X, eps=1e-9, n_iter_max=1000): """Approximate joint diagonalization based on pham's algorithm. Parameters ---------- X : ndarray A set of covariance matrices to diagonalize, shape (n_trials, n_channels, n_channels). eps : float, optional Tolerance for stoping criterion (default 1e-6). n_iter_max : int, optional The maximum number of iteration to reach convergence (default 1000). Returns ------- V : ndarray The diagonalizer, shape (n_channels, n_filters), usually n_filters == n_channels. D : ndarray The set of quasi diagonal matrices, shape (n_trials, n_channels, n_channels). Notes ----- This is a direct implementation of the PHAM's AJD algorithm [1]_. References ---------- .. [1] Pham, Dinh Tuan. "Joint approximate diagonalization of positive definite Hermitian matrices." SIAM Journal on Matrix Analysis and Applications 22, no. 4 (2001): 1136-1152. """ # Adapted from http://github.com/alexandrebarachant/pyRiemann n_epochs = X.shape[0] # Reshape input matrix A = np.concatenate(X, axis=0).T # Init variables n_times, n_m = A.shape V = np.eye(n_times) epsilon = n_times * (n_times - 1) * eps for it in range(n_iter_max): decr = 0 for ii in range(1, n_times): for jj in range(ii): Ii = np.arange(ii, n_m, n_times) Ij = np.arange(jj, n_m, n_times) c1 = A[ii, Ii] c2 = A[jj, Ij] g12 = np.mean(A[ii, Ij] / c1) g21 = np.mean(A[ii, Ij] / c2) omega21 = np.mean(c1 / c2) omega12 = np.mean(c2 / c1) omega = np.sqrt(omega12 * omega21) tmp = np.sqrt(omega21 / omega12) tmp1 = (tmp * g12 + g21) / (omega + 1) tmp2 = (tmp * g12 - g21) / max(omega - 1, 1e-9) h12 = tmp1 + tmp2 h21 = np.conj((tmp1 - tmp2) / tmp) decr += n_epochs * (g12 * np.conj(h12) + g21 * h21) / 2.0 tmp = 1 + 1.j * 0.5 * np.imag(h12 * h21) tmp = np.real(tmp + np.sqrt(tmp ** 2 - h12 * h21)) tau = np.array([[1, -h12 / tmp], [-h21 / tmp, 1]]) A[[ii, jj], :] = np.dot(tau, A[[ii, jj], :]) tmp = np.c_[A[:, Ii], A[:, Ij]] tmp = np.reshape(tmp, (n_times * n_epochs, 2), order='F') tmp = np.dot(tmp, tau.T) tmp = np.reshape(tmp, (n_times, n_epochs * 2), order='F') A[:, Ii] = tmp[:, :n_epochs] A[:, Ij] = tmp[:, n_epochs:] V[[ii, jj], :] = np.dot(tau, V[[ii, jj], :]) if decr < epsilon: break D = np.reshape(A, (n_times, -1, n_times)).transpose(1, 0, 2) return V.T, D def _uwedge(X, init=None, eps=1e-9, n_iter_max=1000): """Approximate joint diagonalization algorithm UWEDGE. Parameters ---------- X : ndarray A set of covariance matrices to diagonalize, shape (n_trials, n_channels, n_channels). init : None | ndarray, optional Initialization for the diagonalizer, shape (n_channels, n_channels). eps : float, optional Tolerance for stoping criterion (default 1e-7). n_iter_max : int The maximum number of iteration to reach convergence (default 1000). Returns ------- W_est : ndarray The diagonalizer, shape (n_filters, n_channels), usually n_filters == n_channels. D : ndarray The set of quasi diagonal matrices, shape (n_trials, n_channels, n_channels). Notes ----- Uniformly Weighted Exhaustive Diagonalization using Gauss iteration (U-WEDGE). Implementation of the AJD algorithm by Tichavsky and Yeredor [1]_ [2]_. This is a translation from the matlab code provided by the authors. References ---------- .. [1] P. Tichavsky, A. Yeredor and J. Nielsen, "A Fast Approximate Joint Diagonalization Algorithm Using a Criterion with a Block Diagonal Weight Matrix", ICASSP 2008, Las Vegas. .. [2] P. Tichavsky and A. Yeredor, "Fast Approximate Joint Diagonalization Incorporating Weight Matrices" IEEE Transactions of Signal Processing, 2009. """ L, d, _ = X.shape # reshape input matrix M = np.concatenate(X, 0).T # init variables d, Md = M.shape iteration = 0 improve = 10 if init is None: E, H = np.linalg.eig(M[:, 0:d]) W_est = np.dot(np.diag(1. / np.sqrt(np.abs(E))), H.T) else: W_est = init Ms = np.array(M) Rs = np.zeros((d, L)) for k in range(L): ini = k*d Il = np.arange(ini, ini + d) M[:, Il] = 0.5*(M[:, Il] + M[:, Il].T) Ms[:, Il] = np.dot(np.dot(W_est, M[:, Il]), W_est.T) Rs[:, k] = np.diag(Ms[:, Il]) crit = np.sum(Ms**2) - np.sum(Rs**2) while (improve > eps) & (iteration < n_iter_max): B = np.dot(Rs, Rs.T) C1 = np.zeros((d, d)) for i in range(d): C1[:, i] = np.sum(Ms[:, i:Md:d]*Rs, axis=1) D0 = B*B.T - np.outer(np.diag(B), np.diag(B)) A0 = (C1 * B - np.dot(np.diag(np.diag(B)), C1.T)) / (D0 + np.eye(d)) A0 += np.eye(d) W_est = np.linalg.solve(A0, W_est) Raux = np.dot(np.dot(W_est, M[:, 0:d]), W_est.T) aux = 1./np.sqrt(np.abs(np.diag(Raux))) W_est = np.dot(np.diag(aux), W_est) for k in range(L): ini = k*d Il = np.arange(ini, ini + d) Ms[:, Il] = np.dot(np.dot(W_est, M[:, Il]), W_est.T) Rs[:, k] = np.diag(Ms[:, Il]) crit_new = np.sum(Ms**2) - np.sum(Rs**2) improve = np.abs(crit_new - crit) crit = crit_new iteration += 1 D = np.reshape(Ms, (d, L, d)).transpose(1, 0, 2) return W_est.T, D ajd_methods = { 'rjd': _rjd, 'ajd_pham': _ajd_pham, 'uwedge': _uwedge } def _check_ajd_method(method): """Check if a given method is valid. Parameters ---------- method : callable object or str Could be the name of ajd_method or a callable method itself. Returns ------- method: callable object A callable ajd method. """ if callable(method): pass elif method in ajd_methods.keys(): method = ajd_methods[method] else: raise ValueError( """%s is not an valid method ! Valid methods are : %s or a callable function""" % (method, (' , ').join(ajd_methods.keys()))) return method def ajd(X: ndarray, method: str ='uwedge') -> Tuple[ndarray, ndarray]: """Wrapper of AJD methods. Parameters ---------- X : ndarray Input covariance matrices, shape (n_trials, n_channels, n_channels) method : str, optional AJD method (default uwedge). Returns ------- V : ndarray The diagonalizer, shape (n_channels, n_filters), usually n_filters == n_channels. D : ndarray The mean of quasi diagonal matrices, shape (n_channels,). """ method = _check_ajd_method(method) V, D = method(X) D = np.diag(np.mean(D, axis=0)) ind = np.argsort(D)[::-1] D = D[ind] V = V[:, ind] return V, D def gw_csp_kernel(X: ndarray, y: ndarray, ajd_method: str = 'uwedge') -> Tuple[ndarray, ndarray, ndarray, ndarray]: """Grosse-Wentrup AJD method based on paper [1]_. Parameters ---------- X : ndarray eeg data, shape (n_trials, n_channels, n_samples). y : ndarray labels, shape (n_trials). ajd_method : str, optional ajd methods, 'uwedge' 'rjd' and 'ajd_pham', by default 'uwedge'. Returns ------- W: ndarray Spatial filters, shape (n_channels, n_filters). D: ndarray Eigenvalues of spatial filters, shape (n_filters,). A: ndarray Spatial patterns, shape (n_channels, n_patterns). mutual_info: ndarray Mutual informaiton values, shape (n_filters). References ---------- .. [1] Grosse-Wentrup, Moritz, and Martin Buss. "Multiclass common spatial patterns and information theoretic feature extraction." Biomedical Engineering, IEEE Transactions on 55, no. 8 (2008): 1991-2000. """ X, y = np.copy(X), np.copy(y) labels = np.unique(y) X = X - np.mean(X, axis=-1, keepdims=True) Cx = [] for label in labels: C = covariances(X[y==label]) # trace normalization C = C / np.trace(C, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] Cx.append(np.mean(C, axis=0)) Cx = np.stack(Cx) W, D = ajd(Cx, method=ajd_method) # Ctot = np.mean(Cx, axis=0) # W = W / np.sqrt(np.diag(W.T@Ctot@W)) W = W / np.sqrt(D) # compute mutual information values Pc = [np.mean(y == label) for label in labels] mutual_info = [] for j in range(W.shape[-1]): a = 0 b = 0 for i in range(len(labels)): # tmp = np.dot(np.dot(W[j], self.C_[i]), W[j].T) tmp = W[:, j].T@Cx[i]@W[:, j] a += Pc[i] * np.log(np.sqrt(tmp)) b += Pc[i] * (tmp ** 2 - 1) mi = - (a + (3.0 / 16) * (b ** 2)) mutual_info.append(mi) mutual_info = np.array(mutual_info) ix = np.argsort(mutual_info)[::-1] W = W[:, ix] mutual_info = mutual_info[ix] D = D[ix] A = robust_pattern(W, Cx[0], W.T@Cx[0]@W) return W, D, A, mutual_info def spoc_kernel(X: ndarray, y: ndarray) -> Tuple[ndarray, ndarray, ndarray]: """Source Power Comodulation (SPoC) based on paper [1]_. It is a continous CSP-like method. Parameters ---------- X : ndarray eeg data, shape (n_trials, n_channels, n_samples) y : ndarray labels, shape (n_trials) Returns ------- W: ndarray Spatial filters, shape (n_channels, n_filters). D: ndarray Eigenvalues of spatial filters, shape (n_filters,). A: ndarray Spatial patterns, shape (n_channels, n_patterns). References ---------- .. [1] Sven Dhne, Frank C. Meinecke, Stefan Haufe, Johannes Hhne, Michael Tangermann, Klaus-Robert Mller, and Vadim V. Nikulin. SPoC: a novel framework for relating the amplitude of neuronal oscillations to behaviorally relevant parameters. NeuroImage, 86:111122, 2014. doi:10.1016/j.neuroimage.2013.07.079. """ X, weights = np.copy(X), np.copy(y) eps = np.finfo(X.dtype).eps X = X - np.mean(X, axis=-1, keepdims=True) weights = weights - np.mean(weights) weights = weights / np.std(weights) Cx = covariances(X) # trace normalization Cx = Cx / np.trace(Cx, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] C = np.mean(Cx, axis=0) Cz = np.mean(weights[:, np.newaxis, np.newaxis]*Cx, axis=0) # check positive-definiteness C = nearestPD(C) Cz = nearestPD(Cz) # TODO: direct copy from pyriemann, need verify D, W = eigh(Cz, C) ind = np.argsort(D)[::-1] D = D[ind] W = W[:, ind] A = robust_pattern(W, Cz, W.T@Cz@W) return W, D, A
36.240933
315
0.589356
# -*- coding: utf-8 -*- # # Authors: Swolf <[email protected]> # Date: 2021/1/07 # License: MIT License """ Common Spatial Patterns and his happy little buddies! """ from copy import deepcopy from typing import Union, Optional, List, Dict, Tuple from functools import partial import numpy as np from numpy import ndarray from scipy.linalg import eigh, pinv, solve from sklearn.base import BaseEstimator, TransformerMixin from sklearn.model_selection import GridSearchCV, StratifiedKFold, ShuffleSplit from sklearn.feature_selection import SelectKBest, mutual_info_classif from sklearn.svm import SVC from sklearn.linear_model import Ridge from sklearn.multiclass import OneVsRestClassifier, OneVsOneClassifier from sklearn.pipeline import make_pipeline from .base import robust_pattern, FilterBank from ..utils.covariance import nearestPD, covariances def csp_kernel(X: ndarray, y: ndarray) -> Tuple[ndarray, ndarray, ndarray]: """The kernel in CSP algorithm based on paper [1]_. Parameters ---------- X: ndarray eeg data, shape (n_trials, n_channels, n_samples). y: ndarray labels of X, shape (n_trials,). Returns ------- W: ndarray Spatial filters, shape (n_channels, n_filters). D: ndarray Eigenvalues of spatial filters, shape (n_filters,). A: ndarray Spatial patterns, shape (n_channels, n_patterns). References ---------- .. [1] Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement[J]. IEEE transactions on rehabilitation engineering, 2000, 8(4): 441-446. """ X, y = np.copy(X), np.copy(y) labels = np.unique(y) X = X - np.mean(X, axis=-1, keepdims=True) if len(labels) != 2: raise ValueError("the current kernel is for 2-class problem.") C1 = covariances(X[y==labels[0]]) C2 = covariances(X[y==labels[1]]) # # trace normalization # # this operation equals to trial normalization # C1 = C1 / np.trace(C1, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] # C2 = C2 / np.trace(C2, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] C1 = np.mean(C1, axis=0) C2 = np.mean(C2, axis=0) Cc = C1 + C2 # check positive-definiteness Cc = nearestPD(Cc) # generalized eigenvalue problem D, W = eigh(C1, Cc) ix = np.argsort(D)[::-1] W = W[:, ix] D = D[ix] A = robust_pattern(W, C1, W.T@C1@W) return W, D, A def csp_feature(W: ndarray, X: ndarray, n_components: int = 2) -> ndarray: """Return CSP features in paper [1]_. Parameters ---------- W : ndarray spatial filters from csp_kernel, shape (n_channels, n_filters) X : ndarray eeg data, shape (n_trials, n_channels, n_samples) n_components : int, optional the first k components to use, usually even number, by default 2 Returns ------- ndarray features of shape (n_trials, n_features) Raises ------ ValueError n_components should less than the number of channels References ---------- .. [1] Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement[J]. IEEE transactions on rehabilitation engineering, 2000, 8(4): 441-446. """ W, X = np.copy(W), np.copy(X) max_components = W.shape[1] if n_components > max_components: raise ValueError("n_components should less than the number of channels") eps = np.finfo(X.dtype).eps X = X - np.mean(X, axis=-1, keepdims=True) # normalized variance features = np.mean(np.square(np.matmul(W[:, :n_components].T, X)), axis=-1) features = features / (np.sum(features, axis=-1, keepdims=True) + eps) # log-transformation features = np.log(np.clip(features, eps, None)) return features def _rjd(X, eps=1e-9, n_iter_max=1000): """Approximate joint diagonalization based on jacobi angle. Parameters ---------- X : ndarray A set of covariance matrices to diagonalize, shape (n_trials, n_channels, n_channels). eps : float, optional Tolerance for stopping criterion (default 1e-8). n_iter_max : int, optional The maximum number of iteration to reach convergence (default 1000). Returns ------- V : ndarray The diagonalizer, shape (n_channels, n_filters), usually n_filters == n_channels. D : ndarray The set of quasi diagonal matrices, shape (n_trials, n_channels, n_channels). Notes ----- This is a direct implementation of the Cardoso AJD algorithm [1]_ used in JADE. The code is a translation of the matlab code provided in the author website. References ---------- .. [1] Cardoso, Jean-Francois, and Antoine Souloumiac. Jacobi angles for simultaneous diagonalization. SIAM journal on matrix analysis and applications 17.1 (1996): 161-164. """ # reshape input matrix A = np.concatenate(X, 0).T # init variables m, nm = A.shape V = np.eye(m) encore = True k = 0 while encore: encore = False k += 1 if k > n_iter_max: break for p in range(m - 1): for q in range(p + 1, m): Ip = np.arange(p, nm, m) Iq = np.arange(q, nm, m) # computation of Givens angle g = np.array([A[p, Ip] - A[q, Iq], A[p, Iq] + A[q, Ip]]) gg = np.dot(g, g.T) ton = gg[0, 0] - gg[1, 1] toff = gg[0, 1] + gg[1, 0] theta = 0.5 * np.arctan2(toff, ton + np.sqrt(ton * ton + toff * toff)) c = np.cos(theta) s = np.sin(theta) encore = encore | (np.abs(s) > eps) if (np.abs(s) > eps): tmp = A[:, Ip].copy() A[:, Ip] = c * A[:, Ip] + s * A[:, Iq] A[:, Iq] = c * A[:, Iq] - s * tmp tmp = A[p, :].copy() A[p, :] = c * A[p, :] + s * A[q, :] A[q, :] = c * A[q, :] - s * tmp tmp = V[:, p].copy() V[:, p] = c * V[:, p] + s * V[:, q] V[:, q] = c * V[:, q] - s * tmp D = np.reshape(A, (m, int(nm / m), m)).transpose(1, 0, 2) return V, D def _ajd_pham(X, eps=1e-9, n_iter_max=1000): """Approximate joint diagonalization based on pham's algorithm. Parameters ---------- X : ndarray A set of covariance matrices to diagonalize, shape (n_trials, n_channels, n_channels). eps : float, optional Tolerance for stoping criterion (default 1e-6). n_iter_max : int, optional The maximum number of iteration to reach convergence (default 1000). Returns ------- V : ndarray The diagonalizer, shape (n_channels, n_filters), usually n_filters == n_channels. D : ndarray The set of quasi diagonal matrices, shape (n_trials, n_channels, n_channels). Notes ----- This is a direct implementation of the PHAM's AJD algorithm [1]_. References ---------- .. [1] Pham, Dinh Tuan. "Joint approximate diagonalization of positive definite Hermitian matrices." SIAM Journal on Matrix Analysis and Applications 22, no. 4 (2001): 1136-1152. """ # Adapted from http://github.com/alexandrebarachant/pyRiemann n_epochs = X.shape[0] # Reshape input matrix A = np.concatenate(X, axis=0).T # Init variables n_times, n_m = A.shape V = np.eye(n_times) epsilon = n_times * (n_times - 1) * eps for it in range(n_iter_max): decr = 0 for ii in range(1, n_times): for jj in range(ii): Ii = np.arange(ii, n_m, n_times) Ij = np.arange(jj, n_m, n_times) c1 = A[ii, Ii] c2 = A[jj, Ij] g12 = np.mean(A[ii, Ij] / c1) g21 = np.mean(A[ii, Ij] / c2) omega21 = np.mean(c1 / c2) omega12 = np.mean(c2 / c1) omega = np.sqrt(omega12 * omega21) tmp = np.sqrt(omega21 / omega12) tmp1 = (tmp * g12 + g21) / (omega + 1) tmp2 = (tmp * g12 - g21) / max(omega - 1, 1e-9) h12 = tmp1 + tmp2 h21 = np.conj((tmp1 - tmp2) / tmp) decr += n_epochs * (g12 * np.conj(h12) + g21 * h21) / 2.0 tmp = 1 + 1.j * 0.5 * np.imag(h12 * h21) tmp = np.real(tmp + np.sqrt(tmp ** 2 - h12 * h21)) tau = np.array([[1, -h12 / tmp], [-h21 / tmp, 1]]) A[[ii, jj], :] = np.dot(tau, A[[ii, jj], :]) tmp = np.c_[A[:, Ii], A[:, Ij]] tmp = np.reshape(tmp, (n_times * n_epochs, 2), order='F') tmp = np.dot(tmp, tau.T) tmp = np.reshape(tmp, (n_times, n_epochs * 2), order='F') A[:, Ii] = tmp[:, :n_epochs] A[:, Ij] = tmp[:, n_epochs:] V[[ii, jj], :] = np.dot(tau, V[[ii, jj], :]) if decr < epsilon: break D = np.reshape(A, (n_times, -1, n_times)).transpose(1, 0, 2) return V.T, D def _uwedge(X, init=None, eps=1e-9, n_iter_max=1000): """Approximate joint diagonalization algorithm UWEDGE. Parameters ---------- X : ndarray A set of covariance matrices to diagonalize, shape (n_trials, n_channels, n_channels). init : None | ndarray, optional Initialization for the diagonalizer, shape (n_channels, n_channels). eps : float, optional Tolerance for stoping criterion (default 1e-7). n_iter_max : int The maximum number of iteration to reach convergence (default 1000). Returns ------- W_est : ndarray The diagonalizer, shape (n_filters, n_channels), usually n_filters == n_channels. D : ndarray The set of quasi diagonal matrices, shape (n_trials, n_channels, n_channels). Notes ----- Uniformly Weighted Exhaustive Diagonalization using Gauss iteration (U-WEDGE). Implementation of the AJD algorithm by Tichavsky and Yeredor [1]_ [2]_. This is a translation from the matlab code provided by the authors. References ---------- .. [1] P. Tichavsky, A. Yeredor and J. Nielsen, "A Fast Approximate Joint Diagonalization Algorithm Using a Criterion with a Block Diagonal Weight Matrix", ICASSP 2008, Las Vegas. .. [2] P. Tichavsky and A. Yeredor, "Fast Approximate Joint Diagonalization Incorporating Weight Matrices" IEEE Transactions of Signal Processing, 2009. """ L, d, _ = X.shape # reshape input matrix M = np.concatenate(X, 0).T # init variables d, Md = M.shape iteration = 0 improve = 10 if init is None: E, H = np.linalg.eig(M[:, 0:d]) W_est = np.dot(np.diag(1. / np.sqrt(np.abs(E))), H.T) else: W_est = init Ms = np.array(M) Rs = np.zeros((d, L)) for k in range(L): ini = k*d Il = np.arange(ini, ini + d) M[:, Il] = 0.5*(M[:, Il] + M[:, Il].T) Ms[:, Il] = np.dot(np.dot(W_est, M[:, Il]), W_est.T) Rs[:, k] = np.diag(Ms[:, Il]) crit = np.sum(Ms**2) - np.sum(Rs**2) while (improve > eps) & (iteration < n_iter_max): B = np.dot(Rs, Rs.T) C1 = np.zeros((d, d)) for i in range(d): C1[:, i] = np.sum(Ms[:, i:Md:d]*Rs, axis=1) D0 = B*B.T - np.outer(np.diag(B), np.diag(B)) A0 = (C1 * B - np.dot(np.diag(np.diag(B)), C1.T)) / (D0 + np.eye(d)) A0 += np.eye(d) W_est = np.linalg.solve(A0, W_est) Raux = np.dot(np.dot(W_est, M[:, 0:d]), W_est.T) aux = 1./np.sqrt(np.abs(np.diag(Raux))) W_est = np.dot(np.diag(aux), W_est) for k in range(L): ini = k*d Il = np.arange(ini, ini + d) Ms[:, Il] = np.dot(np.dot(W_est, M[:, Il]), W_est.T) Rs[:, k] = np.diag(Ms[:, Il]) crit_new = np.sum(Ms**2) - np.sum(Rs**2) improve = np.abs(crit_new - crit) crit = crit_new iteration += 1 D = np.reshape(Ms, (d, L, d)).transpose(1, 0, 2) return W_est.T, D ajd_methods = { 'rjd': _rjd, 'ajd_pham': _ajd_pham, 'uwedge': _uwedge } def _check_ajd_method(method): """Check if a given method is valid. Parameters ---------- method : callable object or str Could be the name of ajd_method or a callable method itself. Returns ------- method: callable object A callable ajd method. """ if callable(method): pass elif method in ajd_methods.keys(): method = ajd_methods[method] else: raise ValueError( """%s is not an valid method ! Valid methods are : %s or a callable function""" % (method, (' , ').join(ajd_methods.keys()))) return method def ajd(X: ndarray, method: str ='uwedge') -> Tuple[ndarray, ndarray]: """Wrapper of AJD methods. Parameters ---------- X : ndarray Input covariance matrices, shape (n_trials, n_channels, n_channels) method : str, optional AJD method (default uwedge). Returns ------- V : ndarray The diagonalizer, shape (n_channels, n_filters), usually n_filters == n_channels. D : ndarray The mean of quasi diagonal matrices, shape (n_channels,). """ method = _check_ajd_method(method) V, D = method(X) D = np.diag(np.mean(D, axis=0)) ind = np.argsort(D)[::-1] D = D[ind] V = V[:, ind] return V, D def gw_csp_kernel(X: ndarray, y: ndarray, ajd_method: str = 'uwedge') -> Tuple[ndarray, ndarray, ndarray, ndarray]: """Grosse-Wentrup AJD method based on paper [1]_. Parameters ---------- X : ndarray eeg data, shape (n_trials, n_channels, n_samples). y : ndarray labels, shape (n_trials). ajd_method : str, optional ajd methods, 'uwedge' 'rjd' and 'ajd_pham', by default 'uwedge'. Returns ------- W: ndarray Spatial filters, shape (n_channels, n_filters). D: ndarray Eigenvalues of spatial filters, shape (n_filters,). A: ndarray Spatial patterns, shape (n_channels, n_patterns). mutual_info: ndarray Mutual informaiton values, shape (n_filters). References ---------- .. [1] Grosse-Wentrup, Moritz, and Martin Buss. "Multiclass common spatial patterns and information theoretic feature extraction." Biomedical Engineering, IEEE Transactions on 55, no. 8 (2008): 1991-2000. """ X, y = np.copy(X), np.copy(y) labels = np.unique(y) X = X - np.mean(X, axis=-1, keepdims=True) Cx = [] for label in labels: C = covariances(X[y==label]) # trace normalization C = C / np.trace(C, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] Cx.append(np.mean(C, axis=0)) Cx = np.stack(Cx) W, D = ajd(Cx, method=ajd_method) # Ctot = np.mean(Cx, axis=0) # W = W / np.sqrt(np.diag(W.T@Ctot@W)) W = W / np.sqrt(D) # compute mutual information values Pc = [np.mean(y == label) for label in labels] mutual_info = [] for j in range(W.shape[-1]): a = 0 b = 0 for i in range(len(labels)): # tmp = np.dot(np.dot(W[j], self.C_[i]), W[j].T) tmp = W[:, j].T@Cx[i]@W[:, j] a += Pc[i] * np.log(np.sqrt(tmp)) b += Pc[i] * (tmp ** 2 - 1) mi = - (a + (3.0 / 16) * (b ** 2)) mutual_info.append(mi) mutual_info = np.array(mutual_info) ix = np.argsort(mutual_info)[::-1] W = W[:, ix] mutual_info = mutual_info[ix] D = D[ix] A = robust_pattern(W, Cx[0], W.T@Cx[0]@W) return W, D, A, mutual_info class CSP(BaseEstimator, TransformerMixin): """Common Spatial Pattern. if n_components is None, auto finding the best number of components with gridsearch. The upper searching limit is determined by max_components, default is half of the number of channels. """ def __init__(self, n_components: Optional[int] = None, max_components: Optional[int] = None): self.n_components = n_components self.max_components = max_components def fit(self, X: ndarray, y: ndarray): self.classes_ = np.unique(y) self.W_, self.D_, self.A_ = csp_kernel(X, y) # resorting with 0.5 threshold self.D_ = np.abs(self.D_ - 0.5) ind = np.argsort(self.D_, axis=-1)[::-1] self.W_, self.D_, self.A_ = self.W_[:, ind], self.D_[ind], self.A_[:, ind] # auto-tuning if self.n_components is None: estimator = make_pipeline(*[CSP(n_components=self.n_components), SVC()]) if self.max_components is None: params = {'csp__n_components': np.arange(1, self.W_.shape[1]+1)} else: params = {'csp__n_components': np.arange(1, self.max_components+1)} n_splits = np.min(np.unique(y, return_counts=True)[1]) n_splits = 5 if n_splits > 5 else n_splits gs = GridSearchCV(estimator, param_grid=params, scoring='accuracy', cv=StratifiedKFold(n_splits=n_splits, shuffle=True), refit=False, n_jobs=-1, verbose=False) gs.fit(X, y) self.best_n_components_ = gs.best_params_['csp__n_components'] return self def transform(self, X: ndarray): n_components = self.best_n_components_ if self.n_components is None else self.n_components return csp_feature(self.W_, X, n_components=n_components) class MultiCSP(BaseEstimator, TransformerMixin): def __init__(self, n_components: Optional[int] = None, max_components: Optional[int] = None, multiclass: str = 'ovr', ajd_method: str ='uwedge'): self.n_components = n_components self.max_components = max_components self.multiclass = multiclass self.ajd_method = ajd_method def fit(self, X: ndarray, y: ndarray): self.classes_ = np.unique(y) if self.multiclass == 'ovr': self.estimator_ = OneVsRestClassifier( make_pipeline(*[ CSP(n_components=self.n_components, max_components=self.max_components), SVC() ]), n_jobs=-1) self.estimator_.fit(X, y) elif self.multiclass == 'ovo': self.estimator_ = OneVsOneClassifier( make_pipeline(*[ CSP(n_components=self.n_components, max_components=self.max_components), SVC() ]), n_jobs=-1) # patching avoiding 2d array check self.estimator_._validate_data = partial(self.estimator_._validate_data, allow_nd=True) self.estimator_.fit(X, y) elif self.multiclass == 'grosse-wentrup': self.W_, _, self.A_, self.mutualinfo_values_ = gw_csp_kernel( X, y, ajd_method=self.ajd_method) if self.n_components is None: estimator = make_pipeline(*[ MultiCSP(n_components=self.n_components, multiclass='grosse-wentrup', ajd_method=self.ajd_method), SVC() ]) if self.max_components is None: params = {'multicsp__n_components': np.arange(1, self.W_.shape[1]+1)} else: params = {'multicsp__n_components': np.arange(1, self.max_components+1)} n_splits = np.min(np.unique(y, return_counts=True)[1]) n_splits = 5 if n_splits > 5 else n_splits gs = GridSearchCV(estimator, param_grid=params, scoring='accuracy', cv=StratifiedKFold(n_splits=n_splits, shuffle=True), refit=False, n_jobs=-1, verbose=False) gs.fit(X, y) self.best_n_components_ = gs.best_params_['multicsp__n_components'] else: raise ValueError("not a valid multiclass strategy") return self def transform(self, X: ndarray): if self.multiclass == 'grosse-wentrup': n_components = self.best_n_components_ if self.n_components is None else self.n_components features = csp_feature(self.W_, X, n_components=n_components) else: features = np.concatenate([est[0].transform(X) for est in self.estimator_.estimators_], axis=-1) return features def spoc_kernel(X: ndarray, y: ndarray) -> Tuple[ndarray, ndarray, ndarray]: """Source Power Comodulation (SPoC) based on paper [1]_. It is a continous CSP-like method. Parameters ---------- X : ndarray eeg data, shape (n_trials, n_channels, n_samples) y : ndarray labels, shape (n_trials) Returns ------- W: ndarray Spatial filters, shape (n_channels, n_filters). D: ndarray Eigenvalues of spatial filters, shape (n_filters,). A: ndarray Spatial patterns, shape (n_channels, n_patterns). References ---------- .. [1] Sven Dähne, Frank C. Meinecke, Stefan Haufe, Johannes Höhne, Michael Tangermann, Klaus-Robert Müller, and Vadim V. Nikulin. SPoC: a novel framework for relating the amplitude of neuronal oscillations to behaviorally relevant parameters. NeuroImage, 86:111–122, 2014. doi:10.1016/j.neuroimage.2013.07.079. """ X, weights = np.copy(X), np.copy(y) eps = np.finfo(X.dtype).eps X = X - np.mean(X, axis=-1, keepdims=True) weights = weights - np.mean(weights) weights = weights / np.std(weights) Cx = covariances(X) # trace normalization Cx = Cx / np.trace(Cx, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] C = np.mean(Cx, axis=0) Cz = np.mean(weights[:, np.newaxis, np.newaxis]*Cx, axis=0) # check positive-definiteness C = nearestPD(C) Cz = nearestPD(Cz) # TODO: direct copy from pyriemann, need verify D, W = eigh(Cz, C) ind = np.argsort(D)[::-1] D = D[ind] W = W[:, ind] A = robust_pattern(W, Cz, W.T@Cz@W) return W, D, A class SPoC(BaseEstimator, TransformerMixin): """Source Power Comodulation (SPoC). For continuous data, not verified. """ def __init__(self, n_components: Optional[int] = None, max_components: Optional[int] = None): self.n_components = n_components self.max_components = max_components def fit(self, X: ndarray, y: ndarray): self.W_, self.D_, self.A_ = spoc_kernel(X, y) # auto-tuning if self.n_components is None: estimator = make_pipeline(*[SPoC(n_components=self.n_components), Ridge(alpha=0.5)]) if self.max_components is None: params = {'spoc__n_components': np.arange(1, self.W_.shape[1]+1)} else: params = {'spoc__n_components': np.arange(1, self.max_components+1)} test_size = 0.2 if len(y) > 5 else 1/len(y) gs = GridSearchCV(estimator, param_grid=params, scoring='neg_root_mean_squared_error', cv=ShuffleSplit(n_splits=5, test_size=test_size), refit=False, n_jobs=-1, verbose=False) gs.fit(X, y) self.best_n_components_ = gs.best_params_['spoc__n_components'] def transform(self, X: ndarray): n_components = self.best_n_components_ if self.n_components is None else self.n_components return csp_feature(self.W_, X, n_components=n_components) class FBCSP(FilterBank): """FBCSP. FilterBank CSP based on paper [1]_. References ---------- .. [1] Ang K K, Chin Z Y, Zhang H, et al. Filter bank common spatial pattern (FBCSP) in brain-computer interface[C]//2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). IEEE, 2008: 2390-2397. """ def __init__(self, n_components: Optional[int] = None, max_components: Optional[int] = None, n_mutualinfo_components: Optional[int] = None, filterbank: Optional[List[ndarray]] = None): self.n_components = n_components self.max_components = max_components self.n_mutualinfo_components = n_mutualinfo_components self.filterbank = filterbank super().__init__(CSP(n_components=n_components, max_components=max_components), filterbank=filterbank) def fit(self, X: ndarray, y: ndarray): super().fit(X, y) features = super().transform(X) if self.n_mutualinfo_components is None: estimator = make_pipeline(*[ SelectKBest(score_func=mutual_info_classif, k='all'), SVC() ]) params = {'selectkbest__k': np.arange(1, features.shape[1]+1)} n_splits = np.min(np.unique(y, return_counts=True)[1]) n_splits = 5 if n_splits > 5 else n_splits gs = GridSearchCV(estimator, param_grid=params, scoring='accuracy', cv=StratifiedKFold(n_splits=n_splits, shuffle=True), refit=False, n_jobs=-1, verbose=False) gs.fit(features, y) self.best_n_mutualinfo_components_ = gs.best_params_['selectkbest__k'] self.selector_ = SelectKBest( score_func=mutual_info_classif, k=self.best_n_mutualinfo_components_) else: self.selector_ = SelectKBest( score_func=mutual_info_classif, k=self.n_mutualinfo_components) self.selector_.fit(features, y) return self def transform(self, X: ndarray): features = super().transform(X) features = self.selector_.transform(features) return features class FBMultiCSP(FilterBank): def __init__(self, n_components: Optional[int] = None, max_components: Optional[int] = None, multiclass: str = 'ovr', ajd_method: str ='uwedge', n_mutualinfo_components: Optional[int] = None, filterbank: Optional[List[ndarray]] = None): self.n_components = n_components self.max_components = max_components self.multiclass = multiclass self.ajd_method = ajd_method self.n_mutualinfo_components = n_mutualinfo_components self.filterbank = filterbank self.n_mutualinfo_components = n_mutualinfo_components super().__init__(MultiCSP(n_components=n_components, max_components=max_components, multiclass=multiclass, ajd_method=ajd_method)) def fit(self, X: ndarray, y: ndarray): super().fit(X, y) features = super().transform(X) if self.n_mutualinfo_components is None: estimator = make_pipeline(*[ SelectKBest(score_func=mutual_info_classif, k='all'), SVC() ]) params = {'selectkbest__k': np.arange(1, features.shape[1]+1)} n_splits = np.min(np.unique(y, return_counts=True)[1]) n_splits = 5 if n_splits > 5 else n_splits gs = GridSearchCV(estimator, param_grid=params, scoring='accuracy', cv=StratifiedKFold(n_splits=n_splits, shuffle=True), refit=False, n_jobs=-1, verbose=False) gs.fit(features, y) self.best_n_mutualinfo_components_ = gs.best_params_['selectkbest__k'] self.selector_ = SelectKBest( score_func=mutual_info_classif, k=self.best_n_mutualinfo_components_) else: self.selector_ = SelectKBest( score_func=mutual_info_classif, k=self.n_mutualinfo_components) self.selector_.fit(features, y) return self def transform(self, X: ndarray): features = super().transform(X) features = self.selector_.transform(features) return features
9
0
0
10,331
0
0
0
301
313
a213ac945ac3eff393596fccbd49623779d35895
16,917
py
Python
teller/explainer/explainer.py
Techtonique/teller
3571353b843179335e3995a0128d4a0c54c2b905
[ "BSD-3-Clause-Clear" ]
5
2021-07-14T11:57:36.000Z
2022-03-26T19:47:54.000Z
teller/explainer/explainer.py
Techtonique/teller
3571353b843179335e3995a0128d4a0c54c2b905
[ "BSD-3-Clause-Clear" ]
1
2021-12-21T17:53:37.000Z
2022-01-26T11:36:32.000Z
teller/explainer/explainer.py
Techtonique/teller
3571353b843179335e3995a0128d4a0c54c2b905
[ "BSD-3-Clause-Clear" ]
1
2021-12-21T17:51:00.000Z
2021-12-21T17:51:00.000Z
import matplotlib.style as style
32.284351
131
0.435952
