hexsha
stringlengths
40
40
size
int64
6
1.04M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
247
max_stars_repo_name
stringlengths
4
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
368k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
247
max_issues_repo_name
stringlengths
4
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
247
max_forks_repo_name
stringlengths
4
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.04M
avg_line_length
float64
1.53
618k
max_line_length
int64
1
1.02M
alphanum_fraction
float64
0
1
original_content
stringlengths
6
1.04M
filtered:remove_non_ascii
int64
0
538k
filtered:remove_decorators
int64
0
917k
filtered:remove_async
int64
0
722k
filtered:remove_classes
int64
-45
1M
filtered:remove_generators
int64
0
814k
filtered:remove_function_no_docstring
int64
-102
850k
filtered:remove_class_no_docstring
int64
-3
5.46k
filtered:remove_unused_imports
int64
-1,350
52.4k
filtered:remove_delete_markers
int64
0
59.6k
1c7029d58f3d83ba1ff6470775aed8811fcd0cda
1,618
py
Python
examples/docs_snippets/docs_snippets/intro_tutorial/advanced/scheduling/scheduler.py
rpatil524/dagster
6f918d94cbd543ab752ab484a65e3a40fd441716
[ "Apache-2.0" ]
1
2021-01-31T19:16:29.000Z
2021-01-31T19:16:29.000Z
examples/docs_snippets/docs_snippets/intro_tutorial/advanced/scheduling/scheduler.py
rpatil524/dagster
6f918d94cbd543ab752ab484a65e3a40fd441716
[ "Apache-2.0" ]
null
null
null
examples/docs_snippets/docs_snippets/intro_tutorial/advanced/scheduling/scheduler.py
rpatil524/dagster
6f918d94cbd543ab752ab484a65e3a40fd441716
[ "Apache-2.0" ]
1
2021-12-08T18:13:19.000Z
2021-12-08T18:13:19.000Z
# start_scheduler_marker_0 # end_scheduler_marker_0 # start_scheduler_marker_1 # end_scheduler_marker_1 # start_scheduler_marker_2 # end_scheduler_marker_2 # start_scheduler_marker_3 # end_scheduler_marker_3 # start_scheduler_marker_4 # end_scheduler_marker_4
23.114286
75
0.721261
# start_scheduler_marker_0 import csv from datetime import datetime import requests from dagster import get_dagster_logger, job, op, repository, schedule @op def hello_cereal(context): response = requests.get("https://docs.dagster.io/assets/cereal.csv") lines = response.text.split("\n") cereals = [row for row in csv.DictReader(lines)] date = context.op_config["date"] get_dagster_logger().info( f"Today is {date}. Found {len(cereals)} cereals." ) @job def hello_cereal_job(): hello_cereal() # end_scheduler_marker_0 # start_scheduler_marker_1 @schedule( cron_schedule="45 6 * * *", job=hello_cereal_job, execution_timezone="US/Central", ) def good_morning_schedule(context): date = context.scheduled_execution_time.strftime("%Y-%m-%d") return {"ops": {"hello_cereal": {"config": {"date": date}}}} # end_scheduler_marker_1 # start_scheduler_marker_2 @repository def hello_cereal_repository(): return [hello_cereal_job, good_morning_schedule] # end_scheduler_marker_2 # start_scheduler_marker_3 def weekday_filter(_context): weekno = datetime.today().weekday() # Returns true if current day is a weekday return weekno < 5 # end_scheduler_marker_3 # start_scheduler_marker_4 @schedule( cron_schedule="45 6 * * *", job=hello_cereal_job, execution_timezone="US/Central", should_execute=weekday_filter, ) def good_weekday_morning_schedule(context): date = context.scheduled_execution_time.strftime("%Y-%m-%d") return {"ops": {"hello_cereal": {"inputs": {"date": {"value": date}}}}} # end_scheduler_marker_4
0
963
0
0
0
117
0
39
223
17b1dff8fe64ef2da095afccaa9e3fdd5b49ac2c
5,483
py
Python
webmachine/auth/oauth_res.py
benoitc/dj-webmachine
77653d73de57388b712eaf50de8c32ec70c182fa
[ "MIT" ]
6
2015-03-29T03:17:53.000Z
2020-01-21T11:09:26.000Z
webmachine/auth/oauth_res.py
benoitc/dj-webmachine
77653d73de57388b712eaf50de8c32ec70c182fa
[ "MIT" ]
1
2015-05-28T11:32:44.000Z
2015-05-28T11:32:44.000Z
webmachine/auth/oauth_res.py
benoitc/dj-webmachine
77653d73de57388b712eaf50de8c32ec70c182fa
[ "MIT" ]
4
2015-05-20T20:53:02.000Z
2019-11-12T19:46:07.000Z
# -*- coding: utf-8 - # # This file is part of dj-webmachine released under the MIT license. # See the NOTICE for more information. try: except ImportError: raise ImportError("restkit>=3.0.2 package is needed for auth.")
32.443787
82
0.590188
# -*- coding: utf-8 - # # This file is part of dj-webmachine released under the MIT license. # See the NOTICE for more information. from django.template import loader, RequestContext from django.utils.encoding import iri_to_uri try: from restkit import oauth2 except ImportError: raise ImportError("restkit>=3.0.2 package is needed for auth.") from webmachine.auth.oauth import OAuthServer, load_oauth_datastore from webmachine.forms import OAuthAuthenticationForm from webmachine.resource import Resource class OauthResource(Resource): def __init__(self, realm='OAuth', auth_template='webmachine/authorize_token.html', auth_form=OAuthAuthenticationForm): self.auth_template = auth_template self.auth_form = auth_form self.realm = realm oauth_datastore = load_oauth_datastore() self.oauth_server = OAuthServer(oauth_datastore()) self.oauth_server.add_signature_method(oauth2.SignatureMethod_PLAINTEXT()) self.oauth_server.add_signature_method(oauth2.SignatureMethod_HMAC_SHA1()) def allowed_methods(self, req, resp): return ["GET", "HEAD", "POST"] def oauth_authorize(self, req, resp): try: token = self.oauth_server.fetch_request_token(req.oauth_request) except oauth2.Error, err: return self.auth_error(req, resp, err) try: callback = self.auth_server.get_callback(req.oauth_request) except: callback = None if req.method == "GET": params = req.oauth_request.get_normalized_parameters() form = self.auth_form(initial={ 'oauth_token': token.key, 'oauth_callback': token.get_callback_url() or callback, }) resp.content = loader.render_to_string(self.auth_template, {'form': form}, RequestContext(req)) elif req.method == "POST": try: form = self.auth_form(req.POST) if form.is_valid(): token = self.oauth_server.authorize_token(token, req.user) args = '?'+token.to_string(only_key=True) else: args = '?error=%s' % 'Access not granted by user.' if not callback: resp.content = 'Access not granted by user.' if not callback: return True resp.redirect_to = iri_to_uri("%s%s" % (callback, args)) except oauth2.Error, err: return self.oauth_error(req, resp, err) return True def oauth_access_token(self, req, resp): try: token = self.oauth_server.fetch_access_token(req.oauth_request) if not token: return False resp.content = token.to_string() except oauth2.Error, err: return self.oauth_error(req, resp, err) return True def oauth_request_token(self, req, resp): try: token = self.oauth_server.fetch_request_token(req.oauth_request) if not token: return False resp.content = token.to_string() except oauth2.Error, err: return self.oauth_error(req, resp, err) return True def oauth_error(self, req, resp, err): resp.content = str(err) return 'OAuth realm="%s"' % self.realm def oauth_resp(self, req, resp): return resp.content def content_types_provided(self, req, resp): return [("", self.oauth_resp)] def process_post(self, res, resp): # we already processed POST return True def created_location(self, req, resp): try: return resp.redirect_to except AttributeError: return False def is_authorized(self, req, resp): func = getattr(self, "oauth_%s" % req.oauth_action) return func(req, resp) def malformed_request(self, req, resp): params = {} headers = {} if req.method == "POST": params = dict(req.REQUEST.items()) if 'HTTP_AUTHORIZATION' in req.META: headers['Authorization'] = req.META.get('HTTP_AUTHORIZATION') oauth_request = oauth2.Request.from_request(req.method, req.build_absolute_uri(), headers=headers, parameters=params, query_string=req.META.get('QUERY_STRING')) if not oauth_request: return True req.oauth_request = oauth_request return False def ping(self, req, resp): action = req.url_kwargs.get("action") if not action or action not in ("authorize", "access_token", "request_token"): return False req.oauth_action = action return True def get_urls(self): from django.conf.urls.defaults import patterns, url urlpatterns = patterns('', url(r'^authorize$', self, kwargs={"action": "authorize"}, name="oauth_authorize"), url(r'^access_token$', self, kwargs={"action": "access_token"}, name="oauth_access_token"), url(r'^request_token$', self, kwargs= {"action": "request_token"}, name="oauth_request_token"), ) return urlpatterns urls = property(get_urls)
0
0
0
4,942
0
0
0
153
161
b7fb6d55ddc310c89f7dd03fe9fc2ce8f6e8528e
1,623
py
Python
commands/dns.py
thexmarat/routeros-scanner
8587493c243572218b5a7778d8bcbc698464856b
[ "MIT" ]
null
null
null
commands/dns.py
thexmarat/routeros-scanner
8587493c243572218b5a7778d8bcbc698464856b
[ "MIT" ]
null
null
null
commands/dns.py
thexmarat/routeros-scanner
8587493c243572218b5a7778d8bcbc698464856b
[ "MIT" ]
null
null
null
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License.
27.508475
113
0.550216
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from commands.basecommand import BaseCommand import re class DNS(BaseCommand): def __init__(self): self.__name__ = 'DNS Cache' def run_ssh(self, sshc): data = self._ssh_data(sshc, '/ip dns print') enabled = 'allow-remote-requests: yes' in data.lower() res = self._ssh_data_with_header(sshc, '/ip dns cache print detail') sus_dns, recommendation = self.check_results_ssh(res, enabled) return {'raw_data': res, 'suspicious': sus_dns, 'recommendation': recommendation} def check_results_ssh(self, res, enabled): sus_dns = [] recommendation = [] for item in res: try: i = int(hms(item['ttl'].partition('s')[0])) except IndexError: continue if i > 200000: sus_dns.append(f'Domain name: {item["name"]} with ip {item["address"]}: might be DNS poisoning- ' f'severity: high') if enabled: recommendation.append('In case DNS cache is not required on your router - disable it') return sus_dns, recommendation def hms(s): l = list(map(int, re.split('[wdhms]', s)[:-1])) if len(l) == 5: return l[0]*604800 + l[1]*86400 + l[2]*3600 + l[3]*60 + l[4] elif len(l) == 4: return l[0]*86400 + l[1]*3600 + l[2]*60 + l[3] elif len(l) == 3: return l[0]*3600 + l[1]*60 + l[2] elif len(l) == 2: return l[0]*60 + l[1] else: return l[0]
0
0
0
1,087
0
354
0
11
91
1c2e6507af08539c77c856e95f6d4852bc06d2f2
9,590
py
Python
tests/test_integration.py
repo-helper/formate
45e4b4fe29af144db714ea90c92cf6e7035ae301
[ "MIT" ]
1
2022-03-19T07:39:58.000Z
2022-03-19T07:39:58.000Z
tests/test_integration.py
repo-helper/formate
45e4b4fe29af144db714ea90c92cf6e7035ae301
[ "MIT" ]
14
2021-01-25T23:10:04.000Z
2021-06-29T19:55:38.000Z
tests/test_integration.py
repo-helper/formate
45e4b4fe29af144db714ea90c92cf6e7035ae301
[ "MIT" ]
null
null
null
# stdlib import re # 3rd party # this package path_sub = re.compile(rf" .*/pytest-of-.*/pytest-\d+")
25.710456
96
0.727216
# stdlib import re from typing import Union, no_type_check # 3rd party import click import pytest from _pytest.capture import CaptureResult from coincidence.regressions import AdvancedDataRegressionFixture, AdvancedFileRegressionFixture from coincidence.selectors import max_version, min_version, not_pypy, only_pypy from consolekit.terminal_colours import strip_ansi from consolekit.testing import CliRunner, Result from domdf_python_tools.paths import PathPlus, in_directory # this package from formate import Reformatter, reformat_file from formate.__main__ import main from formate.config import load_toml path_sub = re.compile(rf" .*/pytest-of-.*/pytest-\d+") @no_type_check def check_out( result: Union[Result, CaptureResult[str]], advanced_data_regression: AdvancedDataRegressionFixture, ): if hasattr(result, "stdout"): stdout = result.stdout else: stdout = result.out if hasattr(result, "stderr"): stderr = result.stderr else: stderr = result.err data_dict = { "out": strip_ansi(path_sub.sub(" ...", stdout)).split('\n'), "err": strip_ansi(path_sub.sub(" ...", stderr)).split('\n'), } advanced_data_regression.check(data_dict) @pytest.fixture() def demo_environment(tmp_pathplus): example_formate_toml = PathPlus(__file__).parent / "example_formate.toml" (tmp_pathplus / "formate.toml").write_text(example_formate_toml.read_text()) code = [ "class F:", "\tfrom collections import (", "Iterable,", "\tCounter,", "\t\t)", '', "\tdef foo(self):", "\t\tpass", '', "print('hello world')", r"assert t.uname == '\udce4\udcf6\udcfc'", ] (tmp_pathplus / "code.py").write_lines(code, trailing_whitespace=True) @pytest.fixture() def demo_pyproject_environment(demo_environment, tmp_pathplus): example_formate_toml = PathPlus(__file__).parent / "example_pyproject.toml" (tmp_pathplus / "pyproject.toml").write_text(example_formate_toml.read_text()) def test_integration( tmp_pathplus: PathPlus, advanced_file_regression: AdvancedFileRegressionFixture, capsys, advanced_data_regression: AdvancedDataRegressionFixture, demo_environment, ): config = load_toml(tmp_pathplus / "formate.toml") st = (tmp_pathplus / "code.py").stat() assert st == st assert reformat_file(tmp_pathplus / "code.py", config) == 1 advanced_file_regression.check_file(tmp_pathplus / "code.py") check_out(capsys.readouterr(), advanced_data_regression) # mtime should have changed new_st = (tmp_pathplus / "code.py").stat() assert new_st.st_mtime != st.st_mtime assert new_st != st # Calling a second time shouldn't change anything assert reformat_file(tmp_pathplus / "code.py", config) == 0 advanced_file_regression.check_file(tmp_pathplus / "code.py") # mtime should be the same assert (tmp_pathplus / "code.py").stat().st_mtime == new_st.st_mtime def test_integration_pyproject( tmp_pathplus: PathPlus, advanced_file_regression: AdvancedFileRegressionFixture, capsys, advanced_data_regression: AdvancedDataRegressionFixture, demo_pyproject_environment, ): config = load_toml(tmp_pathplus / "pyproject.toml") assert reformat_file(tmp_pathplus / "code.py", config) == 1 advanced_file_regression.check_file(tmp_pathplus / "code.py") check_out(capsys.readouterr(), advanced_data_regression) # Calling a second time shouldn't change anything assert reformat_file(tmp_pathplus / "code.py", config) == 0 advanced_file_regression.check_file(tmp_pathplus / "code.py") def test_reformatter_class( tmp_pathplus: PathPlus, advanced_file_regression: AdvancedFileRegressionFixture, capsys, advanced_data_regression: AdvancedDataRegressionFixture, demo_environment, ): config = load_toml(tmp_pathplus / "formate.toml") r = Reformatter(tmp_pathplus / "code.py", config) with pytest.raises(ValueError, match=r"'Reformatter.run\(\)' must be called first!"): r.to_string() with pytest.raises(ValueError, match=r"'Reformatter.run\(\)' must be called first!"): r.to_file() with pytest.raises(ValueError, match=r"'Reformatter.run\(\)' must be called first!"): r.get_diff() st = (tmp_pathplus / "code.py").stat() assert st == st assert r.run() == 1 r.to_file() advanced_file_regression.check_file(tmp_pathplus / "code.py") advanced_file_regression.check(r.to_string(), extension="._py_") captured = capsys.readouterr() assert not captured.out assert not captured.err # mtime should have changed new_st = (tmp_pathplus / "code.py").stat() assert new_st.st_mtime != st.st_mtime assert new_st != st # Calling a second time shouldn't change anything r = Reformatter(tmp_pathplus / "code.py", config) assert r.run() == 0 r.to_file() advanced_file_regression.check_file(tmp_pathplus / "code.py") def test_cli( tmp_pathplus: PathPlus, advanced_file_regression: AdvancedFileRegressionFixture, advanced_data_regression: AdvancedDataRegressionFixture, demo_environment, ): result: Result st = (tmp_pathplus / "code.py").stat() assert st == st with in_directory(tmp_pathplus): runner = CliRunner(mix_stderr=False) result = runner.invoke( main, args=["code.py", "--no-colour", "--diff", "--verbose"], ) assert result.exit_code == 1 advanced_file_regression.check_file(tmp_pathplus / "code.py") check_out(result, advanced_data_regression) # mtime should have changed new_st = (tmp_pathplus / "code.py").stat() assert new_st.st_mtime != st.st_mtime assert new_st != st # Calling a second time shouldn't change anything with in_directory(tmp_pathplus): runner = CliRunner(mix_stderr=False) result = runner.invoke(main, args=["code.py"]) assert result.exit_code == 0 # mtime should be the same assert (tmp_pathplus / "code.py").stat().st_mtime == new_st.st_mtime def test_cli_verbose_verbose( tmp_pathplus: PathPlus, advanced_file_regression: AdvancedFileRegressionFixture, advanced_data_regression: AdvancedDataRegressionFixture, demo_environment, ): result: Result with in_directory(tmp_pathplus): runner = CliRunner(mix_stderr=False) result = runner.invoke( main, args=["code.py", "--no-colour", "--diff", "--verbose", "-v"], ) assert result.exit_code == 1 advanced_file_regression.check_file(tmp_pathplus / "code.py") # Calling a second time shouldn't change anything with in_directory(tmp_pathplus): runner = CliRunner(mix_stderr=False) result = runner.invoke( main, args=["code.py", "code.c", "--no-colour", "--diff", "--verbose", "-v"], ) assert result.exit_code == 0 check_out(result, advanced_data_regression) @max_version("3.9.9", reason="Output differs on Python 3.10+") @not_pypy("Output differs on PyPy") def test_cli_syntax_error( tmp_pathplus: PathPlus, advanced_data_regression: AdvancedDataRegressionFixture, demo_environment, ): code = [ "class F:", "\tfrom collections import (", "Iterable,", "\tCounter,", "\t\t)", '', "\tdef foo(self):", "\t\tpass", '', "print('hello world'", ] (tmp_pathplus / "code.py").write_lines(code, trailing_whitespace=True) with in_directory(tmp_pathplus): runner = CliRunner(mix_stderr=False) result: Result = runner.invoke(main, args=["code.py", "--no-colour", "--verbose"]) assert result.exit_code == 126 check_out(result, advanced_data_regression) @only_pypy("Output differs on PyPy") def test_cli_syntax_error_pypy( tmp_pathplus: PathPlus, advanced_data_regression: AdvancedDataRegressionFixture, demo_environment, ): code = [ "class F:", "\tfrom collections import (", "Iterable,", "\tCounter,", "\t\t)", '', "\tdef foo(self):", "\t\tpass", '', "print('hello world'", ] (tmp_pathplus / "code.py").write_lines(code, trailing_whitespace=True) with in_directory(tmp_pathplus): runner = CliRunner(mix_stderr=False) result: Result = runner.invoke(main, args=["code.py", "--no-colour", "--verbose"]) assert result.exit_code == 126 check_out(result, advanced_data_regression) @min_version("3.10", reason="Output differs on Python 3.10+") def test_cli_syntax_error_py310( tmp_pathplus: PathPlus, advanced_data_regression: AdvancedDataRegressionFixture, demo_environment, ): code = [ "class F:", "\tfrom collections import (", "Iterable,", "\tCounter,", "\t\t)", '', "\tdef foo(self):", "\t\tpass", '', "print('hello world'", ] (tmp_pathplus / "code.py").write_lines(code, trailing_whitespace=True) with in_directory(tmp_pathplus): runner = CliRunner(mix_stderr=False) result: Result = runner.invoke(main, args=["code.py", "--no-colour", "--verbose"]) assert result.exit_code == 126 check_out(result, advanced_data_regression) @pytest.mark.skipif(click.__version__.split('.')[0] != '7', reason="Output differs on Click 8") def test_cli_no_config( tmp_pathplus: PathPlus, advanced_data_regression: AdvancedDataRegressionFixture, ): result: Result with in_directory(tmp_pathplus): runner = CliRunner(mix_stderr=False) result = runner.invoke(main, args=["--no-colour", "--verbose"]) assert result.exit_code == 2 check_out(result, advanced_data_regression) @pytest.mark.skipif(click.__version__.split('.')[0] == '7', reason="Output differs on Click 8") def test_cli_no_config_click8( tmp_pathplus: PathPlus, advanced_data_regression: AdvancedDataRegressionFixture, ): result: Result with in_directory(tmp_pathplus): runner = CliRunner(mix_stderr=False) result = runner.invoke(main, args=["--no-colour", "--verbose"]) assert result.exit_code == 2 check_out(result, advanced_data_regression)
0
4,095
0
0
0
4,515
0
300
563
e784dd55930201f54c11184d662dda78259fd84c
7,049
py
Python
lib/model.py
behzadzarfsaz/DualMemoryLearning
924905ea14466ac60589e71ff5df6e33e98b6d92
[ "MIT" ]
null
null
null
lib/model.py
behzadzarfsaz/DualMemoryLearning
924905ea14466ac60589e71ff5df6e33e98b6d92
[ "MIT" ]
null
null
null
lib/model.py
behzadzarfsaz/DualMemoryLearning
924905ea14466ac60589e71ff5df6e33e98b6d92
[ "MIT" ]
null
null
null
import logging import shutil logging.basicConfig(level=logging.INFO) logger = logging.getLogger("Model") terminal_columns = shutil.get_terminal_size().columns // 2
42.981707
110
0.55483
import copy import logging import shutil from math import exp import numpy as np from sklearn.preprocessing import StandardScaler, normalize from sklearn.utils import shuffle from tqdm import trange from lib.bqueue import Bqueue from lib.dnn import Dnn from lib.helper import Helper from lib.som import SOM logging.basicConfig(level=logging.INFO) logger = logging.getLogger("Model") terminal_columns = shutil.get_terminal_size().columns // 2 class Model: def __init__( self, input_dim, batch_size, som_x, som_y, label_class_num, xt, tt, limit, stm ): self.input_dim = input_dim self.som_x = som_x self.som_y = som_y self.class_num = label_class_num self.batch_size = batch_size self.som = SOM(self.som_x, self.som_y, self.input_dim) self.dnn = Dnn(self.som_x * self.som_y, self.class_num) self.x_test = xt self.t_test = tt self.stm = Bqueue(max_size=stm) self.limit = limit self.scaler = StandardScaler() self.max = 1.0 def transfer(self, dist, test=False): if self.max < np.max(dist) and not test: self.max = np.max(dist) dist /= self.max return self.scaler.fit_transform(dist) @staticmethod def flatten(samples): return np.reshape(samples, newshape=[-1, samples.shape[1] * samples.shape[2]]) def reply(self): samples = None labels = None stm_samples = np.array([s[0] for s in self.stm.get_list()]).astype("float32") stm_labels = np.array([s[1] for s in self.stm.get_list()]).astype("float32") if stm_samples.shape[0] > 0: for i in trange(self.class_num, desc="Replaying Data"): class_stm_idx = np.argwhere(np.argmax(stm_labels, axis=1) == i).ravel() if class_stm_idx.shape[0] == 0: break class_prototypes = stm_samples[class_stm_idx] ll = stm_labels[class_stm_idx] g_samples = np.repeat( class_prototypes, self.limit // class_prototypes.shape[0], axis=0 ) g_labels = np.repeat(ll, self.limit // class_prototypes.shape[0], axis=0) if i == 0: samples = g_samples labels = g_labels else: samples = np.concatenate((samples, g_samples)) labels = np.concatenate((labels, g_labels)) return samples, labels def fill_stm(self, samples, z_som, labels): logger.info("\rFilling STM") _, acc = self.dnn.evaluate(z_som, labels, batch_size=1, verbose=0) acc = np.array(acc).astype("float32") stm_idx = np.argwhere(acc > 0.5).ravel() for s in range(self.class_num): class_idx = np.argwhere(np.argmax(labels[stm_idx], axis=1) == s).ravel() np.random.shuffle(class_idx) class_samples = samples[class_idx] class_labels = labels[class_idx] class_samples, class_labels = shuffle(class_samples, class_labels) loop_iter = min(self.stm.max_size // self.class_num, class_idx.shape[0]) for i in range(loop_iter): self.stm.push( (class_samples[i], class_labels[i]) ) def train( self, samples, labels, dnn_iter, som_lr, som_rad, ce, sub_task, epoch ): samples, labels = shuffle(samples, labels) logger.info("\r".center(terminal_columns, "=")) logger.info(f"\r Sub-Task D{sub_task}") logger.info("\r".center(terminal_columns, "=")) confusion_matrices = [] sigma = [] r_samples = None r_labels = None if sub_task > 1 and self.stm.max_size > 0: m_samples, m_labels = self.reply() if m_samples is not None: r_samples = np.concatenate((samples, m_samples)) r_labels = np.concatenate((labels, m_labels)) r_samples, r_labels = shuffle(r_samples, r_labels) else: r_samples = samples r_labels = labels for ep, e in enumerate(range(epoch)): new_labels = np.unique(np.argmax(labels, axis=1)) x, t = Helper.generate_batches(r_samples, r_labels, self.batch_size) sigma = [] d_acc = 0.0 cm_list = range(len(x)) pbar = trange(len(x)) d_counter = 0 for i in pbar: z_som = self.transfer(self.som.get_distances(x[i]), test=True) loss, acc = self.dnn.evaluate(z_som, t[i], verbose=0) loss = np.array(loss) wrong_idx = np.argwhere(np.greater(np.array(loss), ce)).ravel() if wrong_idx.shape[0] > 0: decay = exp(-1 * ((10 / sub_task) * d_counter / len(x))) sigma.append(som_rad * decay) d_counter += 1 mask = np.isin(np.argmax(t[i][wrong_idx], axis=1), new_labels) new_wrong_samples = x[i][wrong_idx][mask] self.som.train( new_wrong_samples, learning_rate=som_lr * decay, radius=som_rad * decay, global_order=self.batch_size ) z_som = self.transfer( self.som.get_distances(x[i], batch_size=self.batch_size) ) z_som_test = self.transfer( self.som.get_distances(self.x_test, batch_size=self.batch_size), test=True ) cm = i in cm_list d_loss, d_acc, confusion_matrix = self.dnn.train( z_som, t[i], z_som_test, self.t_test, cm=cm, epoch=dnn_iter, batch_size=self.batch_size ) if len(confusion_matrix) > 0: for m in confusion_matrix: confusion_matrices.append(m) d_acc = np.mean(np.array(d_acc).astype("float32")) else: confusion_matrices.append(copy.copy(confusion_matrices[-1])) pbar.set_description( f"Epoch{ep + 1}/{epoch}" f"|Batch:{i + 1}/{len(x)}" f"|CE:{wrong_idx.shape[0]}/{x[i].shape[0]}" f"|Train Acc.:{d_acc:.4f}" ) pbar.refresh() logger.info("\rEvaluation...") z_som_test = self.transfer(self.som.get_distances(self.x_test, batch_size=self.batch_size), test=True) z_som_stm = self.transfer(self.som.get_distances(r_samples, batch_size=self.batch_size), test=True) loss, accuracy = self.dnn.evaluate(z_som_test, self.t_test, verbose=1) if self.stm.max_size > 0: self.fill_stm(r_samples, z_som_stm, r_labels) return accuracy, np.array(sigma), confusion_matrices
0
105
0
6,477
0
0
0
58
243
b85ee2815f52bf02efa5142a630bf19bd92d2932
179
py
Python
tests/project/app/urls.py
j4mie/django-kronos
71d90a67eb73e9c28666e77611466062ff3e3dda
[ "MIT" ]
1
2015-11-05T11:45:52.000Z
2015-11-05T11:45:52.000Z
tests/project/app/urls.py
j4mie/django-kronos
71d90a67eb73e9c28666e77611466062ff3e3dda
[ "MIT" ]
null
null
null
tests/project/app/urls.py
j4mie/django-kronos
71d90a67eb73e9c28666e77611466062ff3e3dda
[ "MIT" ]
null
null
null
from views import home urlpatterns = patterns('', url(r'^$', home, name='home'), url('fandjango/', include('fandjango.urls')) )
17.9
48
0.659218
from django.conf.urls.defaults import * from views import home urlpatterns = patterns('', url(r'^$', home, name='home'), url('fandjango/', include('fandjango.urls')) )
0
0
0
0
0
0
0
18
22
c39eec60b57532ade429a9e3594f24af68db932e
19,140
py
Python
pychess/Players/PyChessCECP.py
jacobchrismarsh/chess_senior_project
7797b1f96fda5d4d268224a21e54a744d17e7b81
[ "MIT" ]
null
null
null
pychess/Players/PyChessCECP.py
jacobchrismarsh/chess_senior_project
7797b1f96fda5d4d268224a21e54a744d17e7b81
[ "MIT" ]
40
2019-05-04T04:46:31.000Z
2022-02-26T10:37:51.000Z
pychess/Players/PyChessCECP.py
jacobchrismarsh/chess_senior_project
7797b1f96fda5d4d268224a21e54a744d17e7b81
[ "MIT" ]
null
null
null
import sys if sys.platform != "win32": import readline readline.clear_history() ASCII = sys.platform == "win32"
38.05169
95
0.446708
import re import signal import sys from threading import Thread import pychess from pychess.Players.PyChess import PyChess from pychess.System import conf, fident from pychess.Utils.book import getOpenings from pychess.Utils.const import ( NORMALCHESS, FEN_START, BLACK, FISCHERRANDOMCHESS, CRAZYHOUSECHESS, WILDCASTLESHUFFLECHESS, LOSERSCHESS, SUICIDECHESS, ATOMICCHESS, THREECHECKCHESS, KINGOFTHEHILLCHESS, ASEANCHESS, MAKRUKCHESS, CAMBODIANCHESS, SITTUYINCHESS, GIVEAWAYCHESS, HORDECHESS, RACINGKINGSCHESS, PLACEMENTCHESS, WHITE, ) from pychess.Utils.lutils.Benchmark import benchmark from pychess.Utils.lutils.perft import perft from pychess.Utils.lutils.LBoard import LBoard from pychess.Utils.lutils.ldata import MAXPLY from pychess.Utils.lutils import lsearch, leval from pychess.Utils.lutils.lmove import parseSAN, parseAny, toSAN, ParsingError from pychess.Utils.lutils.lmovegen import genAllMoves, genCaptures, genCheckEvasions from pychess.Utils.lutils.validator import validateMove from pychess.System.Log import log from pychess.Variants.horde import HORDESTART from pychess.Variants.placement import PLACEMENTSTART from pychess.Variants.asean import ( ASEANSTART, MAKRUKSTART, KAMBODIANSTART, SITTUYINSTART, ) if sys.platform != "win32": import readline readline.clear_history() ASCII = sys.platform == "win32" def get_input(): return input() class PyChessCECP(PyChess): def __init__(self): PyChess.__init__(self) self.board = LBoard(NORMALCHESS) self.board.applyFen(FEN_START) self.forced = False self.analyzing = False self.thread = None self.features = { "ping": 1, "setboard": 1, "playother": 1, "san": 1, "usermove": 1, "time": 1, "draw": 1, "sigint": 0, "sigterm": 0, "reuse": 1, "analyze": 1, "myname": "PyChess %s" % pychess.VERSION, "variants": "normal,wildcastle,nocastle,fischerandom,crazyhouse," + "losers,suicide,giveaway,horde,atomic,racingkings," + "kingofthehill,3check,placement,asean,cambodian,makruk,sittuyin", "colors": 0, "ics": 0, "name": 0, "pause": 0, # Unimplemented "nps": 0, # Unimplemented "debug": 1, "memory": 0, # Unimplemented "smp": 0, # Unimplemented "egt": "gaviota", "option": "skipPruneChance -slider 0 0 100", } python = sys.executable.split("/")[-1] python_version = "%s.%s.%s" % sys.version_info[0:3] self.print("# %s [%s %s]" % (self.features["myname"], python, python_version)) def handle_sigterm(self, *args): self.__stopSearching() sys.exit(0) def makeReady(self): signal.signal(signal.SIGINT, signal.SIG_IGN) signal.signal(signal.SIGTERM, self.handle_sigterm) def run(self): while True: try: line = get_input() except EOFError: line = "quit" lines = line.split() try: if not lines: continue log.debug(line, extra={"task": "xboard"}) # CECP commands # See http://home.hccnet.nl/h.g.muller/engine-intf.html if lines[0] == "xboard": pass elif lines[0] == "protover": stringPairs = [ "=".join([k, '"%s"' % v if isinstance(v, str) else str(v)]) for k, v in self.features.items() ] self.print("feature %s" % " ".join(stringPairs)) self.print("feature done=1") elif lines[0] in ("accepted", "rejected"): # We only really care about one case: if tuple(lines) == ("rejected", "debug"): self.debug = False elif lines[0] == "new": self.__stopSearching() self.board = LBoard(NORMALCHESS) self.board.applyFen(FEN_START) self.outOfBook = False self.forced = False self.playingAs = BLACK self.clock[:] = self.basetime, self.basetime self.searchtime = 0 self.sd = MAXPLY if self.analyzing: self.__analyze() elif lines[0] == "variant": if len(lines) > 1: if lines[1] == "fischerandom": self.board.variant = FISCHERRANDOMCHESS elif lines[1] == "crazyhouse": self.board.variant = CRAZYHOUSECHESS self.board.iniHouse() elif lines[1] == "wildcastle": self.board.variant = WILDCASTLESHUFFLECHESS elif lines[1] == "losers": self.board.variant = LOSERSCHESS elif lines[1] == "suicide": self.board.variant = SUICIDECHESS elif lines[1] == "giveaway": self.board.variant = GIVEAWAYCHESS elif lines[1] == "atomic": self.board.variant = ATOMICCHESS self.board.iniAtomic() elif lines[1] == "3check": self.board.variant = THREECHECKCHESS elif lines[1] == "racingkings": self.board.variant = RACINGKINGSCHESS elif lines[1] == "kingofthehill": self.board.variant = KINGOFTHEHILLCHESS elif lines[1] == "horde": self.board = LBoard(HORDECHESS) self.board.applyFen(HORDESTART) elif lines[1] == "placement": self.board = LBoard(PLACEMENTCHESS) self.board.applyFen(PLACEMENTSTART) elif lines[1] == "asean": self.board = LBoard(ASEANCHESS) self.board.applyFen(ASEANSTART) elif lines[1] == "makruk": self.board = LBoard(MAKRUKCHESS) self.board.applyFen(MAKRUKSTART) elif lines[1] == "cambodian": self.board = LBoard(CAMBODIANCHESS) self.board.applyFen(KAMBODIANSTART) elif lines[1] == "sittuyin": self.board = LBoard(SITTUYINCHESS) self.board.applyFen(SITTUYINSTART) elif lines[0] == "quit": self.forced = True self.__stopSearching() sys.exit(0) elif lines[0] == "random": leval.random = True elif lines[0] == "force": if not self.forced and not self.analyzing: self.forced = True self.__stopSearching() elif lines[0] == "go": self.playingAs = self.board.color self.forced = False self.__go() elif lines[0] == "playother": self.playingAs = 1 - self.board.color self.forced = False # TODO: start pondering, if possible elif lines[0] in ("black", "white"): newColor = lines[0] == "black" and BLACK or WHITE self.__stopSearching() self.playingAs = 1 - newColor if self.board.color != newColor: self.board.setColor(newColor) self.board.setEnpassant(None) if self.analyzing: self.__analyze() elif lines[0] == "level": self.movestogo = int(lines[1]) inc = int(lines[3]) minutes = lines[2].split(":") # Per protocol spec, strip off any non-numeric suffixes. for i in range(len(minutes)): minutes[i] = re.match(r"\d*", minutes[i]).group() self.basetime = int(minutes[0]) * 60 if len(minutes) > 1 and minutes[1]: self.basetime += int(minutes[1]) self.clock[:] = self.basetime, self.basetime self.increment = inc self.searchtime = 0 elif lines[0] == "st": self.searchtime = float(lines[1]) elif lines[0] == "sd": self.sd = int(lines[1]) # Unimplemented: nps elif lines[0] == "time": self.clock[self.playingAs] = float(lines[1]) / 100.0 elif lines[0] == "otim": self.clock[1 - self.playingAs] = float(lines[1]) / 100.0 elif lines[0] == "usermove": self.__stopSearching() try: move = parseAny(self.board, lines[1]) except ParsingError: self.print("Error (unknown command): %s" % lines[1]) self.print(self.board.prepr(ascii=ASCII)) continue if not validateMove(self.board, move): self.print("Illegal move: %s" % lines[1]) self.print(self.board.prepr(ascii=ASCII)) continue self.board.applyMove(move) self.playingAs = self.board.color if not self.forced and not self.analyzing: self.__go() if self.analyzing: self.__analyze() elif lines[0] == "?": if not self.forced and not self.analyzing: self.__stopSearching() elif lines[0] == "ping": self.print("pong %s" % lines[1]) elif lines[0] == "draw": if self.__willingToDraw(): self.print("offer draw") elif lines[0] == "result": # We don't really care what the result is at the moment. pass elif lines[0] == "setboard": self.__stopSearching() try: self.board = LBoard(self.board.variant) fen = " ".join(lines[1:]) self.board.applyFen(fen.replace("[", "/").replace("]", "")) except SyntaxError as err: self.print("tellusererror Illegal position: %s" % str(err)) # "edit" is unimplemented. See docs. Exiting edit mode returns to analyze mode. elif lines[0] == "hint": pass # TODO: Respond "Hint: MOVE" if we have an expected reply elif lines[0] == "bk": entries = getOpenings(self.board) if entries: totalWeight = sum(entry[1] for entry in entries) for entry in entries: self.print( "\t%s\t%02.2f%%" % ( toSAN(self.board, entry[0]), entry[1] * 100.0 / totalWeight, ) ) elif lines[0] == "undo": self.__stopSearching() self.board.popMove() if self.analyzing: self.__analyze() elif lines[0] == "remove": self.__stopSearching() self.board.popMove() self.board.popMove() if self.analyzing: self.__analyze() elif lines[0] in ("hard", "easy"): self.ponder = lines[0] == "hard" elif lines[0] in ("post", "nopost"): self.post = lines[0] == "post" elif lines[0] == "analyze": self.analyzing = True self.__analyze() elif lines[0] in ("name", "rating", "ics", "computer"): pass # We don't care. # Unimplemented: pause, resume elif lines[0] == "memory": # FIXME: this is supposed to control the *total* memory use. if lsearch.searching: self.print("Error (already searching):", line) else: limit = int(lines[1]) if limit < 1: self.print("Error (limit too low):", line) else: pass # TODO implement # lsearch.setHashSize(limit) elif lines[0] == "cores": pass # We aren't SMP-capable. elif lines[0] == "egtpath": if len(lines) >= 3 and lines[1] == "gaviota": if lines[2]: conf.set("egtb_path", lines[2]) else: conf.set("egtb_path", conf.get("egtb_path")) from pychess.Utils.lutils.lsearch import enableEGTB enableEGTB() elif lines[0] == "option" and len(lines) > 1: name, eq, value = lines[1].partition("=") if value: value = int( value ) # CECP spec says option values are *always* numeric if name == "skipPruneChance": if 0 <= value <= 100: self.skipPruneChance = value / 100.0 else: self.print( "Error (argument must be an integer 0..100): %s" % line ) # CECP analyze mode commands # See http://www.gnu.org/software/xboard/engine-intf.html#11 elif lines[0] == "exit": if self.analyzing: self.__stopSearching() self.analyzing = False # Periodic updates (".") are not implemented. # Custom commands elif lines[0] == "moves": self.print(self.board.prepr(ascii=ASCII)) self.print( [toSAN(self.board, move) for move in genAllMoves(self.board)] ) elif lines[0] == "captures": self.print(self.board.prepr(ascii=ASCII)) self.print( [toSAN(self.board, move) for move in genCaptures(self.board)] ) elif lines[0] == "evasions": self.print(self.board.prepr(ascii=ASCII)) self.print( [ toSAN(self.board, move) for move in genCheckEvasions(self.board) ] ) elif lines[0] == "benchmark": if len(lines) > 1: benchmark(int(lines[1])) else: benchmark() elif lines[0] == "profile": if len(lines) > 1: import cProfile cProfile.runctx("benchmark()", locals(), globals(), lines[1]) else: self.print("Usage: profile outputfilename") elif lines[0] == "perft": root = "0" if len(lines) < 3 else lines[2] depth = "1" if len(lines) == 1 else lines[1] if root.isdigit() and depth.isdigit(): perft(self.board, int(depth), int(root)) else: self.print("Error (arguments must be integer") elif lines[0] == "stop_unittest": break elif len(lines) == 1: # A GUI without usermove support might try to send a move. try: move = parseAny(self.board, line) except ParsingError: self.print("Error (unknown command): %s" % line) continue if not validateMove(self.board, move): self.print("Illegal move: %s" % lines[0]) self.print(self.board.prepr(ascii=ASCII)) continue self.__stopSearching() self.board.applyMove(move) self.playingAs = self.board.color if not self.forced and not self.analyzing: self.__go() if self.analyzing: self.__analyze() else: self.print("Error (unknown command): %s" % line) except IndexError: self.print("Error (missing argument): %s" % line) def __stopSearching(self): lsearch.searching = False if self.thread: self.thread.join() def __go(self): def ondone(result): if not self.forced: self.board.applyMove(parseSAN(self.board, result)) self.print("move %s" % result) # TODO: start pondering, if enabled self.thread = Thread( target=PyChess._PyChess__go, name=fident(PyChess._PyChess__go), args=(self, ondone), ) self.thread.daemon = True self.thread.start() def __analyze(self): self.thread = Thread( target=PyChess._PyChess__analyze, name=fident(PyChess._PyChess__analyze), args=(self,), ) self.thread.daemon = True self.thread.start() def __willingToDraw(self): return self.scr <= 0 # FIXME: this misbehaves in all but the simplest use cases