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import matplotlib.style as style from sklearn.base import BaseEstimator from ..utils import ( is_factor, numerical_gradient, numerical_gradient_jackknife, numerical_gradient_gaussian, numerical_interactions, numerical_interactions_jackknife, numerical_interactions_gaussian, Progbar, score_regression, score_classification, ) class Explainer(BaseEstimator): """Class Explainer: effects of features on the response. Attributes: obj: an object; fitted object containing methods `fit` and `predict` n_jobs: an integer; number of jobs for parallel computing y_class: an integer; class whose probability has to be explained (for classification only) normalize: a boolean; whether the features must be normalized or not (changes the effects) """ def __init__(self, obj, n_jobs=None, y_class=0, normalize=False): self.obj = obj self.n_jobs = n_jobs self.y_mean_ = None self.effects_ = None self.residuals_ = None self.r_squared_ = None self.adj_r_squared_ = None self.effects_ = None self.ci_ = None self.ci_inters_ = {} self.type_fit = None self.y_class = y_class # classification only self.normalize = normalize self.type_ci = None def fit( self, X, y, X_names, method="avg", type_ci="jackknife", scoring=None, level=95, col_inters=None, ): """Fit the explainer's attribute `obj` to training data (X, y). Args: X: array-like, shape = [n_samples, n_features]; Training vectors, where n_samples is the number of samples and n_features is the number of features. y: array-like, shape = [n_samples, ]; Target values. X_names: {array-like}, shape = [n_features, ]; Column names (strings) for training vectors. method: str; Type of summary requested for effects. Either `avg` (for average effects), `inters` (for interactions) or `ci` (for effects including confidence intervals around them). type_ci: str; Type of resampling for `method == 'ci'` (confidence intervals around effects). Either `jackknife` bootsrapping or `gaussian` (gaussian white noise with standard deviation equal to `0.01` applied to the features). scoring: str; measure of errors must be in ("explained_variance", "neg_mean_absolute_error", "neg_mean_squared_error", "neg_mean_squared_log_error", "neg_median_absolute_error", "r2", "rmse") (default: "rmse"). level: int; Level of confidence required for `method == 'ci'` (in %). col_inters: str; Name of column for computing interactions. """ assert method in ( "avg", "ci", "inters", ), "must have: `method` in ('avg', 'ci', 'inters')" n, p = X.shape self.X_names = X_names self.level = level self.method = method self.type_ci = type_ci if is_factor(y): # classification --- self.n_classes = len(np.unique(y)) assert ( self.y_class <= self.n_classes ), "self.y_class must be <= number of classes" assert hasattr( self.obj, "predict_proba" ), "`self.obj` must be a classifier and have a method `predict_proba`" self.type_fit = "classification" if scoring is None: self.scoring = "accuracy" self.score_ = score_classification(self.obj, X, y, scoring=self.scoring) def predict_proba(x): return self.obj.predict_proba(x)[:, self.y_class] y_hat = predict_proba(X) # heterogeneity of effects if method == "avg": self.grad_ = numerical_gradient( predict_proba, X, normalize=self.normalize, n_jobs=self.n_jobs, ) # confidence intervals if method == "ci": if type_ci=="jackknife": self.ci_ = numerical_gradient_jackknife( predict_proba, X, normalize=self.normalize, n_jobs=self.n_jobs, level=level, ) if type_ci=="gaussian": self.ci_ = numerical_gradient_gaussian( predict_proba, X, normalize=self.normalize, n_jobs=self.n_jobs, level=level, ) # interactions if method == "inters": assert col_inters is not None, "`col_inters` must be provided" self.col_inters = col_inters ix1 = np.where(X_names == col_inters)[0][0] pbar = Progbar(p) if type_ci=="jackknife": for ix2 in range(p): self.ci_inters_.update( { X_names[ix2]: numerical_interactions_jackknife( f=predict_proba, X=X, ix1=ix1, ix2=ix2, verbose=0, ) } ) pbar.update(ix2) if type_ci=="gaussian": for ix2 in range(p): self.ci_inters_.update( { X_names[ix2]: numerical_interactions_gaussian( f=predict_proba, X=X, ix1=ix1, ix2=ix2, verbose=0, ) } ) pbar.update(ix2) pbar.update(p) print("\n") else: # is_factor(y) == False # regression --- self.type_fit = "regression" if scoring is None: self.scoring = "rmse" self.score_ = score_regression(self.obj, X, y, scoring=self.scoring) y_hat = self.obj.predict(X) # heterogeneity of effects if method == "avg": self.grad_ = numerical_gradient( self.obj.predict, X, normalize=self.normalize, n_jobs=self.n_jobs, ) # confidence intervals if method == "ci": if type_ci=="jackknife": self.ci_ = numerical_gradient_jackknife( self.obj.predict, X, normalize=self.normalize, n_jobs=self.n_jobs, level=level, ) if type_ci=="gaussian": self.ci_ = numerical_gradient_gaussian( self.obj.predict, X, normalize=self.normalize, n_jobs=self.n_jobs, level=level, ) # interactions if method == "inters": assert col_inters is not None, "`col_inters` must be provided" self.col_inters = col_inters ix1 = np.where(X_names == col_inters)[0][0] pbar = Progbar(p) if type_ci=="jackknife": for ix2 in range(p): self.ci_inters_.update( { X_names[ix2]: numerical_interactions_jackknife( f=self.obj.predict, X=X, ix1=ix1, ix2=ix2, verbose=0, ) } ) if type_ci=="gaussian": for ix2 in range(p): self.ci_inters_.update( { X_names[ix2]: numerical_interactions_gaussian( f=self.obj.predict, X=X, ix1=ix1, ix2=ix2, verbose=0, ) } ) pbar.update(ix2) pbar.update(p) print("\n") self.y_mean_ = np.mean(y) ss_tot = np.sum((y - self.y_mean_) ** 2) ss_reg = np.sum((y_hat - self.y_mean_) ** 2) ss_res = np.sum((y - y_hat) ** 2) self.residuals_ = y - y_hat self.r_squared_ = 1 - ss_res / ss_tot self.adj_r_squared_ = 1 - (1 - self.r_squared_) * (n - 1) / ( n - p - 1 ) # classification and regression --- if method == "avg": res_df = pd.DataFrame(data=self.grad_, columns=X_names) res_df_mean = res_df.mean() res_df_std = res_df.std() res_df_median = res_df.median() res_df_min = res_df.min() res_df_max = res_df.max() data = pd.concat( [res_df_mean, res_df_std, res_df_median, res_df_min, res_df_max], axis=1 ) df_effects = pd.DataFrame( data=data.values, columns=["mean", "std", "median", "min", "max"], index=X_names, ) # heterogeneity of effects self.effects_ = df_effects.sort_values(by=["mean"], ascending=False) return self def summary(self): """Summarise results a method in class Explainer Args: None """ assert ( (self.ci_ is not None) | (self.effects_ is not None) | (self.ci_inters_ is not None) ), "object not fitted, fit the object first" if (self.ci_ is not None) & (self.method == "ci"): # (mean_est, se_est, # mean_est + qt*se_est, mean_est - qt*se_est, # p_values, signif_codes) df_mean = pd.Series(data=self.ci_[0], index=self.X_names) df_se = pd.Series(data=self.ci_[1], index=self.X_names) df_ubound = pd.Series(data=self.ci_[2], index=self.X_names) df_lbound = pd.Series(data=self.ci_[3], index=self.X_names) df_pvalue = pd.Series(data=self.ci_[4], index=self.X_names) df_signif = pd.Series(data=self.ci_[5], index=self.X_names) data = pd.concat( [df_mean, df_se, df_lbound, df_ubound, df_pvalue, df_signif], axis=1, ) self.ci_summary_ = pd.DataFrame( data=data.values, columns=[ "Estimate", "Std. Error", str(self.level) + "% lbound", str(self.level) + "% ubound", "Pr(>|t|)", "", ], index=self.X_names, ).sort_values(by=["Estimate"], ascending=False) print("\n") print(f"Score ({self.scoring}): \n {np.round(self.score_, 3)}") if self.type_fit == "regression": print("\n") print("Residuals: ") self.residuals_dist_ = pd.DataFrame( pd.Series( data=np.quantile( self.residuals_, q=[0, 0.25, 0.5, 0.75, 1] ), index=["Min", "1Q", "Median", "3Q", "Max"], ) ).transpose() print(self.residuals_dist_.to_string(index=False)) print("\n") if self.type_ci=="jackknife": print("Tests on marginal effects (Jackknife): ") if self.type_ci=="gaussian": print("Tests on marginal effects (Gaussian noise): ") with pd.option_context( "display.max_rows", None, "display.max_columns", None ): print(self.ci_summary_) print("\n") print( "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘-’ 1" ) if self.type_fit == "regression": print("\n") print( f"Multiple R-squared: {np.round(self.r_squared_, 3)}, Adjusted R-squared: {np.round(self.adj_r_squared_, 3)}" ) if (self.effects_ is not None) & (self.method == "avg"): print("\n") print("Heterogeneity of marginal effects: ") with pd.option_context( "display.max_rows", None, "display.max_columns", None ): print(self.effects_) print("\n") if (self.ci_inters_ is not None) & (self.method == "inters"): print("\n") print("Interactions with " + self.col_inters + ": ") with pd.option_context( "display.max_rows", None, "display.max_columns", None ): print( pd.DataFrame( self.ci_inters_, index=[ "Estimate", "Std. Error", str(95) + "% lbound", str(95) + "% ubound", "Pr(>|t|)", "", ], ).transpose() ) def plot(self, what): """Plot average effects, heterogeneity of effects, ... Args: what: a string; if . """ assert self.effects_ is not None, "Call method 'fit' before plotting" assert self.grad_ is not None, "Call method 'fit' before plotting" # For method == "avg" if (self.method == "avg"): if(what == "average_effects"): sns.set(style="darkgrid") fi = pd.DataFrame() fi['features'] = self.effects_.index.values fi['effect'] = self.effects_['mean'].values sns.barplot(x='effect', y='features', data=fi.sort_values(by='effect', ascending=False)) if(what == "hetero_effects"): grads_df = pd.DataFrame(data=self.grad_, columns=self.X_names) sorted_columns = list(self.effects_.index.values) # by mean sorted_columns.reverse() grads_df = grads_df.reindex(sorted_columns, axis=1) sns.set(style="darkgrid") grads_df.boxplot(vert=False) # For method == "ci" if (self.method == "ci"): assert self.ci_ is not None, "Call method 'fit' before plotting" raise NotImplementedError("No plot for method == 'ci' yet") def get_individual_effects(self): assert self.grad_ is not None, "Call method 'fit' before calling this method" if self.method == "avg": return pd.DataFrame(data=self.grad_, columns=self.X_names)
30
0
0
16,418
0
0
0
294
159
70d25e9deb9ce5482aecfe92367ea925fc132f5b
4,271
py
Python
script/extract_spotting_area.py
jingyonghou/XY_QByE_STD
ca2a07c70ea7466ee363cd0b81808c6794a400e5
[ "Apache-2.0" ]
null
null
null
script/extract_spotting_area.py
jingyonghou/XY_QByE_STD
ca2a07c70ea7466ee363cd0b81808c6794a400e5
[ "Apache-2.0" ]
null
null
null
script/extract_spotting_area.py
jingyonghou/XY_QByE_STD
ca2a07c70ea7466ee363cd0b81808c6794a400e5
[ "Apache-2.0" ]
1
2020-07-28T06:02:03.000Z
2020-07-28T06:02:03.000Z
import sys if __name__=="__main__": if len(sys.argv) < 7: print("USAGE: python %s result_dir keywordlist testlist testscp textfile ourdir"%sys.argv[0]) exit(1) result_dir = sys.argv[1] keywordlist = open(sys.argv[2]).readlines() testlist = open(sys.argv[3]).readlines() doc_scp_file = sys.argv[4] relevant_dict = build_relevant_dict(sys.argv[5]) out_dir = sys.argv[6] scorelist_all = [] arealist_all = [] for keyword in keywordlist: result_fid = open(result_dir + keyword.strip() + ".RESULT") resultlist = result_fid.readlines() result_fid.close() scorelist = [] arealist = [] for res in resultlist: fields =res.strip().split() score = float(fields[0]) start_point = int(fields[1]) end_point = int(fields[2]) scorelist.append(score) arealist.append((start_point, end_point)) scorelist_all.append(scorelist) arealist_all.append(arealist) extract_list_all = extract_spotting_area(scorelist_all, arealist_all, keywordlist, testlist, relevant_dict) write_spot_wave(extract_list_all, doc_scp_file, out_dir)
36.818966
199
0.618356