0
0
0
17,645
0
14
0
869
487
9fad8fab23d2e89d70ef2d82789107db78ebaf08
483
py
Python
colossalai/nn/layer/parallel_sequence/_utils.py
RichardoLuo/ColossalAI
797a9dc5a9e801d7499b8667c3ef039a38aa15ba
[ "Apache-2.0" ]
1,630
2021-10-30T01:00:27.000Z
2022-03-31T23:02:41.000Z
colossalai/nn/layer/parallel_sequence/_utils.py
RichardoLuo/ColossalAI
797a9dc5a9e801d7499b8667c3ef039a38aa15ba
[ "Apache-2.0" ]
166
2021-10-30T01:03:01.000Z
2022-03-31T14:19:07.000Z
colossalai/nn/layer/parallel_sequence/_utils.py
RichardoLuo/ColossalAI
797a9dc5a9e801d7499b8667c3ef039a38aa15ba
[ "Apache-2.0" ]
253
2021-10-30T06:10:29.000Z
2022-03-31T13:30:06.000Z
#!/usr/bin/env python # -*- encoding: utf-8 -*-
30.1875
69
0.726708
#!/usr/bin/env python # -*- encoding: utf-8 -*- def _calc_incoming_device_range(i, rank, world_size, sub_seq_length): device_of_incoming_k = (rank - i - 1) % world_size start_idx = sub_seq_length * device_of_incoming_k end_idx = sub_seq_length * (device_of_incoming_k + 1) return start_idx, end_idx def _calc_current_device_range(rank, sub_seq_length): start_idx = sub_seq_length * rank end_idx = sub_seq_length * (rank + 1) return start_idx, end_idx
0
0
0
0
0
387
0
0
46
a54633146fadd221f3a0c7ca6783f0b136db02a8
438
py
Python
staticClassMethod/classmethodCustom.py
liangjie18430/flask_test_myself
8923e058d834d6ab7326f869b945601c13674105
[ "BSD-3-Clause" ]
null
null
null
staticClassMethod/classmethodCustom.py
liangjie18430/flask_test_myself
8923e058d834d6ab7326f869b945601c13674105
[ "BSD-3-Clause" ]
null
null
null
staticClassMethod/classmethodCustom.py
liangjie18430/flask_test_myself
8923e058d834d6ab7326f869b945601c13674105
[ "BSD-3-Clause" ]
null
null
null
print(Class2.get_user("test"))
27.375
53
0.623288
class MyClassMethod(object): def __init__(self,function): self.function = function def __get__(self, instance, type=None): def wrapper(*args,**kwargs): print("class method:",type) return self.function(type,*args,**kwargs) return wrapper class Class2(object): @MyClassMethod def get_user(cls,x): print(cls) return x,"get_user" print(Class2.get_user("test"))
0
65
0
271
0
0
0
0
70
c863133d1f0fec6fd6c1d9ca24de23ddc72f2fe4
543
py
Python
tests/parser/dictionary/encoder/other/test_ipi_base.py
orenyodfat/CWR-DataApi
f3b6ba8308c901b6ab87073c155c08e30692333c
[ "MIT" ]
37
2015-04-21T15:33:53.000Z
2022-02-07T00:02:29.000Z
tests/parser/dictionary/encoder/other/test_ipi_base.py
orenyodfat/CWR-DataApi
f3b6ba8308c901b6ab87073c155c08e30692333c
[ "MIT" ]
86
2015-02-01T22:26:02.000Z
2021-07-09T08:49:36.000Z
tests/parser/dictionary/encoder/other/test_ipi_base.py
orenyodfat/CWR-DataApi
f3b6ba8308c901b6ab87073c155c08e30692333c
[ "MIT" ]
27
2015-01-26T16:01:09.000Z
2021-11-08T23:53:55.000Z
# -*- coding: utf-8 -*- """ Acknowledgement to dictionary encoding tests. The following cases are tested: """ __author__ = 'Bernardo Martnez Garrido' __license__ = 'MIT' __status__ = 'Development'
20.884615
66
0.725599
# -*- coding: utf-8 -*- import unittest from cwr.parser.encoder.dictionary import IPIBaseDictionaryEncoder """ Acknowledgement to dictionary encoding tests. The following cases are tested: """ __author__ = 'Bernardo Martínez Garrido' __license__ = 'MIT' __status__ = 'Development' class TestIPIBaseEncoding(unittest.TestCase): def setUp(self): self._encoder = IPIBaseDictionaryEncoder() def test_encoded(self): encoded = self._encoder.encode('T-123456789-1') self.assertEqual('T-123456789-1', encoded)
2
0
0
233
0
0
0
39
69
ed3946252bbf181f1e56534e33e67fe22228f3cb
1,302
py
Python
make-examples.py
mattwigway/asu-matplotlib-styles
1168529d7476ab5519a9754e21243a704f980b8b
[ "CC0-1.0" ]
1
2021-04-09T15:47:19.000Z
2021-04-09T15:47:19.000Z
make-examples.py
mattwigway/asu-matplotlib-styles
1168529d7476ab5519a9754e21243a704f980b8b
[ "CC0-1.0" ]
4
2020-05-07T16:57:44.000Z
2020-05-07T19:12:57.000Z
make-examples.py
mattwigway/asu-matplotlib-styles
1168529d7476ab5519a9754e21243a704f980b8b
[ "CC0-1.0" ]
null
null
null
# Create example plots for README create_plot('asu-dark') create_plot('asu-light')
29.590909
113
0.600614
# Create example plots for README import numpy as np import matplotlib.pyplot as plt import os.path def create_plot (style): # make darn sure we're using the styles from the repo, and not the styles that may be installed on the system plt.style.use(os.path.join(os.path.dirname(__file__), 'styles', f'{style}.mplstyle')) plt.subplots(1, 3, figsize=(12, 4)) # line plot plt.subplot(1, 3, 1) xs = np.arange(4) plt.plot(xs, [1, 2, 3.5, 6], label='Arizona State') plt.plot(xs, [0.5, 0.3, 0.3, 0.2], label='Arizona') plt.plot(xs, [2, 3, 2, 2], label='UCLA') plt.plot(xs, [3, 1, 3, 1], label='MIT') plt.plot(xs, [2, 2.5, 1, 3], label='Harvard') plt.plot(xs, [1, 2.2, 2.4, 1.8], label='Berkeley') plt.legend() # bar plot plt.subplot(1, 3, 2) plt.bar(xs - 0.2, [2, 5, 3, 4], label='Sun Devils', width=0.4) plt.bar(xs + 0.2, [1, 2, 1, 3], label='Wildcats', width=0.4) plt.legend() # scatter plot plt.subplot(1, 3, 3) xs = np.arange(15) y1 = np.random.normal(size=15) + 5 y2 = np.random.normal(size=15) + 5 plt.scatter(xs, y1, label='Tempe') plt.scatter(xs, y2, label='Polytechnic') plt.legend() plt.savefig(f'examples/{style}.png', dpi=300) create_plot('asu-dark') create_plot('asu-light')
0
0
0
0
0
1,127
0
0
90
10f7880be68b0fe1ae5479576360e9ca861c278e
16,979
py
Python
plugins/imagetools.py
FastmoreCrak/Fantasmas
1ce7a55b956ccf84660ceb91fdc39fedd0384c2a
[ "CC0-1.0" ]
1
2021-10-04T08:02:29.000Z
2021-10-04T08:02:29.000Z
plugins/imagetools.py
FastmoreCrak/Fantasmas
1ce7a55b956ccf84660ceb91fdc39fedd0384c2a
[ "CC0-1.0" ]
null
null
null
plugins/imagetools.py
FastmoreCrak/Fantasmas
1ce7a55b956ccf84660ceb91fdc39fedd0384c2a
[ "CC0-1.0" ]
null
null
null
# Ultroid - UserBot # Copyright (C) 2020 TeamUltroid # # This file is a part of < https://github.com/TeamUltroid/Ultroid/ > # PLease read the GNU Affero General Public License in # <https://www.github.com/TeamUltroid/Ultroid/blob/main/LICENSE/>. """ Commands Available - `{i}grey <reply to any media>` To make it black nd white. `{i}color <reply to any Black nd White media>` To make it Colorfull. `{i}toon <reply to any media>` To make it toon. `{i}danger <reply to any media>` To make it look Danger. `{i}negative <reply to any media>` To make negative image. `{i}blur <reply to any media>` To make it blurry. `{i}quad <reply to any media>` create a Vortex. `{i}mirror <reply to any media>` To create mirror pic. `{i}flip <reply to any media>` To make it flip. `{i}sketch <reply to any media>` To draw its sketch. `{i}blue <reply to any media>` just cool. `{i}csample <color name /color code>` example : `{i}csample red` `{i}csample #ffffff` """ HELP.update({f"{__name__.split('.')[1]}": f"{__doc__.format(i=HNDLR)}"})
29.375433
85
0.586077
# Ultroid - UserBot # Copyright (C) 2020 TeamUltroid # # This file is a part of < https://github.com/TeamUltroid/Ultroid/ > # PLease read the GNU Affero General Public License in # <https://www.github.com/TeamUltroid/Ultroid/blob/main/LICENSE/>. """ ✘ Commands Available - • `{i}grey <reply to any media>` To make it black nd white. • `{i}color <reply to any Black nd White media>` To make it Colorfull. • `{i}toon <reply to any media>` To make it toon. • `{i}danger <reply to any media>` To make it look Danger. • `{i}negative <reply to any media>` To make negative image. • `{i}blur <reply to any media>` To make it blurry. • `{i}quad <reply to any media>` create a Vortex. • `{i}mirror <reply to any media>` To create mirror pic. • `{i}flip <reply to any media>` To make it flip. • `{i}sketch <reply to any media>` To draw its sketch. • `{i}blue <reply to any media>` just cool. • `{i}csample <color name /color code>` example : `{i}csample red` `{i}csample #ffffff` """ import asyncio import os import cv2 import numpy as np from PIL import Image from telegraph import upload_file as upf from telethon.errors.rpcerrorlist import ( ChatSendMediaForbiddenError, MessageDeleteForbiddenError, ) from validators.url import url from . import * @ultroid_cmd( pattern="sketch$", ) async def sketch(e): ureply = await e.get_reply_message() xx = await eor(e, "`...`") if not (ureply and (ureply.media)): await xx.edit("`Reply to any media`") return ultt = await ureply.download_media() if ultt.endswith(".tgs"): await xx.edit("`Ooo Animated Sticker 👀...`") cmd = ["lottie_convert.py", ultt, "ult.png"] file = "ult.png" process = await asyncio.create_subprocess_exec( *cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, ) stdout, stderr = await process.communicate() stderr.decode().strip() stdout.decode().strip() else: await xx.edit("`Processing...`") img = cv2.VideoCapture(ultt) heh, lol = img.read() cv2.imwrite("ult.png", lol) file = "ult.png" img = cv2.imread(file) gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) inverted_gray_image = 255 - gray_image blurred_img = cv2.GaussianBlur(inverted_gray_image, (21, 21), 0) inverted_blurred_img = 255 - blurred_img pencil_sketch_IMG = cv2.divide(gray_image, inverted_blurred_img, scale=256.0) cv2.imwrite("ultroid.png", pencil_sketch_IMG) await e.client.send_file(e.chat_id, file="ultroid.png") await xx.delete() os.remove(file) os.remove("ultroid.png") @ultroid_cmd(pattern="color$") async def _(event): reply = await event.get_reply_message() if not reply.media: return await eor(event, "`Reply To a Black nd White Image`") xx = await eor(event, "`Coloring image 🎨🖌️...`") image = await ultroid_bot.download_media(reply.media) img = cv2.VideoCapture(image) ret, frame = img.read() cv2.imwrite("ult.jpg", frame) if udB.get("DEEP_API"): key = Redis("DEEP_API") else: key = "quickstart-QUdJIGlzIGNvbWluZy4uLi4K" r = requests.post( "https://api.deepai.org/api/colorizer", files={"image": open("ult.jpg", "rb")}, headers={"api-key": key}, ) os.remove("ult.jpg") os.remove(image) if "status" in r.json(): return await event.edit( r.json()["status"] + "\nGet api nd set `{i}setredis DEEP_API key`" ) r_json = r.json()["output_url"] await ultroid_bot.send_file(event.chat_id, r_json, reply_to=reply) await xx.delete() @ultroid_cmd( pattern="grey$", ) async def ultd(event): ureply = await event.get_reply_message() if not (ureply and (ureply.media)): await eor(event, "`Reply to any media`") return ultt = await ureply.download_media() if ultt.endswith(".tgs"): xx = await eor(event, "`Ooo Animated Sticker 👀...`") cmd = ["lottie_convert.py", ultt, "ult.png"] file = "ult.png" process = await asyncio.create_subprocess_exec( *cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, ) stdout, stderr = await process.communicate() stderr.decode().strip() stdout.decode().strip() else: xx = await eor(event, "`Processing...`") img = cv2.VideoCapture(ultt) heh, lol = img.read() cv2.imwrite("ult.png", lol) file = "ult.png" ult = cv2.imread(file) ultroid = cv2.cvtColor(ult, cv2.COLOR_BGR2GRAY) cv2.imwrite("ult.jpg", ultroid) await event.client.send_file( event.chat_id, "ult.jpg", force_document=False, reply_to=event.reply_to_msg_id, ) await xx.delete() os.remove("ult.png") os.remove("ult.jpg") os.remove(ultt) @ultroid_cmd( pattern="blur$", ) async def ultd(event): ureply = await event.get_reply_message() if not (ureply and (ureply.media)): await eor(event, "`Reply to any media`") return ultt = await ureply.download_media() if ultt.endswith(".tgs"): xx = await eor(event, "`Ooo Animated Sticker 👀...`") cmd = ["lottie_convert.py", ultt, "ult.png"] file = "ult.png" process = await asyncio.create_subprocess_exec( *cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, ) stdout, stderr = await process.communicate() stderr.decode().strip() stdout.decode().strip() else: xx = await eor(event, "`Processing...`") img = cv2.VideoCapture(ultt) heh, lol = img.read() cv2.imwrite("ult.png", lol) file = "ult.png" ult = cv2.imread(file) ultroid = cv2.GaussianBlur(ult, (35, 35), 0) cv2.imwrite("ult.jpg", ultroid) await event.client.send_file( event.chat_id, "ult.jpg", force_document=False, reply_to=event.reply_to_msg_id, ) await xx.delete() os.remove("ult.png") os.remove("ult.jpg") os.remove(ultt) @ultroid_cmd( pattern="negative$", ) async def ultd(event): ureply = await event.get_reply_message() xx = await eor(event, "`...`") if not (ureply and (ureply.media)): await xx.edit("`Reply to any media`") return ultt = await ureply.download_media() if ultt.endswith(".tgs"): await xx.edit("`Ooo Animated Sticker 👀...`") cmd = ["lottie_convert.py", ultt, "ult.png"] file = "ult.png" process = await asyncio.create_subprocess_exec( *cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, ) stdout, stderr = await process.communicate() stderr.decode().strip() stdout.decode().strip() else: await xx.edit("`Processing...`") img = cv2.VideoCapture(ultt) heh, lol = img.read() cv2.imwrite("ult.png", lol) file = "ult.png" ult = cv2.imread(file) ultroid = cv2.bitwise_not(ult) cv2.imwrite("ult.jpg", ultroid) await event.client.send_file( event.chat_id, "ult.jpg", force_document=False, reply_to=event.reply_to_msg_id, ) await xx.delete() os.remove("ult.png") os.remove("ult.jpg") os.remove(ultt) @ultroid_cmd( pattern="mirror$", ) async def ultd(event): ureply = await event.get_reply_message() xx = await eor(event, "`...`") if not (ureply and (ureply.media)): await xx.edit("`Reply to any media`") return ultt = await ureply.download_media() if ultt.endswith(".tgs"): await xx.edit("`Ooo Animated Sticker 👀...`") cmd = ["lottie_convert.py", ultt, "ult.png"] file = "ult.png" process = await asyncio.create_subprocess_exec( *cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, ) stdout, stderr = await process.communicate() stderr.decode().strip() stdout.decode().strip() else: await xx.edit("`Processing...`") img = cv2.VideoCapture(ultt) heh, lol = img.read() cv2.imwrite("ult.png", lol) file = "ult.png" ult = cv2.imread(file) ish = cv2.flip(ult, 1) ultroid = cv2.hconcat([ult, ish]) cv2.imwrite("ult.jpg", ultroid) await event.client.send_file( event.chat_id, "ult.jpg", force_document=False, reply_to=event.reply_to_msg_id, ) await xx.delete() os.remove("ult.png") os.remove("ult.jpg") os.remove(ultt) @ultroid_cmd( pattern="flip$", ) async def ultd(event): ureply = await event.get_reply_message() xx = await eor(event, "`...`") if not (ureply and (ureply.media)): await xx.edit("`Reply to any media`") return ultt = await ureply.download_media() if ultt.endswith(".tgs"): await xx.edit("`Ooo Animated Sticker 👀...`") cmd = ["lottie_convert.py", ultt, "ult.png"] file = "ult.png" process = await asyncio.create_subprocess_exec( *cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, ) stdout, stderr = await process.communicate() stderr.decode().strip() stdout.decode().strip() else: await xx.edit("`Processing...`") img = cv2.VideoCapture(ultt) heh, lol = img.read() cv2.imwrite("ult.png", lol) file = "ult.png" ult = cv2.imread(file) trn = cv2.flip(ult, 1) ish = cv2.rotate(trn, cv2.ROTATE_180) ultroid = cv2.vconcat([ult, ish]) cv2.imwrite("ult.jpg", ultroid) await event.client.send_file( event.chat_id, "ult.jpg", force_document=False, reply_to=event.reply_to_msg_id, ) await xx.delete() os.remove("ult.png") os.remove("ult.jpg") os.remove(ultt) @ultroid_cmd( pattern="quad$", ) async def ultd(event): ureply = await event.get_reply_message() xx = await eor(event, "`...`") if not (ureply and (ureply.media)): await xx.edit("`Reply to any media`") return ultt = await ureply.download_media() if ultt.endswith(".tgs"): await xx.edit("`Ooo Animated Sticker 👀...`") cmd = ["lottie_convert.py", ultt, "ult.png"] file = "ult.png" process = await asyncio.create_subprocess_exec( *cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, ) stdout, stderr = await process.communicate() stderr.decode().strip() stdout.decode().strip() else: await xx.edit("`Processing...`") img = cv2.VideoCapture(ultt) heh, lol = img.read() cv2.imwrite("ult.png", lol) file = "ult.png" ult = cv2.imread(file) roid = cv2.flip(ult, 1) mici = cv2.hconcat([ult, roid]) fr = cv2.flip(mici, 1) trn = cv2.rotate(fr, cv2.ROTATE_180) ultroid = cv2.vconcat([mici, trn]) cv2.imwrite("ult.jpg", ultroid) await event.client.send_file( event.chat_id, "ult.jpg", force_document=False, reply_to=event.reply_to_msg_id, ) await xx.delete() os.remove("ult.png") os.remove("ult.jpg") os.remove(ultt) @ultroid_cmd( pattern="toon$", ) async def ultd(event): ureply = await event.get_reply_message() xx = await eor(event, "`...`") if not (ureply and (ureply.media)): await xx.edit("`Reply to any media`") return ultt = await ureply.download_media() if ultt.endswith(".tgs"): await xx.edit("`Ooo Animated Sticker 👀...`") cmd = ["lottie_convert.py", ultt, "ult.png"] file = "ult.png" process = await asyncio.create_subprocess_exec( *cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, ) stdout, stderr = await process.communicate() stderr.decode().strip() stdout.decode().strip() else: await xx.edit("`Processing...`") img = cv2.VideoCapture(ultt) heh, lol = img.read() cv2.imwrite("ult.png", lol) file = "ult.png" ult = cv2.imread(file) height, width, channels = ult.shape samples = np.zeros([height * width, 3], dtype=np.float32) count = 0 for x in range(height): for y in range(width): samples[count] = ult[x][y] count += 1 compactness, labels, centers = cv2.kmeans( samples, 12, None, (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10000, 0.0001), 5, cv2.KMEANS_PP_CENTERS, ) centers = np.uint8(centers) ish = centers[labels.flatten()] ultroid = ish.reshape(ult.shape) cv2.imwrite("ult.jpg", ultroid) await event.client.send_file( event.chat_id, "ult.jpg", force_document=False, reply_to=event.reply_to_msg_id, ) await xx.delete() os.remove("ult.png") os.remove("ult.jpg") os.remove(ultt) @ultroid_cmd( pattern="danger$", ) async def ultd(event): ureply = await event.get_reply_message() xx = await eor(event, "`...`") if not (ureply and (ureply.media)): await xx.edit("`Reply to any media`") return ultt = await ureply.download_media() if ultt.endswith(".tgs"): await xx.edit("`Ooo Animated Sticker 👀...`") cmd = ["lottie_convert.py", ultt, "ult.png"] file = "ult.png" process = await asyncio.create_subprocess_exec( *cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, ) stdout, stderr = await process.communicate() stderr.decode().strip() stdout.decode().strip() else: await xx.edit("`Processing...`") img = cv2.VideoCapture(ultt) heh, lol = img.read() cv2.imwrite("ult.png", lol) file = "ult.png" ult = cv2.imread(file) dan = cv2.cvtColor(ult, cv2.COLOR_BGR2RGB) ultroid = cv2.cvtColor(dan, cv2.COLOR_HSV2BGR) cv2.imwrite("ult.jpg", ultroid) await event.client.send_file( event.chat_id, "ult.jpg", force_document=False, reply_to=event.reply_to_msg_id, ) await xx.delete() os.remove("ult.png") os.remove("ult.jpg") os.remove(ultt) @ultroid_cmd(pattern="csample (.*)") async def sampl(ult): color = ult.pattern_match.group(1) if color: img = Image.new("RGB", (200, 100), f"{color}") img.save("csample.png") try: try: await ult.delete() await ultroid_bot.send_message( ult.chat_id, f"Colour Sample for `{color}` !", file="csample.png" ) except MessageDeleteForbiddenError: await ult.reply(f"Colour Sample for `{color}` !", file="csample.png") except ChatSendMediaForbiddenError: await eor(ult, "Umm! Sending Media is disabled here!") else: await eor(ult, f"Wrong Color Name/Hex Code specified!") @ultroid_cmd( pattern="blue$", ) async def ultd(event): ureply = await event.get_reply_message() xx = await eor(event, "`...`") if not (ureply and (ureply.media)): await xx.edit("`Reply to any media`") return ultt = await ureply.download_media() if ultt.endswith(".tgs"): await xx.edit("`Ooo Animated Sticker 👀...`") cmd = ["lottie_convert.py", ultt, "ult.png"] file = "ult.png" process = await asyncio.create_subprocess_exec( *cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, ) stdout, stderr = await process.communicate() stderr.decode().strip() stdout.decode().strip() else: await xx.edit("`Processing...`") img = cv2.VideoCapture(ultt) heh, lol = img.read() cv2.imwrite("ult.png", lol) file = "ult.png" got = upf(file) lnk = f"https://telegra.ph{got[0]}" r = requests.get( f"https://nekobot.xyz/api/imagegen?type=blurpify&image={lnk}", ).json() ms = r.get("message") utd = url(ms) if not utd: return with open("ult.png", "wb") as f: f.write(requests.get(ms).content) img = Image.open("ult.png").convert("RGB") img.save("ult.webp", "webp") await event.client.send_file( event.chat_id, "ult.webp", force_document=False, reply_to=event.reply_to_msg_id, ) await xx.delete() os.remove("ult.png") os.remove("ult.webp") os.remove(ultt) HELP.update({f"{__name__.split('.')[1]}": f"{__doc__.format(i=HNDLR)}"})
90
15,277
0
0
0
0
0
78
477
0cc45d58110cb6174543a0505e632ae185525ec0
1,990
py
Python
Basics_with_Pytorch/GradientDescent/hw1.py
SoyOscarRH/LearningNeuralNetworks
dd5be94b38b3a0efb3428f76d3416227a92c8265
[ "MIT" ]
3
2020-01-20T19:56:35.000Z
2021-09-24T14:47:33.000Z
Basics_with_Pytorch/GradientDescent/hw1.py
SoyOscarRH/LearningNeuralNetworks
dd5be94b38b3a0efb3428f76d3416227a92c8265
[ "MIT" ]
null
null
null
Basics_with_Pytorch/GradientDescent/hw1.py
SoyOscarRH/LearningNeuralNetworks
dd5be94b38b3a0efb3428f76d3416227a92c8265
[ "MIT" ]
null
null
null
x1 = 2.0 x2 = 3.0 ReLu = lambda x: max(0.0, x) ReLuDer = lambda x: 1 if x > 0 else 0 error_fn = lambda prediction, target: 0.5 * (target - prediction) ** 2 # input a1 = x1 a2 = x2 w11 = 0.11 w12 = 0.21 w21 = 0.12 w22 = 0.08 w1o = 0.14 w2o = 0.15 y = 1 n = 0.5 # foward # layer 1 zh1 = (w11 * a1) + (w12 * a2) zh2 = (w21 * a1) + (w22 * a2) #print(f"zh1 = {zh1}") #print(f"zh2 = {zh2}") h0 = 1 h1 = ReLu(zh1) h2 = ReLu(zh2) #print(f"h1 = {h1}") #print(f"h2 = {h2}") # layer 2 zo1 = (w1o * h1) + (w2o * h2) o1 = ReLu(zo1) error = error_fn(o1, y) #print(f"zo1 = {zo1}") print(f"o1 = {o1}") print(f"error = {error}") # Back # Last layer d_Etotal_d_out = (o1 - y) #print(f"d_Etotal_d_out = {d_Etotal_d_out}") d_out_d_zo1 = ReLuDer(o1) #print(f"d_out_d_zo1 = {d_out_d_zo1}") d_zo1_d_w1o = h1 #print(f"d_zo1_d_w1o = {d_zo1_d_w1o}") d_zo1_d_w2o = h2 #print(f"d_zo1_d_w2o = {d_zo1_d_w2o}") d_Etotal_d_w1o = d_Etotal_d_out * d_out_d_zo1 * d_zo1_d_w1o #print(f"d_Etotal_d_w1o = {d_Etotal_d_w1o}") d_Etotal_d_w2o = d_Etotal_d_out * d_out_d_zo1 * d_zo1_d_w2o #print(f"d_Etotal_d_w1o = {d_Etotal_d_w2o}") # Previous layer d_w1o_d_h1 = w1o d_h1_d_zh1 = 1 d_zh1_d_w11 = a1 d_Etotal_d_w11 = d_Etotal_d_w1o * d_w1o_d_h1 * d_h1_d_zh1 * d_zh1_d_w11 #print(f"d_Etotal_d_w11 = {d_Etotal_d_w11}") d_w1o_d_h1 = w1o d_h1_d_zh1 = 1 d_zh1_d_w12 = a2 d_Etotal_d_w12 = d_Etotal_d_w1o * d_w1o_d_h1 * d_h1_d_zh1 * d_zh1_d_w12 #print(f"d_Etotal_d_w11 = {d_Etotal_d_w12}") d_w2o_d_h2 = w2o d_h2_d_zh2 = 1 d_zh2_d_w21 = a1 d_Etotal_d_w21 = d_Etotal_d_w1o * d_w2o_d_h2 * d_h2_d_zh2 * d_zh2_d_w21 #print(f"d_Etotal_d_w21 = {d_Etotal_d_w21}") d_w2o_d_h2 = w2o d_h2_d_zh2 = 1 d_zh2_d_w22 = a2 d_Etotal_d_w22 = d_Etotal_d_w1o * d_w2o_d_h2 * d_h2_d_zh2 * d_zh2_d_w22 #print(f"d_Etotal_d_w22 = {d_Etotal_d_w22}") w1o = w1o - n * d_Etotal_d_w1o w2o = w1o - n * d_Etotal_d_w2o w11 = w11 - n * d_Etotal_d_w11 w12 = w12 - n * d_Etotal_d_w12 w21 = w21 - n * d_Etotal_d_w21 w22 = w22 - n * d_Etotal_d_w22
18.425926
71
0.682412
x1 = 2.0 x2 = 3.0 ReLu = lambda x: max(0.0, x) ReLuDer = lambda x: 1 if x > 0 else 0 error_fn = lambda prediction, target: 0.5 * (target - prediction) ** 2 # input a1 = x1 a2 = x2 w11 = 0.11 w12 = 0.21 w21 = 0.12 w22 = 0.08 w1o = 0.14 w2o = 0.15 y = 1 n = 0.5 # foward # layer 1 zh1 = (w11 * a1) + (w12 * a2) zh2 = (w21 * a1) + (w22 * a2) #print(f"zh1 = {zh1}") #print(f"zh2 = {zh2}") h0 = 1 h1 = ReLu(zh1) h2 = ReLu(zh2) #print(f"h1 = {h1}") #print(f"h2 = {h2}") # layer 2 zo1 = (w1o * h1) + (w2o * h2) o1 = ReLu(zo1) error = error_fn(o1, y) #print(f"zo1 = {zo1}") print(f"o1 = {o1}") print(f"error = {error}") # Back # Last layer d_Etotal_d_out = (o1 - y) #print(f"d_Etotal_d_out = {d_Etotal_d_out}") d_out_d_zo1 = ReLuDer(o1) #print(f"d_out_d_zo1 = {d_out_d_zo1}") d_zo1_d_w1o = h1 #print(f"d_zo1_d_w1o = {d_zo1_d_w1o}") d_zo1_d_w2o = h2 #print(f"d_zo1_d_w2o = {d_zo1_d_w2o}") d_Etotal_d_w1o = d_Etotal_d_out * d_out_d_zo1 * d_zo1_d_w1o #print(f"d_Etotal_d_w1o = {d_Etotal_d_w1o}") d_Etotal_d_w2o = d_Etotal_d_out * d_out_d_zo1 * d_zo1_d_w2o #print(f"d_Etotal_d_w1o = {d_Etotal_d_w2o}") # Previous layer d_w1o_d_h1 = w1o d_h1_d_zh1 = 1 d_zh1_d_w11 = a1 d_Etotal_d_w11 = d_Etotal_d_w1o * d_w1o_d_h1 * d_h1_d_zh1 * d_zh1_d_w11 #print(f"d_Etotal_d_w11 = {d_Etotal_d_w11}") d_w1o_d_h1 = w1o d_h1_d_zh1 = 1 d_zh1_d_w12 = a2 d_Etotal_d_w12 = d_Etotal_d_w1o * d_w1o_d_h1 * d_h1_d_zh1 * d_zh1_d_w12 #print(f"d_Etotal_d_w11 = {d_Etotal_d_w12}") d_w2o_d_h2 = w2o d_h2_d_zh2 = 1 d_zh2_d_w21 = a1 d_Etotal_d_w21 = d_Etotal_d_w1o * d_w2o_d_h2 * d_h2_d_zh2 * d_zh2_d_w21 #print(f"d_Etotal_d_w21 = {d_Etotal_d_w21}") d_w2o_d_h2 = w2o d_h2_d_zh2 = 1 d_zh2_d_w22 = a2 d_Etotal_d_w22 = d_Etotal_d_w1o * d_w2o_d_h2 * d_h2_d_zh2 * d_zh2_d_w22 #print(f"d_Etotal_d_w22 = {d_Etotal_d_w22}") w1o = w1o - n * d_Etotal_d_w1o w2o = w1o - n * d_Etotal_d_w2o w11 = w11 - n * d_Etotal_d_w11 w12 = w12 - n * d_Etotal_d_w12 w21 = w21 - n * d_Etotal_d_w21 w22 = w22 - n * d_Etotal_d_w22
0
0
0
0
0
0
0
0
0
5e6ad37894ff484c99a09273a78bac3f081c7374
24,618
py
Python
medcat/cdb.py
HDRUK/MedCAT
69c36d1da484ad32520a9b3333adf8f6ebfcbde7
[ "Apache-2.0" ]
null
null
null
medcat/cdb.py
HDRUK/MedCAT
69c36d1da484ad32520a9b3333adf8f6ebfcbde7
[ "Apache-2.0" ]
null
null
null
medcat/cdb.py
HDRUK/MedCAT
69c36d1da484ad32520a9b3333adf8f6ebfcbde7
[ "Apache-2.0" ]
null
null
null
""" Representation class for CDB data """ #from gensim.matutils import unitvec from medcat.utils.loggers import basic_logger log = basic_logger("cdb")
38.525822
140
0.575311
""" Representation class for CDB data """ import pickle import numpy as np from scipy.sparse import dok_matrix #from gensim.matutils import unitvec from medcat.utils.matutils import unitvec, sigmoid from medcat.utils.attr_dict import AttrDict from medcat.utils.loggers import basic_logger import os import pandas as pd log = basic_logger("cdb") class CDB(object): """ Holds all the CDB data required for annotation """ MAX_COO_DICT_SIZE = int(os.getenv('MAX_COO_DICT_SIZE', 10000000)) MIN_COO_COUNT = int(os.getenv('MIN_COO_COUNT', 100)) def __init__(self): self.index2cui = [] # A list containing all CUIs self.cui2index = {} # Map from cui to index in the index2cui list self.name2cui = {} # Converts a normalized concept name to a cui self.name2cnt = {} # Converts a normalized concept name to a count self.name_isunique = {} # Should this name be skipped self.name2original_name = {} # Holds the two versions of a name self.name2ntkns = {} # Number of tokens for this name self.name_isupper = {} # Checks was this name all upper case in cdb self.cui2desc = {} # Map between a CUI and its cdb description self.cui_count = {} # TRAINING - How many times this this CUI appear until now self.cui_count_ext = {} # Always - counter for cuis that can be reset, destroyed.. self.cui2ontos = {} # Cui to ontology from where it comes self.cui2names = {} # CUI to all the different names it can have self.cui2original_names = {} # CUI to all the different original names it can have self.original_name2cuis = {} # Original name to cuis it can be assigned to self.cui2tui = {} # CUI to the semantic type ID self.tui2cuis = {} # Semantic type id to a list of CUIs that have it self.tui2name = {} # Semnatic tpye id to its name self.cui2pref_name = {} # Get the prefered name for a CUI - taken from CDB self.cui2pretty_name = {} # Get the pretty name for a CUI - taken from CDB self.sname2name = set() # Internal - subnames to nam self.cui2words = {} # CUI to all the words that can describe it self.onto2cuis = {} # Ontology to all the CUIs contained in it self.cui2context_vec = {} # CUI to context vector self.cui2context_vec_short = {} # CUI to context vector - short self.cui2context_vec_long = {} # CUI to context vector - long self.cui2info = {} # Additional info for a concept self.cui_disamb_always = {} # Should this CUI be always disambiguated self.vocab = {} # Vocabulary of all words ever, hopefully self._coo_matrix = None # cooccurrence matrix - scikit self.coo_dict = {} # cooccurrence dictionary <(cui1, cui2)>:<count> self.sim_vectors = None def add_concept(self, cui, name, onto, tokens, snames, isupper=False, is_pref_name=False, tui=None, pretty_name='', desc=None, tokens_vocab=None, original_name=None, is_unique=None, tui_name=None): r''' Add a concept to internal Concept Database (CDB). Depending on what you are providing this will add a large number of properties for each concept. Args: cui (str): Concept ID or unique identifer in this database, all concepts that have the same CUI will be merged internally. name (str): Name for this concept, or the value that if found in free text can be linked to this concept. onto (str): Ontology from which the concept is taken (e.g. SNOMEDCT) tokens (str, list of str): Tokenized version of the name. Usually done vai spacy snames (str, list of str): Subnames of this name, have a look at medcat.prepare_cdb.PrepareCDB for details on how to provide `snames`.Example: if name is "heart attack" snames is ['heart', 'heart attack'] isupper (boolean, optional): If name in the original ontology is upper_cased is_pref_name (boolean, optional): If this is the prefered name for this CUI tui (str, optional): Semantic type identifier (have a look at TUIs in UMLS or SNOMED-CT) pretty_name (str, optional): Pretty name for this concept, really just the pretty name for the concept if it exists. desc (str, optinal): Description of this concept. tokens_vocab (list of str, optional): Tokens that should be added to the vocabulary, usually not normalized version of tokens. original_name (str, optinal): The orignal name from the source vocabulary, without any normalization. is_unique (boolean, optional): If set to False - you can require disambiguation for a name even if it is unique inside of the current CDB. If set to True - you are forcing medcat to make a decision without disambiguation even if it is required. Do not set this arg unless you are sure. tui_name (str, optional): The name for the TUI ''' # Add the info property if cui not in self.cui2info: self.cui2info[cui] = {} # Add is name upper if name in self.name_isupper: self.name_isupper[name] = self.name_isupper[name] or isupper self.name_isupper[name] = self.name_isupper[name] or isupper else: self.name_isupper[name] = isupper # Add original name if original_name is not None: self.name2original_name[name] = original_name if original_name in self.original_name2cuis: self.original_name2cuis[original_name].add(cui) else: self.original_name2cuis[original_name] = {cui} if cui in self.cui2original_names: self.cui2original_names[cui].add(original_name) else: self.cui2original_names[cui] = {original_name} # Add prefered name if is_pref_name: self.cui2pref_name[cui] = name if pretty_name: self.cui2pretty_name[cui] = pretty_name if cui not in self.cui2pretty_name and pretty_name: self.cui2pretty_name[cui] = pretty_name if tui is not None: self.cui2tui[cui] = tui if tui in self.tui2cuis: self.tui2cuis[tui].add(cui) else: self.tui2cuis[tui] = set([cui]) if tui_name is not None: self.tui2name[tui] = tui_name if is_unique is not None: self.name_isunique[name] = is_unique # Add name to cnt if name not in self.name2cnt: self.name2cnt[name] = {} if cui in self.name2cnt[name]: self.name2cnt[name][cui] += 1 else: self.name2cnt[name][cui] = 1 # Add description if desc is not None: if cui not in self.cui2desc: self.cui2desc[cui] = str(desc) elif str(desc) not in str(self.cui2desc[cui]): self.cui2desc[cui] = str(self.cui2desc[cui]) + "\n\n" + str(desc) # Add cui to a list of cuis if cui not in self.index2cui: self.index2cui.append(cui) self.cui2index[cui] = len(self.index2cui) - 1 # Expand coo matrix if it is used if self._coo_matrix is not None: s = self._coo_matrix.shape[0] + 1 self._coo_matrix.resize((s, s)) # Add words to vocab for token in tokens_vocab: if token in self.vocab: self.vocab[token] += 1 else: self.vocab[token] = 1 # Add also the normalized tokens, why not for token in tokens: if token in self.vocab: self.vocab[token] += 1 else: self.vocab[token] = 1 # Add number of tokens for this name if name in self.name2ntkns: self.name2ntkns[name].add(len(tokens)) else: self.name2ntkns[name] = {len(tokens)} # Add mappings to onto2cuis if onto not in self.onto2cuis: self.onto2cuis[onto] = set([cui]) else: self.onto2cuis[onto].add(cui) if cui in self.cui2ontos: self.cui2ontos[cui].add(onto) else: self.cui2ontos[cui] = {onto} # Add mappings to name2cui if name not in self.name2cui: self.name2cui[name] = set([cui]) else: self.name2cui[name].add(cui) # Add snames to set self.sname2name.update(snames) # Add mappings to cui2names if cui not in self.cui2names: self.cui2names[cui] = {name} else: self.cui2names[cui].add(name) # Add mappings to cui2words if cui not in self.cui2words: self.cui2words[cui] = {} for token in tokens: if not token.isdigit() and len(token) > 1: if token in self.cui2words[cui]: self.cui2words[cui][token] += 1 else: self.cui2words[cui][token] = 1 def add_tui_names(self, csv_path, sep="|"): """ Fils the tui2name dict """ df = pd.read_csv(csv_path, sep=sep) for index, row in df.iterrows(): tui = row['tui'] name = row['name'] if tui not in self.tui2name: self.tui2name[tui] = name def add_context_vec(self, cui, context_vec, negative=False, cntx_type='LONG', inc_cui_count=True, anneal=True, lr=0.5): """ Add the vector representation of a context for this CUI cui: The concept in question context_vec: Vector represenation of the context negative: Is this negative context of positive cntx_type: Currently only two supported LONG and SHORT pretty much just based on the window size inc_cui_count: should this be counted """ if cui not in self.cui_count: self.increase_cui_count(cui, True) # Ignore very similar context prob = 0.95 # Set the right context if cntx_type == 'MED': cui2context_vec = self.cui2context_vec elif cntx_type == 'SHORT': cui2context_vec = self.cui2context_vec_short elif cntx_type == 'LONG': cui2context_vec = self.cui2context_vec_long sim = 0 cv = context_vec if cui in cui2context_vec: sim = np.dot(unitvec(cv), unitvec(cui2context_vec[cui])) if anneal: lr = max(lr / self.cui_count[cui], 0.0005) if negative: b = max(0, sim) * lr cui2context_vec[cui] = cui2context_vec[cui]*(1-b) - cv*b #cui2context_vec[cui] = cui2context_vec[cui] - cv*b else: if sim < prob: b = (1 - max(0, sim)) * lr cui2context_vec[cui] = cui2context_vec[cui]*(1-b) + cv*b #cui2context_vec[cui] = cui2context_vec[cui] + cv*b # Increase cui count self.increase_cui_count(cui, inc_cui_count) else: if negative: cui2context_vec[cui] = -1 * cv else: cui2context_vec[cui] = cv self.increase_cui_count(cui, inc_cui_count) return sim def increase_cui_count(self, cui, inc_cui_count): if inc_cui_count: if cui in self.cui_count: self.cui_count[cui] += 1 else: self.cui_count[cui] = 1 def add_coo(self, cui1, cui2): """ Add one cooccurrence cui1: Base CUI cui2: Coocured with CUI """ key = (self.cui2index[cui1], self.cui2index[cui2]) if key in self.coo_dict: self.coo_dict[key] += 1 else: self.coo_dict[key] = 1 def add_coos(self, cuis): """ Given a list of CUIs it will add them to the coo matrix saying that each CUI cooccurred with each one cuis: List of CUIs """ # We use done to ignore multiple occ of same concept d_cui1 = set() pairs = set() for i, cui1 in enumerate(cuis): if cui1 not in d_cui1: for cui2 in cuis[i+1:]: t = cui1+cui2 if t not in pairs: self.add_coo(cui1, cui2) pairs.add(t) t = cui2+cui1 if t not in pairs: self.add_coo(cui2, cui1) pairs.add(t) d_cui1.add(cui1) if len(self.coo_dict) > self.MAX_COO_DICT_SIZE: log.info("Starting the clean of COO_DICT, parameters are\n \ MAX_COO_DICT_SIZE: {}\n \ MIN_COO_COUNT: {}".format(self.MAX_COO_DICT_SIZE, self.MIN_COO_COUNT)) # Remove entries from coo_dict if too many old_size = len(self.coo_dict) to_del = [] for key in self.coo_dict.keys(): if self.coo_dict[key] < self.MIN_COO_COUNT: to_del.append(key) for key in to_del: del self.coo_dict[key] new_size = len(self.coo_dict) log.info("COO_DICT cleaned, size was: {} and now is {}. In total \ {} items were removed".format(old_size, new_size, old_size-new_size)) @property def coo_matrix(self): """ Get the COO Matrix as scikit dok_matrix """ if self._coo_matrix is None: s = len(self.cui2index) self._coo_matrix = dok_matrix((s, s), dtype=np.uint32) self._coo_matrix._update(self.coo_dict) return self._coo_matrix @coo_matrix.setter def coo_matrix(self, val): """ Imposible to set, it is built internally """ raise AttributeError("Can not set attribute coo_matrix") def reset_coo_matrix(self): """ Remove the COO-Matrix """ self.cui_count_ext = {} self.coo_dict = {} self._coo_matrix = None def save(self, path): with open(path, 'wb') as f: pickle.dump(self, f) @classmethod def load(cls, path): with open(path, 'rb') as f: return pickle.load(f) def save_dict(self, path): """ Saves variables of this object """ with open(path, 'wb') as f: pickle.dump(self.__dict__, f) def load_dict(self, path): """ Loads variables of this object """ with open(path, 'rb') as f: self.