import numpy as np import sys import wavedata import random import os def relevant(query, text_id, relevant_dict): if text_id in relevant_dict[query]: return True return False def build_relevant_dict(text_file): relevant_dict = {} for line in open(text_file).readlines(): fields = line.strip().split() text_id = fields[0] for i in range(1, len(fields)): keyword_id = fields[i] if not relevant_dict.has_key(keyword_id): relevant_dict[keyword_id]=set() relevant_dict[keyword_id].add(text_id) return relevant_dict def extract_spotting_area(scorelist_all, arealist_all, querylist, doclist, relevant_dict): extract_list_all = [] for i in range(len(querylist)): true_list=[] false_list=[] extract_list=[] ranklist = np.array(scorelist_all[i]).argsort() for j in range(len(ranklist)): j_r = ranklist[j] keyword_id = querylist[i].strip() keyword = querylist[i].strip().split("_")[0] utt_id = doclist[j_r].strip() doc_id = "_".join(doclist[j_r].strip().split("_")[:-1]) if relevant(keyword, doc_id, relevant_dict): true_list.append([ keyword_id, utt_id, 1, scorelist_all[i][j_r], j, arealist_all[i][j_r] ]) else: false_list.append([ keyword_id, utt_id, 0, scorelist_all[i][j_r], j, arealist_all[i][j_r] ]) true_num = len(true_list) extract_list = true_list + false_list[0:true_num] extract_list_all.append(extract_list) return extract_list_all def frame_to_point(frame_pair): return (frame_pair[0]*10*8, frame_pair[1]*10*8+25*8) def write_spot_wave(extract_list_all, doc_scp, out_dir): doc_dic = {} for line in open(doc_scp).readlines(): fields = line.strip().split() if len(fields) != 2: print("Error: the fields of doc scp file is not 2\n") exit(1) doc_id = fields[0] wav_path = fields[1] if doc_dic.has_key(doc_id): print("Error: repeat key in doc scp file\n") doc_dic[doc_id] = wav_path for extract_list in extract_list_all: keyword_id = extract_list[0][0] keyword_out_dir = out_dir + "-".join(keyword_id.split("'")) cmd = "mkdir -p " + keyword_out_dir os.system(cmd) for item in extract_list: doc_id = item[1] has_keyword = item[2] score = item[3] rank_position = item[4] extract_point = frame_to_point(item[5]) inputfilename = doc_dic[doc_id] data = wavedata.readwave(inputfilename) spotting_data = data[extract_point[0]:extract_point[1]] outputfilename = keyword_out_dir + "/%s_%s_%s_%s_%s_%s_%s.wav"%(str(rank_position).zfill(4), str(has_keyword), str(score), str(extract_point[0]), str(extract_point[1]),keyword_id, doc_id) wavedata.writewave(outputfilename, spotting_data, 1, 2, 8000) if __name__=="__main__": if len(sys.argv) < 7: print("USAGE: python %s result_dir keywordlist testlist testscp textfile ourdir"%sys.argv[0]) exit(1) result_dir = sys.argv[1] keywordlist = open(sys.argv[2]).readlines() testlist = open(sys.argv[3]).readlines() doc_scp_file = sys.argv[4] relevant_dict = build_relevant_dict(sys.argv[5]) out_dir = sys.argv[6] scorelist_all = [] arealist_all = [] for keyword in keywordlist: result_fid = open(result_dir + keyword.strip() + ".RESULT") resultlist = result_fid.readlines() result_fid.close() scorelist = [] arealist = [] for res in resultlist: fields =res.strip().split() score = float(fields[0]) start_point = int(fields[1]) end_point = int(fields[2]) scorelist.append(score) arealist.append((start_point, end_point)) scorelist_all.append(scorelist) arealist_all.append(arealist) extract_list_all = extract_spotting_area(scorelist_all, arealist_all, keywordlist, testlist, relevant_dict) write_spot_wave(extract_list_all, doc_scp_file, out_dir)
0
0
0
0
0
2,873
0
-29
204
271deb29b66fe4e4014e52baf2d9509cf8f631f6
427
py
Python
src/smallest_integer.py
marco-zangari/code-katas
1dfda1cfbbe8687b17e97e414358b38d964df675
[ "MIT" ]
null
null
null
src/smallest_integer.py
marco-zangari/code-katas
1dfda1cfbbe8687b17e97e414358b38d964df675
[ "MIT" ]
null
null
null
src/smallest_integer.py
marco-zangari/code-katas
1dfda1cfbbe8687b17e97e414358b38d964df675
[ "MIT" ]
null
null
null
"""Find the smallest integer in the array, Kata in Codewars.""" def smallest(alist): """Return the smallest integer in the list. input: a list of integers output: a single integer ex: [34, 15, 88, 2] should return 34 ex: [34, -345, -1, 100] should return -345 """ res = [alist[0]] for num in alist: if res[0] > num: res.pop() res.append(num) return res[0]
23.722222
63
0.569087
"""Find the smallest integer in the array, Kata in Codewars.""" def smallest(alist): """Return the smallest integer in the list. input: a list of integers output: a single integer ex: [34, 15, 88, 2] should return 34 ex: [34, -345, -1, 100] should return -345 """ res = [alist[0]] for num in alist: if res[0] > num: res.pop() res.append(num) return res[0]
0
0
0
0
0
0
0
0
0
e3f4e7de367fe4adbb1c08ed45342cc24a82354b
1,810
py
Python
extract-code.py
aaw/commafree
6ee17fdf1e7858546782f81b1f004659c03661d3
[ "Unlicense" ]
null
null
null
extract-code.py
aaw/commafree
6ee17fdf1e7858546782f81b1f004659c03661d3
[ "Unlicense" ]
null
null
null
extract-code.py
aaw/commafree
6ee17fdf1e7858546782f81b1f004659c03661d3
[ "Unlicense" ]
null
null
null
#!/usr/bin/python3 # Extracts a commafree code from a CNF file created by commafree.py and # the output of a SAT solver on that CNF file. Only works on satisfiable # instances. # # Usage: extract-code.py <cnf-file> <sat-solver-output-file> import sys if __name__ == '__main__': if len(sys.argv) < 3: print('Usage: %s <cnf-file> <sat-solver-output-file>' % sys.argv[0]) sys.exit(1) mapping = strip_cnf_mapping(sys.argv[1]) solution = strip_sat_solution(sys.argv[2]) code = [mapping[code_id] for code_id in solution if mapping.get(code_id) is not None] assert verify_commafree(code) print('{' + ', '.join(sorted(code)) + '}') print('') print('size: %s' % len(code))
31.754386
78
0.570718
#!/usr/bin/python3 # Extracts a commafree code from a CNF file created by commafree.py and # the output of a SAT solver on that CNF file. Only works on satisfiable # instances. # # Usage: extract-code.py <cnf-file> <sat-solver-output-file> import re import sys def strip_cnf_mapping(filename): # lines look like 'c var 1 == 000001 chosen' mapping = {} pattern = re.compile('c var ([^\\s]+) == ([^\\s]+) chosen') with open(filename) as f: for line in f: if line.startswith('p'): continue if not line.startswith('c'): return mapping m = re.match(pattern, line) if m is None: continue mapping[int(m.groups()[0])] = m.groups()[1] return mapping def strip_sat_solution(filename): pos = [] with open(filename) as f: for line in f: if not line.startswith('v'): continue pos += [int(x) for x in line[1:].strip().split(' ') if int(x) > 0] return pos def verify_commafree(codewords): n = len(codewords[0]) cws = set(c for c in codewords) for x in codewords: for y in codewords: for i in range(1,n): cw = x[i:]+y[:i] if cw in cws: print("CONFLICT: %s, %s, and %s." % (x,y,cw)) return False return True if __name__ == '__main__': if len(sys.argv) < 3: print('Usage: %s <cnf-file> <sat-solver-output-file>' % sys.argv[0]) sys.exit(1) mapping = strip_cnf_mapping(sys.argv[1]) solution = strip_sat_solution(sys.argv[2]) code = [mapping[code_id] for code_id in solution if mapping.get(code_id) is not None] assert verify_commafree(code) print('{' + ', '.join(sorted(code)) + '}') print('') print('size: %s' % len(code))
0
0
0
0
0
1,004
0
-12
92
6496c26b86b5e1c0f0f3e63c148cc42bb42f3e84
22,361
py
Python
chrome/test/functional/autofill.py
meego-tablet-ux/meego-app-browser
0f4ef17bd4b399c9c990a2f6ca939099495c2b9c
[ "BSD-3-Clause" ]
1
2015-10-12T09:14:22.000Z
2015-10-12T09:14:22.000Z
chrome/test/functional/autofill.py
meego-tablet-ux/meego-app-browser
0f4ef17bd4b399c9c990a2f6ca939099495c2b9c
[ "BSD-3-Clause" ]
null
null
null
chrome/test/functional/autofill.py
meego-tablet-ux/meego-app-browser
0f4ef17bd4b399c9c990a2f6ca939099495c2b9c
[ "BSD-3-Clause" ]
1
2020-11-04T07:22:28.000Z
2020-11-04T07:22:28.000Z
#!/usr/bin/python # Copyright (c) 2011 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import pyauto_functional # Must be imported before pyauto if __name__ == '__main__': pyauto_functional.Main()
45.449187
80
0.653414
#!/usr/bin/python # Copyright (c) 2011 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import logging import os import pickle import re import autofill_dataset_converter import autofill_dataset_generator import pyauto_functional # Must be imported before pyauto import pyauto class AutofillTest(pyauto.PyUITest): """Tests that autofill works correctly""" def Debug(self): """Test method for experimentation. This method will not run automatically. """ import pprint pp = pprint.PrettyPrinter(indent=2) while True: raw_input('Hit <enter> to dump info.. ') info = self.GetAutofillProfile() pp.pprint(info) def testFillProfile(self): """Test filling profiles and overwriting with new profiles.""" profiles = [{'NAME_FIRST': 'Bob', 'NAME_LAST': 'Smith', 'ADDRESS_HOME_ZIP': '94043',}, {'EMAIL_ADDRESS': '[email protected]', 'COMPANY_NAME': 'Company X',}] credit_cards = [{'CREDIT_CARD_NUMBER': '6011111111111117', 'CREDIT_CARD_EXP_MONTH': '12', 'CREDIT_CARD_EXP_4_DIGIT_YEAR': '2011'}, {'CREDIT_CARD_NAME': 'Bob C. Smith'}] self.FillAutofillProfile(profiles=profiles, credit_cards=credit_cards) profile = self.GetAutofillProfile() self.assertEqual(profiles, profile['profiles']) self.assertEqual(credit_cards, profile['credit_cards']) profiles = [ {'NAME_FIRST': 'Larry'}] self.FillAutofillProfile(profiles=profiles) profile = self.GetAutofillProfile() self.assertEqual(profiles, profile['profiles']) self.assertEqual(credit_cards, profile['credit_cards']) def testFillProfileCrazyCharacters(self): """Test filling profiles with unicode strings and crazy characters.""" # Adding autofill profiles. file_path = os.path.join(self.DataDir(), 'autofill', 'crazy_autofill.txt') profiles = self.EvalDataFrom(file_path) self.FillAutofillProfile(profiles=profiles) self.assertEqual(profiles, self.GetAutofillProfile()['profiles']) # Adding credit cards. file_path = os.path.join(self.DataDir(), 'autofill', 'crazy_creditcards.txt') test_data = self.EvalDataFrom(file_path) credit_cards_input = test_data['input'] self.FillAutofillProfile(credit_cards=credit_cards_input) self.assertEqual(test_data['expected'], self.GetAutofillProfile()['credit_cards']) def testGetProfilesEmpty(self): """Test getting profiles when none have been filled.""" profile = self.GetAutofillProfile() self.assertEqual([], profile['profiles']) self.assertEqual([], profile['credit_cards']) def testAutofillInvalid(self): """Test filling in invalid values for profiles.""" # First try profiles with invalid input. without_invalid = {'NAME_FIRST': u'Will', 'ADDRESS_HOME_CITY': 'Sunnyvale', 'ADDRESS_HOME_STATE': 'CA', 'ADDRESS_HOME_ZIP': 'my_zip', 'ADDRESS_HOME_COUNTRY': 'United States'} # Add some invalid fields. with_invalid = without_invalid.copy() with_invalid['PHONE_HOME_WHOLE_NUMBER'] = 'Invalid_Phone_Number' with_invalid['PHONE_FAX_WHOLE_NUMBER'] = 'Invalid_Fax_Number' self.FillAutofillProfile(profiles=[with_invalid]) self.assertEqual([without_invalid], self.GetAutofillProfile()['profiles']) def testAutofillPrefsStringSavedAsIs(self): """Test invalid credit card numbers typed in prefs should be saved as-is.""" credit_card = {'CREDIT_CARD_NUMBER': 'Not_0123-5Checked'} self.FillAutofillProfile(credit_cards=[credit_card]) self.assertEqual([credit_card], self.GetAutofillProfile()['credit_cards'], msg='Credit card number in prefs not saved as-is.') def _LuhnCreditCardNumberValidator(self, number): """Validates whether a number is valid or invalid using the Luhn test. Validation example: 1. Example number: 49927398716 2. Reverse the digits: 61789372994 3. Sum the digits in the odd-numbered position for s1: 6 + 7 + 9 + 7 + 9 + 4 = 42 4. Take the digits in the even-numbered position: 1, 8, 3, 2, 9 4.1. Two times each digit in the even-numbered position: 2, 16, 6, 4, 18 4.2. For each resulting value that is now 2 digits, add the digits together: 2, 7, 6, 4, 9 (0 + 2 = 2, 1 + 6 = 7, 0 + 6 = 6, 0 + 4 = 4, 1 + 8 = 9) 4.3. Sum together the digits for s2: 2 + 7 + 6 + 4 + 9 = 28 5. Sum together s1 + s2 and if the sum ends in zero, the number passes the Luhn test: 42 + 28 = 70 which is a valid credit card number. Args: number: the credit card number being validated, as a string. Return: boolean whether the credit card number is valid or not. """ # Filters out non-digit characters. number = re.sub('[^0-9]', '', number) reverse = [int(ch) for ch in str(number)][::-1] # The divmod of the function splits a number into two digits, ready for # summing. return ((sum(reverse[0::2]) + sum(sum(divmod(d*2, 10)) for d in reverse[1::2])) % 10 == 0) def testInvalidCreditCardNumberIsNotAggregated(self): """Test credit card info with an invalid number is not aggregated. When filling out a form with an invalid credit card number (one that does not pass the Luhn test) the credit card info should not be saved into Autofill preferences. """ invalid_cc_info = {'CREDIT_CARD_NAME': 'Bob Smith', 'CREDIT_CARD_NUMBER': '4408 0412 3456 7890', 'CREDIT_CARD_EXP_MONTH': '12', 'CREDIT_CARD_EXP_4_DIGIT_YEAR': '2014'} cc_number = invalid_cc_info['CREDIT_CARD_NUMBER'] self.assertFalse(self._LuhnCreditCardNumberValidator(cc_number), msg='This test requires an invalid credit card number.') url = self.GetHttpURLForDataPath( os.path.join('autofill', 'autofill_creditcard_form.html')) self.NavigateToURL(url) for key, value in invalid_cc_info.iteritems(): script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) js_code = """ document.getElementById("cc_submit").submit(); window.addEventListener("unload", function() { window.domAutomationController.send("done"); }); """ self.ExecuteJavascript(js_code, 0, 0) # Wait until the form is submitted and the page completes loading. self.WaitUntil( lambda: self.GetDOMValue('document.readyState'), expect_retval='complete') cc_infobar = self.GetBrowserInfo()['windows'][0]['tabs'][0]['infobars'] self.assertFalse( cc_infobar, msg='Save credit card infobar offered to save CC info.') def testWhitespacesAndSeparatorCharsStrippedForValidCCNums(self): """Test whitespaces and separator chars are stripped for valid CC numbers. The credit card numbers used in this test pass the Luhn test. For reference: http://www.merriampark.com/anatomycc.htm """ credit_card_info = [{'CREDIT_CARD_NAME': 'Bob Smith', 'CREDIT_CARD_NUMBER': '4408 0412 3456 7893', 'CREDIT_CARD_EXP_MONTH': '12', 'CREDIT_CARD_EXP_4_DIGIT_YEAR': '2014'}, {'CREDIT_CARD_NAME': 'Jane Doe', 'CREDIT_CARD_NUMBER': '4417-1234-5678-9113', 'CREDIT_CARD_EXP_MONTH': '10', 'CREDIT_CARD_EXP_4_DIGIT_YEAR': '2013'}] url = self.GetHttpURLForDataPath( os.path.join('autofill', 'autofill_creditcard_form.html')) for cc_info in credit_card_info: self.NavigateToURL(url) for key, value in cc_info.iteritems(): cc_number = cc_info['CREDIT_CARD_NUMBER'] self.assertTrue(self._LuhnCreditCardNumberValidator(cc_number), msg='This test requires a valid credit card number.') script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) js_code = """ document.getElementById("cc_submit").submit(); window.addEventListener("unload", function() { window.domAutomationController.send("done"); }); """ self.ExecuteJavascript(js_code, 0, 0) # Wait until form is submitted and page completes loading. self.WaitUntil( lambda: self.GetDOMValue('document.readyState'), expect_retval='complete') self.PerformActionOnInfobar('accept', infobar_index=0) # Verify the filled-in credit card number against the aggregated number. aggregated_cc_1 = ( self.GetAutofillProfile()['credit_cards'][0]['CREDIT_CARD_NUMBER']) aggregated_cc_2 = ( self.GetAutofillProfile()['credit_cards'][1]['CREDIT_CARD_NUMBER']) self.assertFalse((' ' in aggregated_cc_1 or ' ' in aggregated_cc_2 or '-' in aggregated_cc_1 or '-' in aggregated_cc_2), msg='Whitespaces or separator chars not stripped.') def testProfilesNotAggregatedWithNoAddress(self): """Test Autofill does not aggregate profiles with no address info.""" profile = {'NAME_FIRST': 'Bob', 'NAME_LAST': 'Smith', 'EMAIL_ADDRESS': '[email protected]', 'COMPANY_NAME': 'Company X', 'PHONE_HOME_WHOLE_NUMBER': '650-123-4567',} url = self.GetHttpURLForDataPath( os.path.join('autofill', 'duplicate_profiles_test.html')) self.NavigateToURL(url) for key, value in profile.iteritems(): script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) js_code = """ document.getElementById("merge_dup").submit(); window.addEventListener("unload", function() { window.domAutomationController.send("done"); }); """ self.ExecuteJavascript(js_code, 0, 0) self.assertFalse(self.GetAutofillProfile()['profiles'], msg='Profile with no address info was aggregated.') def testProfilesNotAggregatedWithInvalidEmail(self): """Test Autofill does not aggregate profiles with an invalid email.""" profile = {'NAME_FIRST': 'Bob', 'NAME_LAST': 'Smith', 'EMAIL_ADDRESS': 'garbage', 'ADDRESS_HOME_LINE1': '1234 H St.', 'ADDRESS_HOME_CITY': 'San Jose', 'ADDRESS_HOME_STATE': 'CA', 'ADDRESS_HOME_ZIP': '95110', 'COMPANY_NAME': 'Company X', 'PHONE_HOME_WHOLE_NUMBER': '408-123-4567',} url = self.GetHttpURLForDataPath( os.path.join('autofill', 'duplicate_profiles_test.html')) self.NavigateToURL(url) for key, value in profile.iteritems(): script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) js_code = """ document.getElementById("merge_dup").submit(); window.addEventListener("unload", function() { window.domAutomationController.send("done"); }); """ self.ExecuteJavascript(js_code, 0, 0) self.assertFalse(self.GetAutofillProfile()['profiles'], msg='Profile with invalid email was aggregated.') def _SendKeyEventsToPopulateForm(self, tab_index=0, windex=0): """Send key events to populate a web form with Autofill profile data. Args: tab_index: The tab index, default is 0. windex: The window index, default is 0. """ TAB_KEYPRESS = 0x09 # Tab keyboard key press. DOWN_KEYPRESS = 0x28 # Down arrow keyboard key press. RETURN_KEYPRESS = 0x0D # Return keyboard key press. self.SendWebkitKeypressEvent(TAB_KEYPRESS, tab_index, windex) self.SendWebkitKeypressEvent(DOWN_KEYPRESS, tab_index, windex) self.SendWebkitKeypressEvent(DOWN_KEYPRESS, tab_index, windex) self.SendWebkitKeypressEvent(RETURN_KEYPRESS, tab_index, windex) def testComparePhoneNumbers(self): """Test phone fields parse correctly from a given profile. The high level key presses execute the following: Select the first text field, invoke the autofill popup list, select the first profile within the list, and commit to the profile to populate the form. """ profile_path = os.path.join(self.DataDir(), 'autofill', 'phone_pinput_autofill.txt') profile_expected_path = os.path.join(self.DataDir(), 'autofill', 'phone_pexpected_autofill.txt') profiles = self.EvalDataFrom(profile_path) profiles_expected = self.EvalDataFrom(profile_expected_path) self.FillAutofillProfile(profiles=profiles) url = self.GetHttpURLForDataPath( os.path.join('autofill', 'form_phones.html')) for profile_expected in profiles_expected: self.NavigateToURL(url) self._SendKeyEventsToPopulateForm() form_values = {} for key, value in profile_expected.iteritems(): js_returning_field_value = ( 'var field_value = document.getElementById("%s").value;' 'window.domAutomationController.send(field_value);' ) % key form_values[key] = self.ExecuteJavascript( js_returning_field_value, 0, 0) self.assertEqual( form_values[key], value, msg=('Original profile not equal to expected profile at key: "%s"\n' 'Expected: "%s"\nReturned: "%s"' % ( key, value, form_values[key]))) def testCCInfoNotStoredWhenAutocompleteOff(self): """Test CC info not offered to be saved when autocomplete=off for CC field. If the credit card number field has autocomplete turned off, then the credit card infobar should not offer to save the credit card info. The credit card number must be a valid Luhn number. """ credit_card_info = {'CREDIT_CARD_NAME': 'Bob Smith', 'CREDIT_CARD_NUMBER': '4408041234567893', 'CREDIT_CARD_EXP_MONTH': '12', 'CREDIT_CARD_EXP_4_DIGIT_YEAR': '2014'} url = self.GetHttpURLForDataPath( os.path.join('autofill', 'cc_autocomplete_off_test.html')) self.NavigateToURL(url) for key, value in credit_card_info.iteritems(): script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) js_code = """ document.getElementById("cc_submit").submit(); window.addEventListener("unload", function() { window.domAutomationController.send("done"); }); """ self.ExecuteJavascript(js_code, 0, 0) # Wait until form is submitted and page completes loading. self.WaitUntil( lambda: self.GetDOMValue('document.readyState'), expect_retval='complete') cc_infobar = self.GetBrowserInfo()['windows'][0]['tabs'][0]['infobars'] self.assertFalse(cc_infobar, msg='Save credit card infobar offered to save CC info.') def testNoAutofillForReadOnlyFields(self): """Test that Autofill does not fill in read-only fields.""" profile = {'NAME_FIRST': 'Bob', 'NAME_LAST': 'Smith', 'EMAIL_ADDRESS': '[email protected]', 'ADDRESS_HOME_LINE1': '1234 H St.', 'ADDRESS_HOME_CITY': 'San Jose', 'ADDRESS_HOME_STATE': 'CA', 'ADDRESS_HOME_ZIP': '95110', 'COMPANY_NAME': 'Company X', 'PHONE_HOME_WHOLE_NUMBER': '408-123-4567',} self.FillAutofillProfile(profiles=[profile]) url = self.GetHttpURLForDataPath( os.path.join('autofill', 'read_only_field_test.html')) self.NavigateToURL(url) self._SendKeyEventsToPopulateForm() js_return_readonly_field = ( 'var field_value = document.getElementById("email").value;' 'window.domAutomationController.send(field_value);') readonly_field_value = self.ExecuteJavascript( js_return_readonly_field, 0, 0) js_return_addrline1_field = ( 'var field_value = document.getElementById("address").value;' 'window.domAutomationController.send(field_value);') addrline1_field_value = self.ExecuteJavascript( js_return_addrline1_field, 0, 0) self.assertNotEqual( readonly_field_value, profile['EMAIL_ADDRESS'], 'Autofill filled in value "%s" for a read-only field.' % readonly_field_value) self.assertEqual( addrline1_field_value, profile['ADDRESS_HOME_LINE1'], 'Unexpected value "%s" in the Address field.' % addrline1_field_value) def FormFillLatencyAfterSubmit(self): """Test latency time on form submit with lots of stored Autofill profiles. This test verifies when a profile is selected from the Autofill dictionary that consists of thousands of profiles, the form does not hang after being submitted. The high level key presses execute the following: Select the first text field, invoke the autofill popup list, select the first profile within the list, and commit to the profile to populate the form. This test is partially automated. The bulk of the work is done, such as generating 1500 plus profiles, inserting those profiles into Autofill, selecting a profile from the list. The tester will need to click on the submit button and check if the browser hangs. """ # HTML file needs to be run from a http:// url. url = self.GetHttpURLForDataPath( os.path.join('autofill', 'latency_after_submit_test.html')) # Run the generator script to generate the dictionary list needed for the # profiles. gen = autofill_dataset_generator.DatasetGenerator( logging_level=logging.ERROR) list_of_dict = gen.GenerateDataset(num_of_dict_to_generate=1501) self.FillAutofillProfile(profiles=list_of_dict) self.NavigateToURL(url) self._SendKeyEventsToPopulateForm() # TODO(dyu): add automated form hang or crash verification. raw_input( 'Verify the test manually. Test hang time after submitting the form.') def AutofillCrowdsourcing(self): """Test able to send POST request of web form to Autofill server. The Autofill server processes the data offline, so it can take a few days for the result to be detectable. Manual verification is required. """ # HTML file needs to be run from a specific http:// url to be able to verify # the results a few days later by visiting the same url. url = 'http://www.corp.google.com/~dyu/autofill/crowdsourcing-test.html' # Adding crowdsourcing Autofill profile. file_path = os.path.join(self.DataDir(), 'autofill', 'crowdsource_autofill.txt') profiles = self.EvalDataFrom(file_path) self.FillAutofillProfile(profiles=profiles) # Autofill server captures 2.5% of the data posted. # Looping 1000 times is a safe minimum to exceed the server's threshold or # noise. for i in range(1000): fname = self.GetAutofillProfile()['profiles'][0]['NAME_FIRST'] lname = self.GetAutofillProfile()['profiles'][0]['NAME_LAST'] email = self.GetAutofillProfile()['profiles'][0]['EMAIL_ADDRESS'] # Submit form to collect crowdsourcing data for Autofill. self.NavigateToURL(url, 0, 0) fname_field = ('document.getElementById("fn").value = "%s"; ' 'window.domAutomationController.send("done");') % fname lname_field = ('document.getElementById("ln").value = "%s"; ' 'window.domAutomationController.send("done");') % lname email_field = ('document.getElementById("em").value = "%s"; ' 'window.domAutomationController.send("done");') % email self.ExecuteJavascript(fname_field, 0, 0); self.ExecuteJavascript(lname_field, 0, 0); self.ExecuteJavascript(email_field, 0, 0); self.ExecuteJavascript('document.getElementById("frmsubmit").submit();' 'window.domAutomationController.send("done");', 0, 0) def MergeDuplicateProfilesInAutofill(self): """Test Autofill ability to merge duplicate profiles and throw away junk.""" # HTML file needs to be run from a http:// url. url = self.GetHttpURLForDataPath( os.path.join('autofill', 'duplicate_profiles_test.html')) # Run the parser script to generate the dictionary list needed for the # profiles. c = autofill_dataset_converter.DatasetConverter( os.path.join(self.DataDir(), 'autofill', 'dataset.txt'), logging_level=logging.INFO) # Set verbosity to INFO, WARNING, ERROR. list_of_dict = c.Convert() for profile in list_of_dict: self.NavigateToURL(url) for key, value in profile.iteritems(): script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) self.ExecuteJavascript('document.getElementById("merge_dup").submit();' 'window.domAutomationController.send("done");', 0, 0) # Verify total number of inputted profiles is greater than the final number # of profiles after merging. self.assertTrue( len(list_of_dict) > len(self.GetAutofillProfile()['profiles'])) # Write profile dictionary to a file. merged_profile = os.path.join(self.DataDir(), 'autofill', 'merged-profiles.txt') profile_dict = self.GetAutofillProfile()['profiles'] output = open(merged_profile, 'wb') pickle.dump(profile_dict, output) output.close() if __name__ == '__main__': pyauto_functional.Main()
0
0
0
21,905
0
0
0
-23
179
d1839a3279a5cf65bd5fa7efd4fde3026ed8d45c
9,871
py
Python
ke/images/python/cluster_tool.py
justasabc/kubernetes-ubuntu
afc670297a5becb2fcb4404c3ee1e02c99b5eaf4
[ "Apache-2.0" ]
1
2020-10-18T01:34:39.000Z
2020-10-18T01:34:39.000Z
ke/images/python/cluster_tool.py
justasabc/kubernetes-ubuntu
afc670297a5becb2fcb4404c3ee1e02c99b5eaf4
[ "Apache-2.0" ]
null
null
null
ke/images/python/cluster_tool.py
justasabc/kubernetes-ubuntu
afc670297a5becb2fcb4404c3ee1e02c99b5eaf4
[ "Apache-2.0" ]
null
null
null
""" Class Hierarchy G{classtree: BaseTool} Package tree G{packagetree: cluster_tool} Import Graph G{importgraph: cluster_tool} """ #/usr/bin/python # -*- coding:utf-8 -*- DOCKER_SERVER_URL = 'tcp://master:2375' if __name__=="__main__": main()
34.757042
141
0.668727
""" Class Hierarchy G{classtree: BaseTool} Package tree G{packagetree: cluster_tool} Import Graph G{importgraph: cluster_tool} """ #/usr/bin/python # -*- coding:utf-8 -*- import subprocess from json_generator import JsonGenerator from container_client import ContainerClient DOCKER_SERVER_URL = 'tcp://master:2375' class BaseTool: """ base tool """ def __init__(self,name): self.name = name """ @type: C{string} """ def execute_command(self,command_str): #print "[BaseTool] {0}".format(command_str) p = subprocess.Popen(command_str, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) value = "" for line in p.stdout.readlines(): value += line return_code = p.wait() return value.rstrip() class KubernetesTool(BaseTool): """ kubernetes tool """ def __init__(self): #print "[KubernetesTool] init..." BaseTool.__init__(self,"KubernetesTool") self.container_client = ContainerClient(DOCKER_SERVER_URL) """ @type: L{ContainerClient} """ #print "[KubernetesTool] OK" def __create(self,type_name,config_file): command_str = "kubecfg -c {0} create {1}".format(config_file,type_name) return BaseTool.execute_command(self,command_str) def __list(self,type_name): command_str = "kubecfg list {0}".format(type_name) return BaseTool.execute_command(self,command_str) def __delete(self,type_name,type_id): command_str = "kubecfg delete {0}/{1}".format(type_name,type_id) return BaseTool.execute_command(self,command_str) #===================================================================== # create pod/service/replicationController/node/minion/event #===================================================================== def create_pod(self,config_file): type_name = "pods" return self.__create(type_name,config_file) def create_service(self,config_file): type_name = "services" return self.__create(type_name,config_file) def create_replication_controller(self,config_file): type_name = "replicationControllers" return self.__create(type_name,config_file) #===================================================================== # list pod/service/replicationController/node/minion/event #===================================================================== def list_pods(self): type_name = "pods" return self.__list(type_name) def list_services(self): type_name = "services" return self.__list(type_name) def list_replication_controller(self): type_name = "replicationControllers" return self.__list(type_name) #===================================================================== # delete pod/service/replicationController/node/minion/event #===================================================================== def delete_pod(self,type_id): type_name = "pods" return self.__delete(type_name,type_id) def delete_service(self,type_id): type_name = "services" return self.__delete(type_name,type_id) def delete_replication_controller(self,type_id): type_name = "replicationControllers" return self.__delete(type_name,type_id) #===================================================================== # get pod hostname #===================================================================== def get_pod_hostname(self,pod_id): command_str = "kubecfg list pods | grep "+pod_id+ " | awk '{print $3;}' | cut -f1 -d/" return BaseTool.execute_command(self,command_str) def hostname_to_ip(self,hostname): if hostname == "": print "*"*50 print "[KubernetesTool] hostname is empty! " print "[KubernetesTool] use master node instead! " print "*"*50 hostname = "master" command_str = "resolveip -s {0}".format(hostname) return BaseTool.execute_command(self,command_str) def get_pod_ip(self,pod_id): hostname = self.get_pod_hostname(pod_id) return self.hostname_to_ip(hostname) def stats_container(self,container): command_str = "docker stats {0}".format(container) return BaseTool.execute_command(self,command_str) def get_host_ip(self): command_str = "/sbin/ifconfig $ETH0 | grep 'inet addr:' | cut -d: -f2 | awk '{ print $1}'" return BaseTool.execute_command(self,command_str) def get_container_ip(self,container_name): command_str = "docker inspect -f '{{ .NetworkSettings.IPAddress }}' {0}".format(container_name) return BaseTool.execute_command(self,command_str) def copy_region_xml_to_minions(self,minions): # scp -r xml/* minion1:/volumes/var/www/region_load/ for minion in minions: print "copying xml to {0}...".format(minion) command_str = "scp -r xml/* {0}:/volumes/var/www/region_load/".format(minion) BaseTool.execute_command(self,command_str) def save_json_to_file(self,dict_data,file_path): generator = JsonGenerator('generator') generator.generate(dict_data,file_path) #===================================================================== # resize replicationController #===================================================================== def resize_replication_controller(self,controller_id,replicas): command_str = "kubecfg resize {0} {1}".format(controller_id,replicas) return BaseTool.execute_command(self,command_str) class IptablesTool(BaseTool): """ iptables tool """ def __init__(self): #print "[IptablesTool] init..." BaseTool.__init__(self,"IptablesTool") #print "[IptablesTool] OK" #========================================================== # nat add rules to PREROUTING/POSTROUTING/INPUT/OUTPUT chains #========================================================== def nat_add_rule_to_prerouting_chain(self,protocol,src_port,dst_port,src_ip,dst_ip): command_str = "iptables -t nat -A PREROUTING -p {0} --dport {1} -j DNAT --to-destination {2}:{3}".format(protocol,dst_port,dst_ip,dst_port) return BaseTool.execute_command(self,command_str) def nat_add_rule_to_postrouting_chain(self,protocol,src_port,dst_port,src_ip,dst_ip): command_str = "iptables -t nat -A POSTROUTING -p {0} -d {1} --dport {2} -j SNAT --to-source {3}".format(protocol,dst_ip,dst_port,src_ip) return BaseTool.execute_command(self,command_str) def nat_add_rule_to_input_chain(self,protocol,src_port,dst_port,src_ip,dst_ip): command_str = "ls" return BaseTool.execute_command(self,command_str) def nat_add_rule_to_output_chain(self,protocol,src_port,dst_port,src_ip,dst_ip): command_str = "ls" return BaseTool.execute_command(self,command_str) #========================================================== # nat delete rules to PREROUTING/POSTROUTING/INPUT/OUTPUT chains #========================================================== def nat_delete_rule_from_prerouting_chain(self,rule_number): command_str = "iptables -t nat -D PREROUTING {0}".format(rule_number) return BaseTool.execute_command(self,command_str) def nat_delete_rule_from_postrouting_chain(self,rule_number): command_str = "iptables -t nat -D POSTROUTING {0}".format(rule_number) return BaseTool.execute_command(self,command_str) def nat_delete_rule_from_input_chain(self,rule_number): command_str = "iptables -t nat -D INPUT {0}".format(rule_number) return BaseTool.execute_command(self,command_str) def nat_delete_rule_from_output_chain(self,rule_number): command_str = "iptables -t nat -D OUTPUT {0}".format(rule_number) return BaseTool.execute_command(self,command_str) #========================================================== # nat flush PREROUTING/POSTROUTING/INPUT/OUTPUT chains #========================================================== def nat_flush_prerouting_chain(self): command_str = "iptables -t nat -F PREROUTING" return BaseTool.execute_command(self,command_str) def nat_flush_postrouting_chain(self): command_str = "iptables -t nat -F POSTROUTING" return BaseTool.execute_command(self,command_str) def nat_flush_input_chain(self): command_str = "iptables -t nat -F INPUT" return BaseTool.execute_command(self,command_str) def nat_flush_output_chain(self): command_str = "iptables -t nat -F OUTPUT" return BaseTool.execute_command(self,command_str) def nat_flush_all_chains(self): self.nat_flush_prerouting_chain() self.nat_flush_postrouting_chain() self.nat_flush_input_chain() self.nat_flush_output_chain() #========================================================== # nat list PREROUTING/POSTROUTING/INPUT/OUTPUT chains #========================================================== def nat_list_prerouting_chain(self,with_line_numbers=False): command_str = "iptables -t nat -L PREROUTING" if with_line_numbers: command_str += " --line-numbers" return BaseTool.execute_command(self,command_str) def nat_list_postrouting_chain(self,with_line_numbers=False): command_str = "iptables -t nat -L POSTROUTING" if with_line_numbers: command_str += " --line-numbers" return BaseTool.execute_command(self,command_str) def nat_list_input_chain(self,with_line_numbers=False): command_str = "iptables -t nat -L INPUT" if with_line_numbers: command_str += " --line-numbers" return BaseTool.execute_command(self,command_str) def nat_list_output_chain(self,with_line_numbers=False): command_str = "iptables -t nat -L OUTPUT" if with_line_numbers: command_str += " --line-numbers" return BaseTool.execute_command(self,command_str) def nat_list_all_chains(self): result = "" result += (self.nat_list_prerouting_chain() + "\n") result += (self.nat_list_postrouting_chain() + "\n") result += (self.nat_list_input_chain() + "\n") result += (self.nat_list_output_chain() + "\n") return result.rstrip() class ToolTesting(KubernetesTool,IptablesTool): pass def test(): cmd = IptablesTool() cmd.nat_flush_prerouting_chain() print cmd.nat_list_all_chains() print "OK" cmd = KubernetesTool() hostname = cmd.get_pod_hostname("apache-pod") print cmd.hostname_to_ip(hostname) print "OK" def main(): test() if __name__=="__main__": main()