__dict__ = pickle.load(f) def import_training(self, cdb, overwrite=True): r''' This will import vector embeddings from another CDB. No new concept swill be added. IMPORTANT it will not import name maps (cui2name or name2cui or ...). Args: cdb (medcat.cdb.CDB): Concept database from which to import training vectors overwrite (boolean): If True all training data in the existing CDB will be overwritten, else the average between the two training vectors will be taken. Examples: >>> new_cdb.import_traininig(cdb=old_cdb, owerwrite=True) ''' # Import vectors and counts for cui in self.cui2names: if cui in cdb.cui_count: if overwrite or cui not in self.cui_count: self.cui_count[cui] = cdb.cui_count[cui] else: self.cui_count[cui] = (self.cui_count[cui] + cdb.cui_count[cui]) / 2 if cui in cdb.cui2context_vec: if overwrite or cui not in self.cui2context_vec: self.cui2context_vec[cui] = cdb.cui2context_vec[cui] else: self.cui2context_vec[cui] = (cdb.cui2context_vec[cui] + self.cui2context_vec[cui]) / 2 if cui in cdb.cui2context_vec_short: if overwrite or cui not in self.cui2context_vec_short: self.cui2context_vec_short[cui] = cdb.cui2context_vec_short[cui] else: self.cui2context_vec_short[cui] = (cdb.cui2context_vec_short[cui] + self.cui2context_vec_short[cui]) / 2 if cui in cdb.cui2context_vec_long: if overwrite or cui not in self.cui2context_vec_long: self.cui2context_vec_long[cui] = cdb.cui2context_vec_long[cui] else: self.cui2context_vec_long[cui] = (cdb.cui2context_vec_long[cui] + self.cui2context_vec_long[cui]) / 2 if cui in cdb.cui_disamb_always: self.cui_disamb_always[cui] = cdb.cui_disamb_always def reset_cui_count(self, n=10): r''' Reset the CUI count for all concepts that received training, used when starting new unsupervised training or for suppervised with annealing. Args: n (int, optional): This will be set as the CUI count for all cuis in this CDB. Examples: >>> cdb.reset_cui_count() ''' for cui in self.cui_count.keys(): self.cui_count[cui] = n def reset_training(self): r''' Will remove all training efforts - in other words all embeddings that are learnt for concepts in the current CDB. Please note that this does not remove synonyms (names) that were potentially added during supervised/online learning. ''' self.cui_count = {} self.cui2context_vec = {} self.cui2context_vec_short = {} self.cui2context_vec_long = {} self.coo_dict = {} self.cui_disamb_always = {} self.reset_coo_matrix() self.reset_similarity_matrix() def filter_by_tui(self, tuis_to_keep): all_cuis = [c for c_list in [self.tui2cuis[tui] for tui in tuis_to_keep] for c in c_list] self.filter_by_cui(all_cuis) def filter_by_cui(self, cuis_to_keep=None): assert cuis_to_keep, "Cannot remove all concepts, enter at least one CUI in a set." print("FYI - with large CDBs this can take a long time.") cuis_to_keep = set(cuis_to_keep) cuis = [] print("Gathering CUIs ") for cui in self.cui2names: if cui not in cuis_to_keep: cuis.append(cui) print("Cleaning up CUI maps...") for i, cui in enumerate(cuis): if i % 10000 == 0: print(f'removed 10k concepts, {len(cuis) - i} to go...') if cui in self.cui2desc: del self.cui2desc[cui] if cui in self.cui_count: del self.cui_count[cui] if cui in self.cui_count_ext: del self.cui_count_ext[cui] if cui in self.cui2names: del self.cui2names[cui] if cui in self.cui2original_names: del self.cui2original_names[cui] if cui in self.cui2pref_name: del self.cui2pref_name[cui] if cui in self.cui2pretty_name: del self.cui2pretty_name[cui] if cui in self.cui2words: del self.cui2words[cui] if cui in self.cui2context_vec: del self.cui2context_vec[cui] if cui in self.cui2context_vec_short: del self.cui2context_vec_short[cui] if cui in self.cui2context_vec_long: del self.cui2context_vec_long[cui] if cui in self.cui2info: del self.cui2info[cui] if cui in self.cui_disamb_always: del self.cui_disamb_always[cui] print("Done CUI cleaning") print("Cleaning names...") for name in list(self.name2cui.keys()): _cuis = list(self.name2cui[name]) for cui in _cuis: if cui not in cuis_to_keep: self.name2cui[name].remove(cui) if len(self.name2cui[name]) == 0: del self.name2cui[name] print("Done all") def print_stats(self): """ Print basic statistics on the database """ print("Number of concepts: {:,}".format(len(self.cui2names))) print("Number of names: {:,}".format(len(self.name2cui))) print("Number of concepts that received training: {:,}".format(len(self.cui2context_vec))) print("Number of seen training examples in total: {:,}".format(sum(self.cui_count.values()))) print("Average training examples per concept: {:.1f}".format(np.average(list(self.cui_count.values())))) def reset_similarity_matrix(self): self.sim_vectors = None self.sim_vectors_counts = None self.sim_vectors_tuis = None self.sim_vectors_cuis = None def most_similar(self, cui, tui_filter=[], min_cnt=0, topn=50): r''' Given a concept it will calculat what other concepts in this CDB have the most similar embedding. Args: cui (str): The concept ID for the base concept for which you want to get the most similar concepts. tui_filter (list): A list of TUIs that will be used to filterout the returned results. Using this it is possible to limit the similarity calculation to only disorders/symptoms/drugs/... min_cnt (int): Minimum training examples (unsupervised+supervised) that a concept must have to be considered for the similarity calculation. topn (int): How many results to return Return: results (dict): A dictionary with topn results like: {<cui>: {'name': <name>, 'sim': <similarity>, 'tui_name': <tui_name>, 'tui': <tui>, 'cnt': <number of training examples the concept has seen>}, ...} ''' # Create the matrix if necessary if not hasattr(self, 'sim_vectors') or self.sim_vectors is None or len(self.sim_vectors) < len(self.cui2context_vec): print("Building similarity matrix") log.info("Building similarity matrix") sim_vectors = [] sim_vectors_counts = [] sim_vectors_tuis = [] sim_vectors_cuis = [] for _cui in self.cui2context_vec: sim_vectors.append(unitvec(self.cui2context_vec[_cui])) sim_vectors_counts.append(self.cui_count[_cui]) sim_vectors_tuis.append(self.cui2tui.get(_cui, 'unk')) sim_vectors_cuis.append(_cui) self.sim_vectors = np.array(sim_vectors) self.sim_vectors_counts = np.array(sim_vectors_counts) self.sim_vectors_tuis = np.array(sim_vectors_tuis) self.sim_vectors_cuis = np.array(sim_vectors_cuis) # Select appropirate concepts tui_inds = np.arange(0, len(self.sim_vectors_tuis)) if len(tui_filter) > 0: tui_inds = np.array([], dtype=np.int32) for tui in tui_filter: tui_inds = np.union1d(np.where(self.sim_vectors_tuis == tui)[0], tui_inds) cnt_inds = np.arange(0, len(self.sim_vectors_counts)) if min_cnt > 0: cnt_inds = np.where(self.sim_vectors_counts >= min_cnt)[0] # Intersect cnt and tui inds = np.intersect1d(tui_inds, cnt_inds) mtrx = self.sim_vectors[inds] cuis = self.sim_vectors_cuis[inds] sims = np.dot(mtrx, unitvec(self.cui2context_vec[cui])) sims_srt = np.argsort(-1*sims) # Create the return dict res = {} for ind, _cui in enumerate(cuis[sims_srt[0:topn]]): res[_cui] = {'name': self.cui2pretty_name[_cui], 'sim': sims[sims_srt][ind], 'tui_name': self.tui2name.get(self.cui2tui.get(_cui, 'unk'), 'unk'), 'tui': self.cui2tui.get(_cui, 'unk'), 'cnt': self.cui_count[_cui]} return res
0
543
0
23,707
0
0
0
40
176
e843de334f3334ef6fcdc8a716988c1da1b98457
1,380
py
Python
tagopsdb/model/ns_vip_binds.py
ifwe/tagopsdb
5455810cb9ccdd0803975a2513741c43313b1b7d
[ "Apache-2.0" ]
null
null
null
tagopsdb/model/ns_vip_binds.py
ifwe/tagopsdb
5455810cb9ccdd0803975a2513741c43313b1b7d
[ "Apache-2.0" ]
1
2021-03-25T21:57:08.000Z
2021-03-25T21:57:08.000Z
tagopsdb/model/ns_vip_binds.py
ifwe/tagopsdb
5455810cb9ccdd0803975a2513741c43313b1b7d
[ "Apache-2.0" ]
1
2016-08-02T06:05:58.000Z
2016-08-02T06:05:58.000Z
# Copyright 2016 Ifwe Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
31.363636
76
0.707971
# Copyright 2016 Ifwe Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sqlalchemy import ForeignKey from sqlalchemy.dialects.mysql import INTEGER, SMALLINT from sqlalchemy.orm import relationship from .meta import Base, Column class NsVipBinds(Base): __tablename__ = 'ns_vip_binds' net_default_ip_id = Column( INTEGER(unsigned=True), ForeignKey('net_default_ips.net_default_ip_id', ondelete='cascade'), primary_key=True ) vip_id = Column( u'vipID', INTEGER(unsigned=True), ForeignKey('ns_vip.vipID', ondelete='cascade'), primary_key=True ) service_id = Column( u'serviceID', INTEGER(unsigned=True), ForeignKey('ns_service.serviceID', ondelete='cascade'), primary_key=True ) ns_service = relationship('NsService') ns_vip = relationship('NsVip')
0
0
0
620
0
0
0
73
113
96554955e1e867ce4e811b1753e447421a931915
29,675
py
Python
python/play.py
030helios/Kata2Connect5
e8ace620284b46f4a50fc0582924cbadf32653e7
[ "MIT" ]
null
null
null
python/play.py
030helios/Kata2Connect5
e8ace620284b46f4a50fc0582924cbadf32653e7
[ "MIT" ]
1
2021-06-03T14:30:04.000Z
2021-06-03T14:40:32.000Z
python/play.py
030helios/Kata2Surakarta
e8ace620284b46f4a50fc0582924cbadf32653e7
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import argparse import json import tensorflow as tf from model import Model import common description = """ Play go with a trained neural net! Implements a basic GTP engine that uses the neural net directly to play moves. """ parser = argparse.ArgumentParser(description=description) common.add_model_load_args(parser) parser.add_argument('-name-scope', help='Name scope for model variables', required=False) args = vars(parser.parse_args()) (model_variables_prefix, model_config_json) = common.load_model_paths(args) name_scope = args["name_scope"] #Hardcoded max board size pos_len = 6 # Model ---------------------------------------------------------------- with open(model_config_json) as f: model_config = json.load(f) if name_scope is not None: with tf.compat.v1.variable_scope(name_scope): model = Model(model_config,pos_len,{}) else: model = Model(model_config,pos_len,{}) policy0_output = tf.nn.softmax(model.policy_output[:,:,0]) policy1_output = tf.nn.softmax(model.policy_output[:,:,1]) value_output = tf.nn.softmax(model.value_output) scoremean_output = 20.0 * model.miscvalues_output[:,0] scorestdev_output = 20.0 * tf.math.softplus(model.miscvalues_output[:,1]) lead_output = 20.0 * model.miscvalues_output[:,2] vtime_output = 40.0 * tf.math.softplus(model.miscvalues_output[:,3]) estv_output = tf.sqrt(0.25 * tf.math.softplus(model.moremiscvalues_output[:,0])) ests_output = tf.sqrt(30.0 * tf.math.softplus(model.moremiscvalues_output[:,1])) td_value_output = tf.nn.softmax(model.miscvalues_output[:,4:7]) td_value_output2 = tf.nn.softmax(model.miscvalues_output[:,7:10]) td_value_output3 = tf.nn.softmax(model.moremiscvalues_output[:,2:5]) td_score_output = model.moremiscvalues_output[:,5:8] * 20.0 vtime_output = 40.0 * tf.math.softplus(model.miscvalues_output[:,3]) vtime_output = 40.0 * tf.math.softplus(model.miscvalues_output[:,3]) ownership_output = tf.tanh(model.ownership_output) scoring_output = model.scoring_output futurepos_output = tf.tanh(model.futurepos_output) seki_output = tf.nn.softmax(model.seki_output[:,:,:,0:3]) seki_output = seki_output[:,:,:,1] - seki_output[:,:,:,2] seki_output2 = tf.sigmoid(model.seki_output[:,:,:,3]) scorebelief_output = tf.nn.softmax(model.scorebelief_output) sbscale_output = model.sbscale3_layer # Moves ---------------------------------------------------------------- # Basic parsing -------------------------------------------------------- colstr = 'ABCDEFGHJKLMNOPQRST' # GTP Implementation ----------------------------------------------------- #Adapted from https://github.com/pasky/michi/blob/master/michi.py, which is distributed under MIT license #https://opensource.org/licenses/MIT saver = tf.compat.v1.train.Saver( max_to_keep = 10000, save_relative_paths = True, ) # session_config = tf.compat.v1.ConfigProto(allow_soft_placement=True) # session_config.gpu_options.per_process_gpu_memory_fraction = 0.3 with tf.compat.v1.Session() as session: saver.restore(session, model_variables_prefix) run_gtp(session)
34.505814
171
0.658635
#!/usr/bin/python3 import sys import os import argparse import traceback import random import math import time import re import logging import colorsys import json import tensorflow as tf import numpy as np from board import Board from model import Model import common description = """ Play go with a trained neural net! Implements a basic GTP engine that uses the neural net directly to play moves. """ parser = argparse.ArgumentParser(description=description) common.add_model_load_args(parser) parser.add_argument('-name-scope', help='Name scope for model variables', required=False) args = vars(parser.parse_args()) (model_variables_prefix, model_config_json) = common.load_model_paths(args) name_scope = args["name_scope"] #Hardcoded max board size pos_len = 6 # Model ---------------------------------------------------------------- with open(model_config_json) as f: model_config = json.load(f) if name_scope is not None: with tf.compat.v1.variable_scope(name_scope): model = Model(model_config,pos_len,{}) else: model = Model(model_config,pos_len,{}) policy0_output = tf.nn.softmax(model.policy_output[:,:,0]) policy1_output = tf.nn.softmax(model.policy_output[:,:,1]) value_output = tf.nn.softmax(model.value_output) scoremean_output = 20.0 * model.miscvalues_output[:,0] scorestdev_output = 20.0 * tf.math.softplus(model.miscvalues_output[:,1]) lead_output = 20.0 * model.miscvalues_output[:,2] vtime_output = 40.0 * tf.math.softplus(model.miscvalues_output[:,3]) estv_output = tf.sqrt(0.25 * tf.math.softplus(model.moremiscvalues_output[:,0])) ests_output = tf.sqrt(30.0 * tf.math.softplus(model.moremiscvalues_output[:,1])) td_value_output = tf.nn.softmax(model.miscvalues_output[:,4:7]) td_value_output2 = tf.nn.softmax(model.miscvalues_output[:,7:10]) td_value_output3 = tf.nn.softmax(model.moremiscvalues_output[:,2:5]) td_score_output = model.moremiscvalues_output[:,5:8] * 20.0 vtime_output = 40.0 * tf.math.softplus(model.miscvalues_output[:,3]) vtime_output = 40.0 * tf.math.softplus(model.miscvalues_output[:,3]) ownership_output = tf.tanh(model.ownership_output) scoring_output = model.scoring_output futurepos_output = tf.tanh(model.futurepos_output) seki_output = tf.nn.softmax(model.seki_output[:,:,:,0:3]) seki_output = seki_output[:,:,:,1] - seki_output[:,:,:,2] seki_output2 = tf.sigmoid(model.seki_output[:,:,:,3]) scorebelief_output = tf.nn.softmax(model.scorebelief_output) sbscale_output = model.sbscale3_layer class GameState: def __init__(self,board_size): self.board_size = board_size self.board = Board(size=board_size) self.moves = [] self.boards = [self.board.copy()] # Moves ---------------------------------------------------------------- def fetch_output(session, gs, rules, fetches): bin_input_data = np.zeros(shape=[1]+model.bin_input_shape, dtype=np.float32) global_input_data = np.zeros(shape=[1]+model.global_input_shape, dtype=np.float32) pla = gs.board.pla opp = Board.get_opp(pla) move_idx = len(gs.moves) model.fill_row_features(gs.board,pla,opp,gs.boards,gs.moves,move_idx,rules,bin_input_data,global_input_data,idx=0) outputs = session.run(fetches, feed_dict={ model.bin_inputs: bin_input_data, model.global_inputs: global_input_data, model.symmetries: [False,False,False], model.include_history: [[1.0,1.0,1.0,1.0,1.0]] }) return [output[0] for output in outputs] def get_outputs(session, gs, rules): [policy0, policy1, value, td_value, td_value2, td_value3, scoremean, td_score, scorestdev, lead, vtime, estv, ests, ownership, scoring, futurepos, seki, seki2, scorebelief, sbscale ] = fetch_output(session,gs,rules,[ policy0_output, policy1_output, value_output, td_value_output, td_value_output2, td_value_output3, scoremean_output, td_score_output, scorestdev_output, lead_output, vtime_output, estv_output, ests_output, ownership_output, scoring_output, futurepos_output, seki_output, seki_output2, scorebelief_output, sbscale_output ]) board = gs.board moves_and_probs0 = [] for i in range(len(policy0)): move = model.tensor_pos_to_loc(i,board) if i == len(policy0)-1: moves_and_probs0.append((Board.PASS_LOC,policy0[i])) elif board.would_be_legal(board.pla,move): moves_and_probs0.append((move,policy0[i])) moves_and_probs1 = [] for i in range(len(policy1)): move = model.tensor_pos_to_loc(i,board) if i == len(policy1)-1: moves_and_probs1.append((Board.PASS_LOC,policy1[i])) elif board.would_be_legal(board.pla,move): moves_and_probs1.append((move,policy1[i])) ownership_flat = ownership.reshape([model.pos_len * model.pos_len]) ownership_by_loc = [] board = gs.board for y in range(board.size): for x in range(board.size): loc = board.loc(x,y) pos = model.loc_to_tensor_pos(loc,board) if board.pla == Board.WHITE: ownership_by_loc.append((loc,ownership_flat[pos])) else: ownership_by_loc.append((loc,-ownership_flat[pos])) scoring_flat = scoring.reshape([model.pos_len * model.pos_len]) scoring_by_loc = [] board = gs.board for y in range(board.size): for x in range(board.size): loc = board.loc(x,y) pos = model.loc_to_tensor_pos(loc,board) if board.pla == Board.WHITE: scoring_by_loc.append((loc,scoring_flat[pos])) else: scoring_by_loc.append((loc,-scoring_flat[pos])) futurepos0_flat = futurepos[:,:,0].reshape([model.pos_len * model.pos_len]) futurepos0_by_loc = [] board = gs.board for y in range(board.size): for x in range(board.size): loc = board.loc(x,y) pos = model.loc_to_tensor_pos(loc,board) if board.pla == Board.WHITE: futurepos0_by_loc.append((loc,futurepos0_flat[pos])) else: futurepos0_by_loc.append((loc,-futurepos0_flat[pos])) futurepos1_flat = futurepos[:,:,1].reshape([model.pos_len * model.pos_len]) futurepos1_by_loc = [] board = gs.board for y in range(board.size): for x in range(board.size): loc = board.loc(x,y) pos = model.loc_to_tensor_pos(loc,board) if board.pla == Board.WHITE: futurepos1_by_loc.append((loc,futurepos1_flat[pos])) else: futurepos1_by_loc.append((loc,-futurepos1_flat[pos])) seki_flat = seki.reshape([model.pos_len * model.pos_len]) seki_by_loc = [] board = gs.board for y in range(board.size): for x in range(board.size): loc = board.loc(x,y) pos = model.loc_to_tensor_pos(loc,board) if board.pla == Board.WHITE: seki_by_loc.append((loc,seki_flat[pos])) else: seki_by_loc.append((loc,-seki_flat[pos])) seki_flat2 = seki2.reshape([model.pos_len * model.pos_len]) seki_by_loc2 = [] board = gs.board for y in range(board.size): for x in range(board.size): loc = board.loc(x,y) pos = model.loc_to_tensor_pos(loc,board) seki_by_loc2.append((loc,seki_flat2[pos])) moves_and_probs = sorted(moves_and_probs0, key=lambda moveandprob: moveandprob[1], reverse=True) #Generate a random number biased small and then find the appropriate move to make #Interpolate from moving uniformly to choosing from the triangular distribution alpha = 1 beta = 1 + math.sqrt(max(0,len(gs.moves)-20)) r = np.random.beta(alpha,beta) probsum = 0.0 i = 0 genmove_result = Board.PASS_LOC while True: (move,prob) = moves_and_probs[i] probsum += prob if i >= len(moves_and_probs)-1 or probsum > r: genmove_result = move break i += 1 return { "policy0": policy0, "policy1": policy1, "moves_and_probs0": moves_and_probs0, "moves_and_probs1": moves_and_probs1, "value": value, "td_value": td_value, "td_value2": td_value2, "td_value3": td_value3, "scoremean": scoremean, "td_score": td_score, "scorestdev": scorestdev, "lead": lead, "vtime": vtime, "estv": estv, "ests": ests, "ownership": ownership, "ownership_by_loc": ownership_by_loc, "scoring": scoring, "scoring_by_loc": scoring_by_loc, "futurepos": futurepos, "futurepos0_by_loc": futurepos0_by_loc, "futurepos1_by_loc": futurepos1_by_loc, "seki": seki, "seki_by_loc": seki_by_loc, "seki2": seki2, "seki_by_loc2": seki_by_loc2, "scorebelief": scorebelief, "sbscale": sbscale, "genmove_result": genmove_result } def get_layer_values(session, gs, rules, layer, channel): board = gs.board [layer] = fetch_output(session,gs,rules=rules,fetches=[layer]) layer = layer.reshape([model.pos_len * model.pos_len,-1]) locs_and_values = [] for y in range(board.size): for x in range(board.size): loc = board.loc(x,y) pos = model.loc_to_tensor_pos(loc,board) locs_and_values.append((loc,layer[pos,channel])) return locs_and_values def get_input_feature(gs, rules, feature_idx): board = gs.board bin_input_data = np.zeros(shape=[1]+model.bin_input_shape, dtype=np.float32) global_input_data = np.zeros(shape=[1]+model.global_input_shape, dtype=np.float32) pla = board.pla opp = Board.get_opp(pla) move_idx = len(gs.moves) model.fill_row_features(board,pla,opp,gs.boards,gs.moves,move_idx,rules,bin_input_data,global_input_data,idx=0) locs_and_values = [] for y in range(board.size): for x in range(board.size): loc = board.loc(x,y) pos = model.loc_to_tensor_pos(loc,board) locs_and_values.append((loc,bin_input_data[0,pos,feature_idx])) return locs_and_values def get_pass_alive(board, rules): pla = board.pla opp = Board.get_opp(pla) area = [-1 for i in range(board.arrsize)] nonPassAliveStones = False safeBigTerritories = True unsafeBigTerritories = False board.calculateArea(area,nonPassAliveStones,safeBigTerritories,unsafeBigTerritories,rules["multiStoneSuicideLegal"]) locs_and_values = [] for y in range(board.size): for x in range(board.size): loc = board.loc(x,y) locs_and_values.append((loc,area[loc])) return locs_and_values def get_gfx_commands_for_heatmap(locs_and_values, board, normalization_div, is_percent, value_and_score_from=None, hotcold=False): gfx_commands = [] divisor = 1.0 if normalization_div == "max": max_abs_value = max(abs(value) for (loc,value) in locs_and_values) divisor = max(0.0000000001,max_abs_value) #avoid divide by zero elif normalization_div is not None: divisor = normalization_div #Caps value at 1.0, using an asymptotic curve def loose_cap(x): def transformed_softplus(x): return -math.log(math.exp(-(x-1.0)*8.0)+1.0)/8.0+1.0 base = transformed_softplus(0.0) return (transformed_softplus(x) - base) / (1.0 - base) #Softly curves a value so that it ramps up faster than linear in that range def soft_curve(x,x0,x1): p = (x-x0)/(x1-x0) def curve(p): return math.sqrt(p+0.16)-0.4 p = curve(p) / curve(1.0) return x0 + p * (x1-x0) if hotcold: for (loc,value) in locs_and_values: if loc != Board.PASS_LOC: value = value / divisor if value < 0: value = -loose_cap(-value) else: value = loose_cap(value) interpoints = [ (-1.00,(0,0,0)), (-0.85,(15,0,50)), (-0.60,(60,0,160)), (-0.35,(0,0,255)), (-0.15,(0,100,255)), ( 0.00,(115,115,115)), ( 0.15,(250,45,40)), ( 0.25,(255,55,0)), ( 0.60,(255,255,20)), ( 0.85,(255,255,128)), ( 1.00,(255,255,255)), ] def lerp(p,y0,y1): return y0 + p*(y1-y0) i = 0 while i < len(interpoints): if value <= interpoints[i][0]: break i += 1 i -= 1 if i < 0: (r,g,b) = interpoints[0][1] if i >= len(interpoints)-1: (r,g,b) = interpoints[len(interpoints)-1][1] p = (value - interpoints[i][0]) / (interpoints[i+1][0] - interpoints[i][0]) (r0,g0,b0) = interpoints[i][1] (r1,g1,b1) = interpoints[i+1][1] r = lerp(p,r0,r1) g = lerp(p,g0,g1) b = lerp(p,b0,b1) r = ("%02x" % int(r)) g = ("%02x" % int(g)) b = ("%02x" % int(b)) gfx_commands.append("COLOR #%s%s%s %s" % (r,g,b,str_coord(loc,board))) else: for (loc,value) in locs_and_values: if loc != Board.PASS_LOC: value = value / divisor if value < 0: value = -value huestart = 0.50 huestop = 0.86 else: huestart = -0.02 huestop = 0.38 value = loose_cap(value) def lerp(p,x0,x1,y0,y1): return y0 + (y1-y0) * (p-x0)/(x1-x0) if value <= 0.03: hue = huestart lightness = 0.00 + 0.50 * (value / 0.03) saturation = value / 0.03 (r,g,b) = colorsys.hls_to_rgb((hue+1)%1, lightness, saturation) elif value <= 0.60: hue = lerp(value,0.03,0.60,huestart,huestop) val = 1.0 saturation = 1.0 (r,g,b) = colorsys.hsv_to_rgb((hue+1)%1, val, saturation) else: hue = huestop lightness = lerp(value,0.60,1.00,0.5,0.95) saturation = 1.0 (r,g,b) = colorsys.hls_to_rgb((hue+1)%1, lightness, saturation) r = ("%02x" % int(r*255)) g = ("%02x" % int(g*255)) b = ("%02x" % int(b*255)) gfx_commands.append("COLOR #%s%s%s %s" % (r,g,b,str_coord(loc,board))) locs_and_values = sorted(locs_and_values, key=lambda loc_and_value: loc_and_value[1]) locs_and_values_rev = sorted(locs_and_values, key=lambda loc_and_value: loc_and_value[1], reverse=True) texts = [] texts_rev = [] texts_value = [] maxlen_per_side = 1000 if len(locs_and_values) > 0 and locs_and_values[0][1] < 0: maxlen_per_side = 500 for i in range(min(len(locs_and_values),maxlen_per_side)): (loc,value) = locs_and_values[i] if is_percent: texts.append("%s %4.1f%%" % (str_coord(loc,board),value*100)) else: texts.append("%s %.3f" % (str_coord(loc,board),value)) texts.reverse() for i in range(min(len(locs_and_values_rev),maxlen_per_side)): (loc,value) = locs_and_values_rev[i] if is_percent: texts_rev.append("%s %4.1f%%" % (str_coord(loc,board),value*100)) else: texts_rev.append("%s %.3f" % (str_coord(loc,board),value)) if value_and_score_from is not None: value = value_and_score_from["value"] score = value_and_score_from["scoremean"] lead = value_and_score_from["lead"] vtime = value_and_score_from["vtime"] texts_value.append("wv %.2fc nr %.2f%% ws %.1f wl %.1f vt %.1f" % ( 100*(value[0]-value[1] if board.pla == Board.WHITE else value[1] - value[0]), 100*value[2], (score if board.pla == Board.WHITE else -score), (lead if board.pla == Board.WHITE else -lead), vtime )) gfx_commands.append("TEXT " + ", ".join(texts_value + texts_rev + texts)) return gfx_commands def print_scorebelief(gs,outputs): board = gs.board scorebelief = outputs["scorebelief"] scoremean = outputs["scoremean"] scorestdev = outputs["scorestdev"] sbscale = outputs["sbscale"] scorebelief = list(scorebelief) if board.pla != Board.WHITE: scorebelief.reverse() scoremean = -scoremean scoredistrmid = pos_len * pos_len + Model.EXTRA_SCORE_DISTR_RADIUS ret = "" ret += "TEXT " ret += "SBScale: " + str(sbscale) + "\n" ret += "ScoreBelief: \n" for i in range(17,-1,-1): ret += "TEXT " ret += "%+6.1f" %(-(i*20+0.5)) for j in range(20): idx = scoredistrmid-(i*20+j)-1 ret += " %4.0f" % (scorebelief[idx] * 10000) ret += "\n" for i in range(18): ret += "TEXT " ret += "%+6.1f" %((i*20+0.5)) for j in range(20): idx = scoredistrmid+(i*20+j) ret += " %4.0f" % (scorebelief[idx] * 10000) ret += "\n" beliefscore = 0 beliefscoresq = 0 beliefwin = 0 belieftotal = 0 for idx in range(scoredistrmid*2): score = idx-scoredistrmid+0.5 if score > 0: beliefwin += scorebelief[idx] else: beliefwin -= scorebelief[idx] belieftotal += scorebelief[idx] beliefscore += score*scorebelief[idx] beliefscoresq += score*score*scorebelief[idx] beliefscoremean = beliefscore/belieftotal beliefscoremeansq = beliefscoresq/belieftotal beliefscorevar = max(0,beliefscoremeansq-beliefscoremean*beliefscoremean) beliefscorestdev = math.sqrt(beliefscorevar) ret += "TEXT BeliefWin: %.2fc\n" % (100*beliefwin/belieftotal) ret += "TEXT BeliefScoreMean: %.1f\n" % (beliefscoremean) ret += "TEXT BeliefScoreStdev: %.1f\n" % (beliefscorestdev) ret += "TEXT ScoreMean: %.1f\n" % (scoremean) ret += "TEXT ScoreStdev: %.1f\n" % (scorestdev) ret += "TEXT Value: %s\n" % (str(outputs["value"])) ret += "TEXT TDValue: %s\n" % (str(outputs["td_value"])) ret += "TEXT TDValue2: %s\n" % (str(outputs["td_value2"])) ret += "TEXT TDValue3: %s\n" % (str(outputs["td_value3"] )) ret += "TEXT TDScore: %s\n" % (str(outputs["td_score"])) ret += "TEXT Estv: %s\n" % (str(outputs["estv"])) ret += "TEXT Ests: %s\n" % (str(outputs["ests"])) return ret # Basic parsing -------------------------------------------------------- colstr = 'ABCDEFGHJKLMNOPQRST' def parse_coord(s,board): if s == 'pass': return Board.PASS_LOC return board.loc(colstr.index(s[0].upper()), board.size - int(s[1:])) def str_coord(loc,board): if loc == Board.PASS_LOC: return 'pass' x = board.loc_x(loc) y = board.loc_y(loc) return '%c%d' % (colstr[x], board.size - y) # GTP Implementation ----------------------------------------------------- #Adapted from https://github.com/pasky/michi/blob/master/michi.py, which is distributed under MIT license #https://opensource.org/licenses/MIT def run_gtp(session): known_commands = [ 'boardsize', 'clear_board', 'showboard', 'komi', 'play', 'genmove', 'quit', 'name', 'version', 'known_command', 'list_commands', 'protocol_version', 'gogui-analyze_commands', 'setrule', 'policy', 'policy1', 'logpolicy', 'ownership', 'scoring', 'futurepos0', 'futurepos1', 'seki', 'seki2', 'scorebelief', 'passalive', ] known_analyze_commands = [ 'gfx/Policy/policy', 'gfx/Policy1/policy1', 'gfx/LogPolicy/logpolicy', 'gfx/Ownership/ownership', 'gfx/Scoring/scoring', 'gfx/FuturePos0/futurepos0', 'gfx/FuturePos1/futurepos1', 'gfx/Seki/seki', 'gfx/Seki2/seki2', 'gfx/ScoreBelief/scorebelief', 'gfx/PassAlive/passalive', ] board_size = 6 gs = GameState(board_size) rules = { "koRule": "KO_POSITIONAL", "scoringRule": "SCORING_AREA", "taxRule": "TAX_NONE", "multiStoneSuicideLegal": True, "hasButton": False, "encorePhase": 0, "passWouldEndPhase": False, "whiteKomi": 7.5 } layerdict = dict(model.outputs_by_layer) weightdict = dict() for v in tf.compat.v1.trainable_variables(): weightdict[v.name] = v layer_command_lookup = dict() def add_extra_board_size_visualizations(layer_name, layer, normalization_div): assert(layer.shape[1].value == board_size) assert(layer.shape[2].value == board_size) num_channels = layer.shape[3].value for i in range(num_channels): command_name = layer_name + "-" + str(i) command_name = command_name.replace("/",":") known_commands.append(command_name) known_analyze_commands.append("gfx/" + command_name + "/" + command_name) layer_command_lookup[command_name.lower()] = (layer,i,normalization_div) def add_layer_visualizations(layer_name, normalization_div): if layer_name in layerdict: layer = layerdict[layer_name] add_extra_board_size_visualizations(layer_name, layer, normalization_div) add_layer_visualizations("conv1",normalization_div=6) add_layer_visualizations("rconv1",normalization_div=14) add_layer_visualizations("rconv2",normalization_div=20) add_layer_visualizations("rconv3",normalization_div=26) add_layer_visualizations("rconv4",normalization_div=36) add_layer_visualizations("rconv5",normalization_div=40) add_layer_visualizations("rconv6",normalization_div=40) add_layer_visualizations("rconv7",normalization_div=44) add_layer_visualizations("rconv7/conv1a",normalization_div=12) add_layer_visualizations("rconv7/conv1b",normalization_div=12) add_layer_visualizations("rconv8",normalization_div=48) add_layer_visualizations("rconv9",normalization_div=52) add_layer_visualizations("rconv10",normalization_div=55) add_layer_visualizations("rconv11",normalization_div=58) add_layer_visualizations("rconv11/conv1a",normalization_div=12) add_layer_visualizations("rconv11/conv1b",normalization_div=12) add_layer_visualizations("rconv12",normalization_div=58) add_layer_visualizations("rconv13",normalization_div=64) add_layer_visualizations("rconv14",normalization_div=66) add_layer_visualizations("g1",normalization_div=6) add_layer_visualizations("p1",normalization_div=2) add_layer_visualizations("v1",normalization_div=4) input_feature_command_lookup = dict() def add_input_feature_visualizations(layer_name, feature_idx, normalization_div): command_name = layer_name command_name = command_name.replace("/",":") known_commands.append(command_name) known_analyze_commands.append("gfx/" + command_name + "/" + command_name) input_feature_command_lookup[command_name] = (feature_idx,normalization_div) for i in range(model.bin_input_shape[1]): add_input_feature_visualizations("input-" + str(i),i, normalization_div=1) linear = tf.cumsum(tf.ones([6],dtype=tf.float32),axis=0,exclusive=True) / 18.0 color_calibration = tf.stack(axis=0,values=[ linear, linear*0.5, linear*0.2, linear*0.1, linear*0.05, linear*0.02, linear*0.01, -linear, -linear*0.5, -linear*0.2, -linear*0.1, -linear*0.05, -linear*0.02, -linear*0.01, linear*2-1, tf.zeros([6],dtype=tf.float32), linear, -linear, tf.zeros([6],dtype=tf.float32) ]) add_extra_board_size_visualizations("colorcalibration", tf.reshape(color_calibration,[1,6,6,1]),normalization_div=None) while True: try: line = input().strip() except EOFError: break if line == '': continue command = [s.lower() for s in line.split()] if re.match('\d+', command[0]): cmdid = command[0] command = command[1:] else: cmdid = '' ret = '' if command[0] == "boardsize": if int(command[1]) > model.pos_len: print("Warning: Trying to set incompatible boardsize %s (!= %d)" % (command[1], N), file=sys.stderr) ret = None board_size = int(command[1]) gs = GameState(board_size) elif command[0] == "clear_board": gs = GameState(board_size) elif command[0] == "showboard": ret = "\n" + gs.board.to_string().strip() elif command[0] == "komi": rules["whiteKomi"] = float(command[1]) elif command[0] == "play": pla = (Board.BLACK if command[1] == "B" or command[1] == "b" else Board.WHITE) loc = parse_coord(command[2],gs.board) gs.board.play(pla,loc) gs.moves.append((pla,loc)) gs.boards.append(gs.board.copy()) elif command[0] == "genmove": outputs = get_outputs(session, gs, rules) loc = outputs["genmove_result"] pla = gs.board.pla if len(command) > 1: pla = (Board.BLACK if command[1] == "B" or command[1] == "b" else Board.WHITE) gs.board.play(pla,loc) gs.moves.append((pla,loc)) gs.boards.append(gs.board.copy()) ret = str_coord(loc,gs.board) elif command[0] == "name": ret = 'KataGo Raw Neural Net Debug/Test Script' elif command[0] == "version": ret = '1.0' elif command[0] == "list_commands": ret = '\n'.join(known_commands) elif command[0] == "known_command": ret = 'true' if command[1] in known_commands else 'false' elif command[0] == "gogui-analyze_commands": ret = '\n'.join(known_analyze_commands) elif command[0] == "setrule": ret = "" if command[1] == "korule": rules["koRule"] = command[2].upper() elif command[1] == "scoringrule": rules["scoringRule"] = command[2].upper() elif command[1] == "taxrule": rules["taxRule"] = command[2].upper() elif command[1] == "multistonesuicidelegal": rules["multiStoneSuicideLegal"] = (command[2].lower() == "true") elif command[1] == "hasbutton": rules["hasButton"] = (command[2].lower() == "true") elif command[1] == "encorephase": rules["encorePhase"] = int(command[2]) elif command[1] == "passwouldendphase": rules["passWouldEndPhase"] = (command[2].lower() == "true") elif command[1] == "whitekomi" or command[1] == "komi": rules["whiteKomi"] = float(command[2]) elif command[1] == "asym": rules["asymPowersOfTwo"] = float(command[2]) else: ret = "Unknown rules setting" elif command[0] == "policy": outputs = get_outputs(session, gs, rules) gfx_commands = get_gfx_commands_for_heatmap(outputs["moves_and_probs0"], gs.board, normalization_div=None, is_percent=True, value_and_score_from=outputs) ret = "\n".join(gfx_commands) elif command[0] == "policy1": outputs = get_outputs(session, gs, rules) gfx_commands = get_gfx_commands_for_heatmap(outputs["moves_and_probs1"], gs.board, normalization_div=None, is_percent=True, value_and_score_from=outputs) ret = "\n".join(gfx_commands) elif command[0] == "logpolicy": outputs = get_outputs(session, gs, rules) moves_and_logprobs = [(move,max(0.0,4.9+math.log10(prob))) for (move,prob) in outputs["moves_and_probs0"]] gfx_commands = get_gfx_commands_for_heatmap(moves_and_logprobs, gs.board, normalization_div=6, is_percent=False, value_and_score_from=outputs) ret = "\n".join(gfx_commands) elif command[0] == "ownership": outputs = get_outputs(session, gs, rules) gfx_commands = get_gfx_commands_for_heatmap(outputs["ownership_by_loc"], gs.board, normalization_div=None, is_percent=True, value_and_score_from=None, hotcold=True) ret = "\n".join(gfx_commands) elif command[0] == "scoring": outputs = get_outputs(session, gs, rules) gfx_commands = get_gfx_commands_for_heatmap(outputs["scoring_by_loc"], gs.board, normalization_div=None, is_percent=True, value_and_score_from=None, hotcold=True) ret = "\n".join(gfx_commands) elif command[0] == "futurepos0": outputs = get_outputs(session, gs, rules) gfx_commands = get_gfx_commands_for_heatmap(outputs["futurepos0_by_loc"], gs.board, normalization_div=None, is_percent=True, value_and_score_from=None, hotcold=True) ret = "\n".join(gfx_commands) elif command[0] == "futurepos1": outputs = get_outputs(session, gs, rules) gfx_commands = get_gfx_commands_for_heatmap(outputs["futurepos1_by_loc"], gs.board, normalization_div=None, is_percent=True, value_and_score_from=None, hotcold=True) ret = "\n".join(gfx_commands) elif command[0] == "seki": outputs = get_outputs(session, gs, rules) gfx_commands = get_gfx_commands_for_heatmap(outputs["seki_by_loc"], gs.board, normalization_div=None, is_percent=True, value_and_score_from=None) ret = "\n".join(gfx_commands) elif command[0] == "seki2": outputs = get_outputs(session, gs, rules) gfx_commands = get_gfx_commands_for_heatmap(outputs["seki_by_loc2"], gs.board, normalization_div=None, is_percent=True, value_and_score_from=None) ret = "\n".join(gfx_commands) elif command[0] in layer_command_lookup: (layer,channel,normalization_div) = layer_command_lookup[command[0]] locs_and_values = get_layer_values(session, gs, rules, layer, channel) gfx_commands = get_gfx_commands_for_heatmap(locs_and_values, gs.board, normalization_div, is_percent=False) ret = "\n".join(gfx_commands) elif command[0] in input_feature_command_lookup: (feature_idx,normalization_div) = input_feature_command_lookup[command[0]] locs_and_values = get_input_feature(gs, rules, feature_idx) gfx_commands = get_gfx_commands_for_heatmap(locs_and_values, gs.board, normalization_div, is_percent=False) ret = "\n".join(gfx_commands) elif command[0] == "passalive": locs_and_values = get_pass_alive(gs.board, rules) gfx_commands = get_gfx_commands_for_heatmap(locs_and_values, gs.board, normalization_div=None, is_percent=False) ret = "\n".join(gfx_commands) elif command[0] == "scorebelief": outputs = get_outputs(session, gs, rules) ret = print_scorebelief(gs,outputs) elif command[0] == "protocol_version": ret = '2' elif command[0] == "quit": print('=%s \n\n' % (cmdid,), end='') break else: print('Warning: Ignoring unknown command - %s' % (line,), file=sys.stderr) ret = None if ret is not None: print('=%s %s\n\n' % (cmdid, ret,), end='') else: print('?%s ???\n\n' % (cmdid,), end='') sys.stdout.flush() saver = tf.compat.v1.train.Saver( max_to_keep = 10000, save_relative_paths = True, ) # session_config = tf.compat.v1.ConfigProto(allow_soft_placement=True) # session_config.gpu_options.per_process_gpu_memory_fraction = 0.3 with tf.compat.v1.Session() as session: saver.restore(session, model_variables_prefix) run_gtp(session)