0
0
0
9,166
0
209
0
38
205
4311beaaf96391f1dec77dcb15a6c9c8eec39f67
239
py
Python
cli/__init__.py
Polsaker/throat
39fd66efb7251f1607d9bf9e407e0cbbdfc10c57
[ "MIT" ]
8
2019-05-27T19:34:25.000Z
2020-03-01T19:06:48.000Z
cli/__init__.py
Polsaker/throat
39fd66efb7251f1607d9bf9e407e0cbbdfc10c57
[ "MIT" ]
null
null
null
cli/__init__.py
Polsaker/throat
39fd66efb7251f1607d9bf9e407e0cbbdfc10c57
[ "MIT" ]
7
2019-05-29T17:12:40.000Z
2020-05-01T16:41:16.000Z
from .recount import recount from .admin import admin from .default import default from .migration import migration from .translations import translations commands = [ migration, recount, admin, default, translations ]
18.384615
38
0.74477
from .recount import recount from .admin import admin from .default import default from .migration import migration from .translations import translations commands = [ migration, recount, admin, default, translations ]
0
0
0
0
0
0
0
0
0
500d465798a7caedef8ae7ce212b2a7ab666165d
1,078
py
Python
madrona/common/assets.py
movermeyer/madrona
fcdced0a03408754b88a3d88f416e04d500c32d4
[ "BSD-3-Clause" ]
9
2015-03-09T11:04:21.000Z
2022-01-16T09:45:36.000Z
madrona/common/assets.py
movermeyer/madrona
fcdced0a03408754b88a3d88f416e04d500c32d4
[ "BSD-3-Clause" ]
1
2020-04-24T14:38:43.000Z
2020-04-24T14:38:43.000Z
madrona/common/assets.py
movermeyer/madrona
fcdced0a03408754b88a3d88f416e04d500c32d4
[ "BSD-3-Clause" ]
2
2016-12-06T15:31:35.000Z
2018-03-04T20:04:44.000Z
from elementtree import ElementTree as et import os ROOT_PATH = '' def get_js_files(): """Returns a list of all the javascript files listed in media/js_includes.xml""" files = [] path = os.path.dirname(os.path.abspath(__file__)) tree = et.parse(path + '/../media/js_includes.xml') for f in tree.findall('file'): files.append(ROOT_PATH + f.get('path')) return files def get_js_test_files(): """Returns a list of all the javascript test files listed in media/js_includes.xml""" files = [] path = os.path.dirname(os.path.abspath(__file__)) tree = et.parse(path + '/../media/js_includes.xml') for f in tree.findall('test'): files.append(ROOT_PATH + f.get('path')) return files def get_css_files(): """Returns a list of all css files listed in media/css_includes.xml""" files = [] path = os.path.dirname(os.path.abspath(__file__)) tree = et.parse(path + '/../media/css_includes.xml') for f in tree.findall('file'): files.append(ROOT_PATH + f.get('path')) return files
30.8
65
0.646568
from elementtree import ElementTree as et import os ROOT_PATH = '' def get_js_files(): """Returns a list of all the javascript files listed in media/js_includes.xml""" files = [] path = os.path.dirname(os.path.abspath(__file__)) tree = et.parse(path + '/../media/js_includes.xml') for f in tree.findall('file'): files.append(ROOT_PATH + f.get('path')) return files def get_js_test_files(): """Returns a list of all the javascript test files listed in media/js_includes.xml""" files = [] path = os.path.dirname(os.path.abspath(__file__)) tree = et.parse(path + '/../media/js_includes.xml') for f in tree.findall('test'): files.append(ROOT_PATH + f.get('path')) return files def get_css_files(): """Returns a list of all css files listed in media/css_includes.xml""" files = [] path = os.path.dirname(os.path.abspath(__file__)) tree = et.parse(path + '/../media/css_includes.xml') for f in tree.findall('file'): files.append(ROOT_PATH + f.get('path')) return files
0
0
0
0
0
0
0
0
0
48a887f207778a7c4e05b2e0a8a7e32643674841
1,018
py
Python
tests/conf/config.py
robert-werner/fastapi-crudrouter
4f924307b53e5ea1adaa509302800c060ee7d06a
[ "MIT" ]
null
null
null
tests/conf/config.py
robert-werner/fastapi-crudrouter
4f924307b53e5ea1adaa509302800c060ee7d06a
[ "MIT" ]
null
null
null
tests/conf/config.py
robert-werner/fastapi-crudrouter
4f924307b53e5ea1adaa509302800c060ee7d06a
[ "MIT" ]
null
null
null
import pathlib ENV_FILE_PATH = pathlib.Path(__file__).parent / "dev.env" assert ENV_FILE_PATH.exists()
27.513514
150
0.574656
import os import pathlib ENV_FILE_PATH = pathlib.Path(__file__).parent / "dev.env" assert ENV_FILE_PATH.exists() class BaseConfig: POSTGRES_HOST = "" POSTGRES_USER = "" POSTGRES_PASSWORD = "" POSTGRES_DB = "" POSTGRES_PORT = "" def __init__(self): self._apply_dot_env() self._apply_env_vars() self.POSTGRES_URI = f"postgresql://{self.POSTGRES_USER}:{self.POSTGRES_PASSWORD}@{self.POSTGRES_HOST}:{self.POSTGRES_PORT}/{self.POSTGRES_DB}" print(self.POSTGRES_URI) def _apply_dot_env(self): with open(ENV_FILE_PATH) as fp: for line in fp.readlines(): line = line.strip(" \n") if not line.startswith("#"): k, v = line.split("=", 1) if hasattr(self, k) and not getattr(self, k): setattr(self, k, v) def _apply_env_vars(self): for k, v in os.environ.items(): if hasattr(self, k): setattr(self, k, v)
0
0
0
879
0
0
0
-12
45
530a06fbf60cdea98dfb1c9085cf498b370520c5
3,958
py
Python
.2lanemdr/2lanemdr.py
hemidactylus/nbws1
282cc2f0d5c04f5fc818f3e411dfb5b549ea47f6
[ "Apache-2.0" ]
null
null
null
.2lanemdr/2lanemdr.py
hemidactylus/nbws1
282cc2f0d5c04f5fc818f3e411dfb5b549ea47f6
[ "Apache-2.0" ]
null
null
null
.2lanemdr/2lanemdr.py
hemidactylus/nbws1
282cc2f0d5c04f5fc818f3e411dfb5b549ea47f6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python import re import os import json import subprocess DEF_FILE = '.2lane.info' DIRECTIVE_TEMPLATE = '<!-- 2L {body} -->' TYPO_WARNING_FINDER = re.compile('\W2L\W', re.IGNORECASE) MESSAGE_TEMPLATE = '** 2lanemdr {kind} on {filename}:{linenumber} "{message}"' def parseDirective(line, wrcs): """ Return (kind, target): ('endif', None) ('if', <fn>) ('elif', <fn>) (None, None) """ if line == DIRECTIVE_TEMPLATE.format(body='ENDIF'): return ('endif', None) else: for fn in wrcs.keys(): if line == DIRECTIVE_TEMPLATE.format(body='IF %s' % fn): return ('if', fn) elif line == DIRECTIVE_TEMPLATE.format(body='ELIF %s' % fn): return ('elif', fn) # return None, None def mkFiles(src, prescr, warner, errorer): """ Return a list with the path to all files created """ inContents = [ li.replace('\n', '') for li in open(src).readlines() ] # open files oFiles = { fn: open(fp, 'w') for fn, fp in prescr.items() } # cursor setting writing = { fn: True for fn in oFiles.keys() } # process lines for lineNumber, line in enumerate(inContents): # directive or content line? directive, dTarget = parseDirective(line, writing) if directive is not None: # validate and process if directive == 'endif': if sum(int(c) for c in writing.values()) != 1: errorer('Misplaced ENDIF', lineNumber) else: for fn in writing.keys(): writing[fn] = True elif directive == 'if': if sum(int(c) for c in writing.values()) != len(writing): errorer('Misplaced IF', lineNumber) else: for fn in writing.keys(): writing[fn] = fn == dTarget elif directive == 'elif': if sum(int(c) for c in writing.values()) != 1: errorer('Misplaced ELIF', lineNumber) elif writing[dTarget]: errorer('Repeated target in ELIF', lineNumber) else: for fn in writing.keys(): writing[fn] = fn == dTarget else: errorer('Unknown directive', lineNumber) else: # if TYPO_WARNING_FINDER.search(line): warner('check line', lineNumber) # write serially on all active cursors for fn, fh in oFiles.items(): if writing[fn]: fh.write('%s\n' % line) # close files for fn, fh in oFiles.items(): fh.close() return [fp for fp in prescr.values()] if __name__ == '__main__': if os.path.isfile(DEF_FILE): defs = json.load(open(DEF_FILE)) files = defs.get('sources', {}) # allCreatedFiles = [] # for origF, dests in files.items(): createdFiles = mkFiles(origF, dests, warner=warner, errorer=errorer) allCreatedFiles += createdFiles # we git add the created files subprocess.call(['git', 'add'] + allCreatedFiles)
29.984848
80
0.490904
#!/usr/bin/python import re import os import sys import json import subprocess DEF_FILE = '.2lane.info' DIRECTIVE_TEMPLATE = '<!-- 2L {body} -->' TYPO_WARNING_FINDER = re.compile('\W2L\W', re.IGNORECASE) MESSAGE_TEMPLATE = '** 2lanemdr {kind} on {filename}:{linenumber} "{message}"' def parseDirective(line, wrcs): """ Return (kind, target): ('endif', None) ('if', <fn>) ('elif', <fn>) (None, None) """ if line == DIRECTIVE_TEMPLATE.format(body='ENDIF'): return ('endif', None) else: for fn in wrcs.keys(): if line == DIRECTIVE_TEMPLATE.format(body='IF %s' % fn): return ('if', fn) elif line == DIRECTIVE_TEMPLATE.format(body='ELIF %s' % fn): return ('elif', fn) # return None, None def mkFiles(src, prescr, warner, errorer): """ Return a list with the path to all files created """ inContents = [ li.replace('\n', '') for li in open(src).readlines() ] # open files oFiles = { fn: open(fp, 'w') for fn, fp in prescr.items() } # cursor setting writing = { fn: True for fn in oFiles.keys() } # process lines for lineNumber, line in enumerate(inContents): # directive or content line? directive, dTarget = parseDirective(line, writing) if directive is not None: # validate and process if directive == 'endif': if sum(int(c) for c in writing.values()) != 1: errorer('Misplaced ENDIF', lineNumber) else: for fn in writing.keys(): writing[fn] = True elif directive == 'if': if sum(int(c) for c in writing.values()) != len(writing): errorer('Misplaced IF', lineNumber) else: for fn in writing.keys(): writing[fn] = fn == dTarget elif directive == 'elif': if sum(int(c) for c in writing.values()) != 1: errorer('Misplaced ELIF', lineNumber) elif writing[dTarget]: errorer('Repeated target in ELIF', lineNumber) else: for fn in writing.keys(): writing[fn] = fn == dTarget else: errorer('Unknown directive', lineNumber) else: # if TYPO_WARNING_FINDER.search(line): warner('check line', lineNumber) # write serially on all active cursors for fn, fh in oFiles.items(): if writing[fn]: fh.write('%s\n' % line) # close files for fn, fh in oFiles.items(): fh.close() return [fp for fp in prescr.values()] if __name__ == '__main__': if os.path.isfile(DEF_FILE): defs = json.load(open(DEF_FILE)) files = defs.get('sources', {}) # allCreatedFiles = [] # for origF, dests in files.items(): def warner(msg, intLineno): wmsg = MESSAGE_TEMPLATE.format( kind='WARNING', filename=origF, linenumber=intLineno+1, message=msg, ) print(wmsg) def errorer(msg, intLineno): emsg = MESSAGE_TEMPLATE.format( kind='ERROR', filename=origF, linenumber=intLineno+1, message=msg, ) print(emsg) sys.exit(1) createdFiles = mkFiles(origF, dests, warner=warner, errorer=errorer) allCreatedFiles += createdFiles # we git add the created files subprocess.call(['git', 'add'] + allCreatedFiles)
0
0
0
0
0
525
0
-11
92