0
0
0
159
0
26,063
0
-82
494
e1f2ff87b306b5118c6404d2e8d28e29a993265e
1,832
py
Python
stim_amplitude_scan.py
maxnolte/deciphering_variability
bea48cc3c04e63f3acdd1b86563eb792358c91a8
[ "MIT" ]
2
2020-04-22T12:02:32.000Z
2021-06-21T17:35:15.000Z
stim_amplitude_scan.py
maxnolte/deciphering_variability
bea48cc3c04e63f3acdd1b86563eb792358c91a8
[ "MIT" ]
null
null
null
stim_amplitude_scan.py
maxnolte/deciphering_variability
bea48cc3c04e63f3acdd1b86563eb792358c91a8
[ "MIT" ]
3
2019-09-26T07:32:50.000Z
2021-06-21T17:35:29.000Z
import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt plt.rcParams['pdf.fonttype'] = 42 import bluepy variances = ['0p001', '0p01', '0p05', '0p1', '0p5', '1p0', '1p5', '2p0', '10p0'] bcs = ['/gpfs/bbp.cscs.ch/project/proj9/simulations/nolte/variability/spontaneous/base_seeds_abcd_stim/seed170/variance%s/BlueConfig' % s for s in variances[1:]] bcs = ['/gpfs/bbp.cscs.ch/project/proj9/simulations/nolte/variability/spontaneous/base_seeds_abcd/seed170/BlueConfig'] + bcs # bcs = ['/gpfs/bbp.cscs.ch/project/proj9/simulations/nolte/ei-balance/' \ # 'scan_layer5/Ca%s/BlueConfig' % s for s in cas] sim = bluepy.Simulation(bcs[0]) gids = np.array(list(sim.get_circuit_target())) gids_exc = np.random.permutation(np.intersect1d(np.array(list(sim.circuit.get_target('Excitatory'))), gids)) gids_inh = np.random.permutation(np.intersect1d(np.array(list(sim.circuit.get_target('Inhibitory'))), gids)) # bcs = bcs_0 names = ['MVR', 'det_syns'] fig, axs = plt.subplots(len(bcs), 2, figsize=(14, 14)) for i, bc in enumerate(bcs): print bc sim = bluepy.Simulation(bc) ax = axs[i, 0] spikes = bluepy.Simulation(bc).v2.reports['spikes'] df = spikes.data(t_start=1000.0) gids_spiking = np.abs(np.array(df.axes[0]) - gids.max()) times = np.array(df) ax.vlines(times, gids_spiking, gids_spiking + 200, rasterized=True, lw=0.3) ax2 = ax.twinx() ax2.hist(times, bins=np.linspace(1000, 2000, 101), histtype='step', weights=np.zeros(times.size) + (1000.0/10.0)/gids.size) ax2.set_ylabel('FR (Hz)') # ax2.set_ylim([0, 3]) # ax2.set_yticks([0, 1, 2, 3]) ax.set_xlabel('t (ms)') ax.set_ylabel('Neurons') ax.set_title('variance in percent: %s' % variances[i]) plt.tight_layout() plt.savefig('figures/variance_raster.pdf', dpi=300)
36.64
161
0.686681
import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt plt.rcParams['pdf.fonttype'] = 42 import bluepy variances = ['0p001', '0p01', '0p05', '0p1', '0p5', '1p0', '1p5', '2p0', '10p0'] bcs = ['/gpfs/bbp.cscs.ch/project/proj9/simulations/nolte/variability/spontaneous/base_seeds_abcd_stim/seed170/variance%s/BlueConfig' % s for s in variances[1:]] bcs = ['/gpfs/bbp.cscs.ch/project/proj9/simulations/nolte/variability/spontaneous/base_seeds_abcd/seed170/BlueConfig'] + bcs # bcs = ['/gpfs/bbp.cscs.ch/project/proj9/simulations/nolte/ei-balance/' \ # 'scan_layer5/Ca%s/BlueConfig' % s for s in cas] sim = bluepy.Simulation(bcs[0]) gids = np.array(list(sim.get_circuit_target())) gids_exc = np.random.permutation(np.intersect1d(np.array(list(sim.circuit.get_target('Excitatory'))), gids)) gids_inh = np.random.permutation(np.intersect1d(np.array(list(sim.circuit.get_target('Inhibitory'))), gids)) # bcs = bcs_0 names = ['MVR', 'det_syns'] fig, axs = plt.subplots(len(bcs), 2, figsize=(14, 14)) for i, bc in enumerate(bcs): print bc sim = bluepy.Simulation(bc) ax = axs[i, 0] spikes = bluepy.Simulation(bc).v2.reports['spikes'] df = spikes.data(t_start=1000.0) gids_spiking = np.abs(np.array(df.axes[0]) - gids.max()) times = np.array(df) ax.vlines(times, gids_spiking, gids_spiking + 200, rasterized=True, lw=0.3) ax2 = ax.twinx() ax2.hist(times, bins=np.linspace(1000, 2000, 101), histtype='step', weights=np.zeros(times.size) + (1000.0/10.0)/gids.size) ax2.set_ylabel('FR (Hz)') # ax2.set_ylim([0, 3]) # ax2.set_yticks([0, 1, 2, 3]) ax.set_xlabel('t (ms)') ax.set_ylabel('Neurons') ax.set_title('variance in percent: %s' % variances[i]) plt.tight_layout() plt.savefig('figures/variance_raster.pdf', dpi=300)
0
0
0
0
0
0
0
0
0
761606c02fc534ca8cbdc3d2fa43d7330287a1ad
5,312
py
Python
opengenomebrowser_tools/init_database.py
opengenomebrowser/opengenomebrowser-tools
b6ef2340b2fd67a61373d1d8a0f3ef71cc892d1e
[ "MIT" ]
null
null
null
opengenomebrowser_tools/init_database.py
opengenomebrowser/opengenomebrowser-tools
b6ef2340b2fd67a61373d1d8a0f3ef71cc892d1e
[ "MIT" ]
null
null
null
opengenomebrowser_tools/init_database.py
opengenomebrowser/opengenomebrowser-tools
b6ef2340b2fd67a61373d1d8a0f3ef71cc892d1e
[ "MIT" ]
null
null
null
import os import json import shutil from .utils import PACKAGE_ROOT from . import __folder_structure_version__ def init_database(database_dir: str = None) -> None: """ Creates a basic OpenGenomeBrowser folders structure. Result: database organisms annotations.json annotation-descriptions SL.tsv KO.tsv KR.tsv EC.tsv GO.tsv orthologs pathway-maps type_dictionary.json svg :param database_dir: Path to the root of the OpenGenomeBrowser folder structure. (Will contain 'organisms' folder.) """ if database_dir is None: assert 'GENOMIC_DATABASE' in os.environ, f'Cannot find the database. Please set --database_dir or environment variable GENOMIC_DATABASE' database_dir = os.environ['GENOMIC_DATABASE'] assert os.path.isdir(os.path.dirname(database_dir)), f'Parent dir of {database_dir=} does not exist!' assert not os.path.exists(database_dir), f'Error: {database_dir=} already exist!' # make main dir os.makedirs(database_dir) # set version with open(f'{database_dir}/version.json', 'w') as f: json.dump({'folder_structure_version': __folder_structure_version__}, f, indent=4) # make organisms dir (empty) os.makedirs(f'{database_dir}/organisms') # make orthologs dir (empty) os.makedirs(f'{database_dir}/orthologs') # make pathway maps dir and content os.makedirs(f'{database_dir}/pathway-maps') os.makedirs(f'{database_dir}/pathway-maps/svg') with open(f'{database_dir}/pathway-maps/type_dictionary.json', 'w') as f: f.write('{}') # Create annotations.json shutil.copy(src=f'{PACKAGE_ROOT}/data/annotations.json', dst=f'{database_dir}/annotations.json') # download annotation descriptions annotation_descriptions_dir = f'{database_dir}/annotation-descriptions' os.makedirs(annotation_descriptions_dir) download_sl_data(out=f'{annotation_descriptions_dir}/SL.tsv') download_kegg_data(src='rn', out=f'{annotation_descriptions_dir}/KR.tsv', remove_prefix='rn:') download_kegg_data(src='ko', out=f'{annotation_descriptions_dir}/KG.tsv', remove_prefix='ko:') download_kegg_data(src='enzyme', out=f'{annotation_descriptions_dir}/EC.tsv', remove_prefix='ec:', add_prefix='EC:') download_go_data(out=f'{annotation_descriptions_dir}/GO.tsv') if __name__ == '__main__': main()
35.413333
144
0.650414
import os import json import shutil from urllib import request from .utils import PACKAGE_ROOT from . import __folder_structure_version__ def download_go_data(out: str) -> None: source_url = 'http://purl.obolibrary.org/obo/go.obo' print(f'Converting {source_url} -> {out}') def go_generator(io) -> [str]: go_entry = [] line = io.readline() while line: if line == b'[Term]\n': yield go_entry go_entry.clear() go_entry.append(line.decode('utf-8')) line = io.readline() yield go_entry def get_name(entry: list) -> str: for line in entry: if line.startswith('name: '): return line.rstrip()[6:] raise TypeError(F'The go.obo file seems to have a wrong format! broken entry: {entry}') def get_go(entry: list) -> str: entry = entry[1] assert entry.startswith('id: GO:') and len(entry) == 15, f'Bad entry in go.obo: {entry}, len={len(entry)}' assert entry[7:14].isnumeric() return entry[4:14] with request.urlopen(source_url) as source_handle, open(out, 'w') as target_handle: gos = go_generator(io=source_handle) # skip first entry file_head = next(gos) assert not file_head[0].startswith('[Term]'), F'The go.obo file seems to have a wrong format! file_head looks wrong: {file_head}' # save regular entries to file for entry in gos: target_handle.write(F'{get_go(entry)}\t{get_name(entry)}\n') def download_kegg_data(src: str, out: str, remove_prefix: str = '', add_prefix: str = '') -> None: source_url = f'http://rest.kegg.jp/list/{src}' print(f'Converting {source_url} -> {out}') with request.urlopen(source_url) as source_handle, open(out, 'w') as target_handle: for line in source_handle: target_handle.write(f'{add_prefix}{line.decode("utf-8").removeprefix(remove_prefix)}') def download_sl_data(out: str) -> None: source_url = 'https://www.uniprot.org/locations/?query=*&format=tab&force=true&columns=id' print(f'Converting {source_url} -> {out}') error_msg = 'UniProt must have changed its format. Please contact the developer. error={error}' with request.urlopen(source_url) as source_handle, open(out, 'w') as target_handle: first_line = source_handle.readline().decode('utf-8') assert first_line == 'Subcellular location ID\tDescription\tCategory\tAlias\n', error_msg.format(error=first_line) for line in source_handle: line = line.decode('utf-8').strip().split('\t') assert len(line) == 4, error_msg.format(error=f'{len(line)=}; {line=}') sl, description, type, location = line target_handle.write(f'{sl}\t{location} ({description})\n') def init_database(database_dir: str = None) -> None: """ Creates a basic OpenGenomeBrowser folders structure. Result: database ├── organisms ├── annotations.json ├── annotation-descriptions │ ├── SL.tsv │ ├── KO.tsv │ ├── KR.tsv │ ├── EC.tsv │ └── GO.tsv ├── orthologs └── pathway-maps ├── type_dictionary.json └── svg :param database_dir: Path to the root of the OpenGenomeBrowser folder structure. (Will contain 'organisms' folder.) """ if database_dir is None: assert 'GENOMIC_DATABASE' in os.environ, f'Cannot find the database. Please set --database_dir or environment variable GENOMIC_DATABASE' database_dir = os.environ['GENOMIC_DATABASE'] assert os.path.isdir(os.path.dirname(database_dir)), f'Parent dir of {database_dir=} does not exist!' assert not os.path.exists(database_dir), f'Error: {database_dir=} already exist!' # make main dir os.makedirs(database_dir) # set version with open(f'{database_dir}/version.json', 'w') as f: json.dump({'folder_structure_version': __folder_structure_version__}, f, indent=4) # make organisms dir (empty) os.makedirs(f'{database_dir}/organisms') # make orthologs dir (empty) os.makedirs(f'{database_dir}/orthologs') # make pathway maps dir and content os.makedirs(f'{database_dir}/pathway-maps') os.makedirs(f'{database_dir}/pathway-maps/svg') with open(f'{database_dir}/pathway-maps/type_dictionary.json', 'w') as f: f.write('{}') # Create annotations.json shutil.copy(src=f'{PACKAGE_ROOT}/data/annotations.json', dst=f'{database_dir}/annotations.json') # download annotation descriptions annotation_descriptions_dir = f'{database_dir}/annotation-descriptions' os.makedirs(annotation_descriptions_dir) download_sl_data(out=f'{annotation_descriptions_dir}/SL.tsv') download_kegg_data(src='rn', out=f'{annotation_descriptions_dir}/KR.tsv', remove_prefix='rn:') download_kegg_data(src='ko', out=f'{annotation_descriptions_dir}/KG.tsv', remove_prefix='ko:') download_kegg_data(src='enzyme', out=f'{annotation_descriptions_dir}/EC.tsv', remove_prefix='ec:', add_prefix='EC:') download_go_data(out=f'{annotation_descriptions_dir}/GO.tsv') def main(): import fire fire.Fire(init_database) if __name__ == '__main__': main()
123
0
0
0
1,396
1,274
0
5
114
53ba41eb81896191d5d26dcb15844fd97e74a3e7
6,272
py
Python
frictionless/file.py
augusto-herrmann/frictionless-py
b4ff35f064141a2c04882edb592666ca6b066776
[ "MIT" ]
1
2021-11-08T22:29:30.000Z
2021-11-08T22:29:30.000Z
frictionless/file.py
augusto-herrmann/frictionless-py
b4ff35f064141a2c04882edb592666ca6b066776
[ "MIT" ]
null
null
null
frictionless/file.py
augusto-herrmann/frictionless-py
b4ff35f064141a2c04882edb592666ca6b066776
[ "MIT" ]
null
null
null
# NOTE: # For better detection we can add an argument allowing metadata reading # Exact set of file types needs to be reviewed
30.595122
87
0.557398
import os import glob from pathlib import Path from .helpers import cached_property from . import helpers from . import config # NOTE: # For better detection we can add an argument allowing metadata reading # Exact set of file types needs to be reviewed class File: """File representation""" def __init__(self, source, *, basepath="", innerpath=None): # Handle pathlib if isinstance(source, Path): source = str(source) # Set attributes self.__source = source self.__basepath = basepath self.__innerpath = innerpath # Detect attributes self.__detect() @cached_property def path(self): return self.__path @cached_property def data(self): return self.__data @cached_property def type(self): return self.__type @cached_property def name(self): return self.__name @cached_property def scheme(self): return self.__scheme @cached_property def format(self): return self.__format @cached_property def innerpath(self): return self.__innerpath @cached_property def compression(self): return self.__compression @cached_property def memory(self): return self.__memory @cached_property def remote(self): return self.__remote @cached_property def multipart(self): return self.__multipart @cached_property def expandable(self): return self.__expandable @cached_property def basepath(self): return self.__basepath @cached_property def normpath(self): return self.__normpath @cached_property def fullpath(self): return self.__fullpath # Detect def __detect(self): source = self.__source # Detect path/data path = None data = source if isinstance(source, str): path = source data = None elif isinstance(source, list) and source and isinstance(source[0], str): path = source data = None # Detect memory/remote/expandable/multipart memory = path is None remote = helpers.is_remote_path(self.__basepath or path) expandable = not memory and helpers.is_expandable_path(path, self.__basepath) multipart = not memory and (isinstance(path, list) or expandable) # Detect fullpath normpath = path fullpath = path if not memory: if expandable: normpath = [] fullpath = [] pattern = os.path.join(self.__basepath, path) pattern = f"{pattern}/*" if os.path.isdir(pattern) else pattern options = {"recursive": True} if "**" in pattern else {} for part in sorted(glob.glob(pattern, **options)): normpath.append(os.path.relpath(part, self.__basepath)) fullpath.append(os.path.relpath(part, "")) if not fullpath: expandable = False multipart = False fullpath = path elif multipart: fullpath = [] for part in path: part = helpers.join_path(self.__basepath, part) fullpath.append(part) else: # string path fullpath = helpers.join_path(self.__basepath, path) # Detect name name = "memory" if not memory: names = [] for part in fullpath if multipart else [fullpath]: name = os.path.splitext(os.path.basename(part))[0] names.append(name) name = os.path.commonprefix(names) name = helpers.slugify(name, regex_pattern=r"[^-a-z0-9._/]") name = name or "name" # Detect type type = "table" if not multipart: if memory and isinstance(data, dict): type = "resource" if data.get("fields") is not None: type = "schema" elif data.get("resources") is not None: type = "package" elif data.get("tasks") is not None: type = "inquiry" elif data.get("steps") is not None: type = "pipeline" elif not memory and path.endswith((".json", ".yaml", ".yml")): type = "resource" if path.endswith(("schema.json", "schema.yaml", "schema.yml")): type = "schema" elif path.endswith(("package.json", "package.yaml", "package.yml")): type = "package" elif path.endswith(("inquiry.json", "inquiry.yaml", "inquiry.yml")): type = "inquiry" elif path.endswith(("pipeline.json", "pipeline.yaml", "pipeline.yml")): type = "pipeline" # Detect scheme/format/innerpath/compression scheme = "" format = "" compression = "" innerpath = "" detection_path = fullpath[0] if multipart else fullpath if not memory: scheme, format = helpers.parse_scheme_and_format(detection_path) if format in config.COMPRESSION_FORMATS: if not multipart: compression = format detection_path = detection_path[: -len(format) - 1] if self.__innerpath: detection_path = os.path.join(detection_path, self.__innerpath) scheme, format = helpers.parse_scheme_and_format(detection_path) if format: name = os.path.splitext(name)[0] # Set attributes self.__path = path self.__data = data self.__name = name self.__type = type self.__scheme = scheme self.__format = format self.__innerpath = innerpath self.__compression = compression self.__memory = memory self.__remote = remote self.__multipart = multipart self.__expandable = expandable self.__normpath = normpath self.__fullpath = fullpath
0
716
0
5,276
0
0
0
-5
155
bc521fe8e156c2bea30c143fc4f2a1b5f920fe18
4,919
py
Python
data/parsers/spain.py
hdsheena/covid19_scenarios
ea67a75a99c20b0948ef6d377bc6cfbec6e670b5
[ "MIT" ]
1,550
2020-03-10T13:18:53.000Z
2022-03-29T13:48:11.000Z
data/parsers/spain.py
hdsheena/covid19_scenarios
ea67a75a99c20b0948ef6d377bc6cfbec6e670b5
[ "MIT" ]
835
2020-03-09T21:52:19.000Z
2022-02-02T08:06:21.000Z
data/parsers/spain.py
hdsheena/covid19_scenarios
ea67a75a99c20b0948ef6d377bc6cfbec6e670b5
[ "MIT" ]
444
2020-03-13T03:24:13.000Z
2021-11-15T19:08:53.000Z
# ------------------------------------------------------------------------ # Globals deaths_URL = "https://raw.githubusercontent.com/datadista/datasets/master/COVID%2019/ccaa_covid19_fallecidos.csv" cases_URL = "https://raw.githubusercontent.com/datadista/datasets/master/COVID%2019/ccaa_covid19_casos.csv" hospitalized_URL = "https://raw.githubusercontent.com/datadista/datasets/master/COVID%2019/ccaa_covid19_hospitalizados.csv" icu_URL = "https://raw.githubusercontent.com/datadista/datasets/master/COVID%2019/ccaa_covid19_uci.csv" recovered_URL = "https://raw.githubusercontent.com/datadista/datasets/master/COVID%2019/ccaa_covid19_altas.csv" cols = ['time', 'cases', 'deaths', 'hospitalized', 'icu', 'recovered'] # ------------------------------------------------------------------------ # Main point of entry
46.847619
143
0.544623
import sys import requests import csv import io from datetime import datetime from collections import defaultdict from .utils import store_data, stoi # ------------------------------------------------------------------------ # Globals deaths_URL = "https://raw.githubusercontent.com/datadista/datasets/master/COVID%2019/ccaa_covid19_fallecidos.csv" cases_URL = "https://raw.githubusercontent.com/datadista/datasets/master/COVID%2019/ccaa_covid19_casos.csv" hospitalized_URL = "https://raw.githubusercontent.com/datadista/datasets/master/COVID%2019/ccaa_covid19_hospitalizados.csv" icu_URL = "https://raw.githubusercontent.com/datadista/datasets/master/COVID%2019/ccaa_covid19_uci.csv" recovered_URL = "https://raw.githubusercontent.com/datadista/datasets/master/COVID%2019/ccaa_covid19_altas.csv" cols = ['time', 'cases', 'deaths', 'hospitalized', 'icu', 'recovered'] # ------------------------------------------------------------------------ # Main point of entry def parse(): # read individual files into dicts of dicts by region deaths, cases, hospitalized, icu, recovered = defaultdict(dict), defaultdict(dict), defaultdict(dict), defaultdict(dict), defaultdict(dict) for d, URL in [(deaths, deaths_URL), (cases, cases_URL), (hospitalized, hospitalized_URL), (icu, icu_URL), (recovered, recovered_URL)]: r = requests.get(URL) if not r.ok: print(f"Failed to fetch {URL}", file=sys.stderr) exit(1) r.close() fd = io.StringIO(r.text) rdr = csv.reader(fd) hdr = next(rdr) dates = [x for x in hdr[2:]] for row in rdr: region = row[1] for val, date in zip(row[2:], dates): d[region][date] = stoi(val) # combine different data into one dict per region and day region_data = defaultdict(lambda: defaultdict(dict)) for field, data in ('deaths', deaths), ('cases', cases), ('hospitalized', hospitalized), ('icu', icu), ('recovered', recovered): for region, d in data.items(): for date in d: region_data[region][date][field] = d[date] # convert dict of dicts into dict of lists regions = {} for region, d in region_data.items(): dps = sorted(d.items()) regions['-'.join(['ESP',region])] = [[x[0], x[1].get("cases", None), x[1].get("deaths",None), x[1].get("hospitalized",None), x[1].get("icu", None), x[1].get("recovered", None)] for x in dps] # Delete incorrect data, see https://github.com/neherlab/covid19_scenarios/issues/595 for r in regions: if r == 'ESP-Madrid': for d in regions[r]: stop = datetime.strptime('2020-04-26', '%Y-%m-%d') if datetime.strptime(d[cols.index('time')], '%Y-%m-%d') >= stop: d[cols.index('hospitalized')] = None d[cols.index('icu')] = None elif r == 'ESP-Galicia': for d in regions[r]: d[cols.index('hospitalized')] = None elif r == 'ESP-Castilla-La Mancha': for d in regions[r]: stop = datetime.strptime('2020-04-12', '%Y-%m-%d') if datetime.strptime(d[cols.index('time')], '%Y-%m-%d') >= stop: d[cols.index('hospitalized')] = None d[cols.index('icu')] = None elif r == 'SP-Castilla y León': for d in regions[r]: stopHosp = datetime.strptime('2020-04-07', '%Y-%m-%d') stopICU = datetime.strptime('2020-04-17', '%Y-%m-%d') if datetime.strptime(d[cols.index('time')], '%Y-%m-%d') >= stopHosp: d[cols.index('hospitalized')] = None if datetime.strptime(d[cols.index('time')], '%Y-%m-%d') >= stopICU: d[cols.index('icu')] = None elif r == 'ESP-C. Valenciana': for d in regions[r]: stop = datetime.strptime('2020-04-09', '%Y-%m-%d') if datetime.strptime(d[cols.index('time')], '%Y-%m-%d') >= stop: d[cols.index('hospitalized')] = None d[cols.index('icu')] = None else: # none of the data is current, it is cumulative. We delete it for now for d in regions[r]: d[cols.index('hospitalized')] = None d[cols.index('icu')] = None # For totals, we actually only use the recovered data in the end, as hosp+icu are None, and cases and deaths are taken from ecdc data try: regions['Spain'] = regions['ESP-Total'] del regions['ESP-Total'] except: print(" /!\ Warning: totals don't exist for Spain") store_data(regions, 'spain', cols)
2
0
0
0
0
3,901
0
-4
178
a104266d8b0c9acf1fa4b9cf1a58128f80fb8476
6,749
py
Python
src/pymor/discretizers/advection.py
JuliaBru/pymor
46343b527267213f4279ea36f208b542ab291c4e
[ "Unlicense" ]
null
null
null
src/pymor/discretizers/advection.py
JuliaBru/pymor
46343b527267213f4279ea36f208b542ab291c4e
[ "Unlicense" ]
null
null
null
src/pymor/discretizers/advection.py
JuliaBru/pymor
46343b527267213f4279ea36f208b542ab291c4e
[ "Unlicense" ]
null
null
null
# This file is part of the pyMOR project (http://www.pymor.org). # Copyright 2013-2016 pyMOR developers and contributors. All rights reserved. # License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause) import numpy as np from pymor.algorithms.timestepping import ExplicitEulerTimeStepper from pymor.analyticalproblems.advection import InstationaryAdvectionProblem from pymor.discretizations.basic import InstationaryDiscretization from pymor.domaindiscretizers.default import discretize_domain_default from pymor.gui.qt import PatchVisualizer, Matplotlib1DVisualizer from pymor.operators.numpy import NumpyGenericOperator from pymor.operators.fv import (nonlinear_advection_lax_friedrichs_operator, nonlinear_advection_engquist_osher_operator, nonlinear_advection_simplified_engquist_osher_operator, L2Product, L2ProductFunctional) from pymor.vectorarrays.numpy import NumpyVectorArray def discretize_nonlinear_instationary_advection_fv(analytical_problem, diameter=None, nt=100, num_flux='lax_friedrichs', lxf_lambda=1., eo_gausspoints=5, eo_intervals=1, num_values=None, domain_discretizer=None, grid=None, boundary_info=None): """Discretizes an |InstationaryAdvectionProblem| using the finite volume method. Explicit Euler time-stepping is used for time discretization. Parameters ---------- analytical_problem The |InstationaryAdvectionProblem| to discretize. diameter If not `None`, `diameter` is passed as an argument to the `domain_discretizer`. nt The number of time steps. num_flux The numerical flux to use in the finite volume formulation. Allowed values are `'lax_friedrichs'`, `'engquist_osher'`, `'simplified_engquist_osher'` (see :mod:`pymor.operators.fv`). lxf_lambda The stabilization parameter for the Lax-Friedrichs numerical flux (ignored, if different flux is chosen). eo_gausspoints Number of Gauss points for the Engquist-Osher numerical flux (ignored, if different flux is chosen). eo_intervals Number of sub-intervals to use for integration when using Engquist-Osher numerical flux (ignored, if different flux is chosen). num_values The number of returned vectors of the solution trajectory. If `None`, each intermediate vector that is calculated is returned. domain_discretizer Discretizer to be used for discretizing the analytical domain. This has to be a function `domain_discretizer(domain_description, diameter)`. If `None`, |discretize_domain_default| is used. grid Instead of using a domain discretizer, the |Grid| can also be passed directly using this parameter. boundary_info A |BoundaryInfo| specifying the boundary types of the grid boundary entities. Must be provided if `grid` is specified. Returns ------- discretization The |Discretization| that has been generated. data Dictionary with the following entries: :grid: The generated |Grid|. :boundary_info: The generated |BoundaryInfo|. """ assert isinstance(analytical_problem, InstationaryAdvectionProblem) assert grid is None or boundary_info is not None assert boundary_info is None or grid is not None assert grid is None or domain_discretizer is None assert num_flux in ('lax_friedrichs', 'engquist_osher', 'simplified_engquist_osher') if grid is None: domain_discretizer = domain_discretizer or discretize_domain_default if diameter is None: grid, boundary_info = domain_discretizer(analytical_problem.domain) else: grid, boundary_info = domain_discretizer(analytical_problem.domain, diameter=diameter) p = analytical_problem if num_flux == 'lax_friedrichs': L = nonlinear_advection_lax_friedrichs_operator(grid, boundary_info, p.flux_function, dirichlet_data=p.dirichlet_data, lxf_lambda=lxf_lambda) elif num_flux == 'engquist_osher': L = nonlinear_advection_engquist_osher_operator(grid, boundary_info, p.flux_function, p.flux_function_derivative, gausspoints=eo_gausspoints, intervals=eo_intervals, dirichlet_data=p.dirichlet_data) else: L = nonlinear_advection_simplified_engquist_osher_operator(grid, boundary_info, p.flux_function, p.flux_function_derivative, dirichlet_data=p.dirichlet_data) F = None if p.rhs is None else L2ProductFunctional(grid, p.rhs) if p.initial_data.parametric: I = NumpyGenericOperator(initial_projection, dim_range=grid.size(0), linear=True, parameter_type=p.initial_data.parameter_type) else: I = p.initial_data.evaluate(grid.quadrature_points(0, order=2)).squeeze() I = np.sum(I * grid.reference_element.quadrature(order=2)[1], axis=1) * (1. / grid.reference_element.volume) I = NumpyVectorArray(I, copy=False) products = {'l2': L2Product(grid, boundary_info)} if grid.dim == 2: visualizer = PatchVisualizer(grid=grid, bounding_box=grid.bounding_box(), codim=0) elif grid.dim == 1: visualizer = Matplotlib1DVisualizer(grid, codim=0) else: visualizer = None parameter_space = p.parameter_space if hasattr(p, 'parameter_space') else None time_stepper = ExplicitEulerTimeStepper(nt=nt) discretization = InstationaryDiscretization(operator=L, rhs=F, initial_data=I, T=p.T, products=products, time_stepper=time_stepper, parameter_space=parameter_space, visualizer=visualizer, num_values=num_values, name='{}_FV'.format(p.name)) return discretization, {'grid': grid, 'boundary_info': boundary_info}
50.365672
120
0.659061
# This file is part of the pyMOR project (http://www.pymor.org). # Copyright 2013-2016 pyMOR developers and contributors. All rights reserved. # License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause) import numpy as np from pymor.algorithms.timestepping import ExplicitEulerTimeStepper from pymor.analyticalproblems.advection import InstationaryAdvectionProblem from pymor.discretizations.basic import InstationaryDiscretization from pymor.domaindiscretizers.default import discretize_domain_default from pymor.gui.qt import PatchVisualizer, Matplotlib1DVisualizer from pymor.operators.numpy import NumpyGenericOperator from pymor.operators.fv import (nonlinear_advection_lax_friedrichs_operator, nonlinear_advection_engquist_osher_operator, nonlinear_advection_simplified_engquist_osher_operator, L2Product, L2ProductFunctional) from pymor.vectorarrays.numpy import NumpyVectorArray def discretize_nonlinear_instationary_advection_fv(analytical_problem, diameter=None, nt=100, num_flux='lax_friedrichs', lxf_lambda=1., eo_gausspoints=5, eo_intervals=1, num_values=None, domain_discretizer=None, grid=None, boundary_info=None): """Discretizes an |InstationaryAdvectionProblem| using the finite volume method. Explicit Euler time-stepping is used for time discretization. Parameters ---------- analytical_problem The |InstationaryAdvectionProblem| to discretize. diameter If not `None`, `diameter` is passed as an argument to the `domain_discretizer`. nt The number of time steps. num_flux The numerical flux to use in the finite volume formulation. Allowed values are `'lax_friedrichs'`, `'engquist_osher'`, `'simplified_engquist_osher'` (see :mod:`pymor.operators.fv`). lxf_lambda The stabilization parameter for the Lax-Friedrichs numerical flux (ignored, if different flux is chosen). eo_gausspoints Number of Gauss points for the Engquist-Osher numerical flux (ignored, if different flux is chosen). eo_intervals Number of sub-intervals to use for integration when using Engquist-Osher numerical flux (ignored, if different flux is chosen). num_values The number of returned vectors of the solution trajectory. If `None`, each intermediate vector that is calculated is returned. domain_discretizer Discretizer to be used for discretizing the analytical domain. This has to be a function `domain_discretizer(domain_description, diameter)`. If `None`, |discretize_domain_default| is used. grid Instead of using a domain discretizer, the |Grid| can also be passed directly using this parameter. boundary_info A |BoundaryInfo| specifying the boundary types of the grid boundary entities. Must be provided if `grid` is specified. Returns ------- discretization The |Discretization| that has been generated. data Dictionary with the following entries: :grid: The generated |Grid|. :boundary_info: The generated |BoundaryInfo|. """ assert isinstance(analytical_problem, InstationaryAdvectionProblem) assert grid is None or boundary_info is not None assert boundary_info is None or grid is not None assert grid is None or domain_discretizer is None assert num_flux in ('lax_friedrichs', 'engquist_osher', 'simplified_engquist_osher') if grid is None: domain_discretizer = domain_discretizer or discretize_domain_default if diameter is None: grid, boundary_info = domain_discretizer(analytical_problem.domain) else: grid, boundary_info = domain_discretizer(analytical_problem.domain, diameter=diameter) p = analytical_problem if num_flux == 'lax_friedrichs': L = nonlinear_advection_lax_friedrichs_operator(grid, boundary_info, p.flux_function, dirichlet_data=p.dirichlet_data, lxf_lambda=lxf_lambda) elif num_flux == 'engquist_osher': L = nonlinear_advection_engquist_osher_operator(grid, boundary_info, p.flux_function, p.flux_function_derivative, gausspoints=eo_gausspoints, intervals=eo_intervals, dirichlet_data=p.dirichlet_data) else: L = nonlinear_advection_simplified_engquist_osher_operator(grid, boundary_info, p.flux_function, p.flux_function_derivative, dirichlet_data=p.dirichlet_data) F = None if p.rhs is None else L2ProductFunctional(grid, p.rhs) if p.initial_data.parametric: def initial_projection(U, mu): I = p.initial_data.evaluate(grid.quadrature_points(0, order=2), mu).squeeze() I = np.sum(I * grid.reference_element.quadrature(order=2)[1], axis=1) * (1. / grid.reference_element.volume) I = NumpyVectorArray(I, copy=False) return I.lincomb(U).data I = NumpyGenericOperator(initial_projection, dim_range=grid.size(0), linear=True, parameter_type=p.initial_data.parameter_type) else: I = p.initial_data.evaluate(grid.quadrature_points(0, order=2)).squeeze() I = np.sum(I * grid.reference_element.quadrature(order=2)[1], axis=1) * (1. / grid.reference_element.volume) I = NumpyVectorArray(I, copy=False) products = {'l2': L2Product(grid, boundary_info)} if grid.dim == 2: visualizer = PatchVisualizer(grid=grid, bounding_box=grid.bounding_box(), codim=0) elif grid.dim == 1: visualizer = Matplotlib1DVisualizer(grid, codim=0) else: visualizer = None parameter_space = p.parameter_space if hasattr(p, 'parameter_space') else None time_stepper = ExplicitEulerTimeStepper(nt=nt) discretization = InstationaryDiscretization(operator=L, rhs=F, initial_data=I, T=p.T, products=products, time_stepper=time_stepper, parameter_space=parameter_space, visualizer=visualizer, num_values=num_values, name='{}_FV'.format(p.name)) return discretization, {'grid': grid, 'boundary_info': boundary_info}
0
0
0
0
0
305
0
96
30
076f222cfcfc72e18413b42acd4e53e8930fdab1
2,403
py
Python
misc-code/adventure_items.py
cctechwiz-teaching/python-code-camp
1453bebe44d66f27558eb6204fbf4d5f08cc756e
[ "MIT" ]
2
2019-06-22T17:13:16.000Z
2019-06-22T17:13:17.000Z
misc-code/adventure_items.py
cctechwiz-teaching/python-code-camp
1453bebe44d66f27558eb6204fbf4d5f08cc756e
[ "MIT" ]
null
null
null
misc-code/adventure_items.py
cctechwiz-teaching/python-code-camp
1453bebe44d66f27558eb6204fbf4d5f08cc756e
[ "MIT" ]
null
null
null
""" object_adventure.py A text adventure with objects you can pick up and put down. """ # data setup rooms = { 'empty': {'name': 'an empty room', 'east': 'bedroom', 'north': 'temple', 'contents': [], 'text': 'The stone floors and walls are cold and damp.'}, 'temple': {'name': 'a small temple', 'east': 'torture', 'south': 'empty', 'contents': ['bench', 'bench', 'bench', 'statue'], 'text': 'This seems to be a place of worship and deep contemplation.'}, 'torture': {'name': 'a torture chamber', 'west': 'temple', 'south': 'bedroom', 'contents': ['chains', 'thumbscrews'], 'text': 'There is a rack and an iron maiden against the wall\naand some dark stains on the floor.'}, 'bedroom': {'name': 'a bedroom', 'north': 'torture', 'west': 'empty', 'contents': ['sheets', 'bed'], 'text': 'This is clearly a bedroom, but no one has slept\nhere in a long time.'} } directions = ['north', 'south', 'east', 'west'] current_room = rooms['empty'] carrying = [] # game loop while True: # display current location print() print('You are in {}.'.format(current_room['name'])) print(current_room['text']) # display movable objects if current_room['contents']: print('In the room are: {}'.format(', '.join(current_room['contents']))) # get user input command = input('\nWhat do you do? ').strip() # movement if command in directions: if command in current_room: current_room = rooms[current_room[command]] else: # bad movement print("You can't go that way.") # quit game elif command.lower() in ('q', 'quit'): break # gather objects elif command.lower().split()[0] == 'get': item = command.lower().split()[1] if item in current_room['contents']: current_room['contents'].remove(item) carrying.append(item) else: print("I don't see that here.") # get rid of objects elif command.lower().split()[0] == 'drop': item = command.lower().split()[1] if item in carrying: current_room['contents'].append(item) carrying.remove(item) else: print("You aren't carrying that.") # bad command else: print("I don't understand that command.")
33.375
108
0.56804
""" object_adventure.py A text adventure with objects you can pick up and put down. """ # data setup rooms = { 'empty': {'name': 'an empty room', 'east': 'bedroom', 'north': 'temple', 'contents': [], 'text': 'The stone floors and walls are cold and damp.'}, 'temple': {'name': 'a small temple', 'east': 'torture', 'south': 'empty', 'contents': ['bench', 'bench', 'bench', 'statue'], 'text': 'This seems to be a place of worship and deep contemplation.'}, 'torture': {'name': 'a torture chamber', 'west': 'temple', 'south': 'bedroom', 'contents': ['chains', 'thumbscrews'], 'text': 'There is a rack and an iron maiden against the wall\naand some dark stains on the floor.'}, 'bedroom': {'name': 'a bedroom', 'north': 'torture', 'west': 'empty', 'contents': ['sheets', 'bed'], 'text': 'This is clearly a bedroom, but no one has slept\nhere in a long time.'} } directions = ['north', 'south', 'east', 'west'] current_room = rooms['empty'] carrying = [] # game loop while True: # display current location print() print('You are in {}.'.format(current_room['name'])) print(current_room['text']) # display movable objects if current_room['contents']: print('In the room are: {}'.format(', '.join(current_room['contents']))) # get user input command = input('\nWhat do you do? ').strip() # movement if command in directions: if command in current_room: current_room = rooms[current_room[command]] else: # bad movement print("You can't go that way.") # quit game elif command.lower() in ('q', 'quit'): break # gather objects elif command.lower().split()[0] == 'get': item = command.lower().split()[1] if item in current_room['contents']: current_room['contents'].remove(item) carrying.append(item) else: print("I don't see that here.") # get rid of objects elif command.lower().split()[0] == 'drop': item = command.lower().split()[1] if item in carrying: current_room['contents'].append(item) carrying.remove(item) else: print("You aren't carrying that.") # bad command else: print("I don't understand that command.")
0
0
0
0
0
0
0
0
0
4b9d26720cda64f817643aa05a92dd1452685e67
17,109
py
Python
python/graphscope/nx/classes/cache.py
lnfjpt/GraphScope
917146f86d8387302a2e1de6963115e7568bf3ee
[ "Apache-2.0" ]
1
2021-12-30T02:55:16.000Z
2021-12-30T02:55:16.000Z
python/graphscope/nx/classes/cache.py
lnfjpt/GraphScope
917146f86d8387302a2e1de6963115e7568bf3ee
[ "Apache-2.0" ]
null
null
null
python/graphscope/nx/classes/cache.py
lnfjpt/GraphScope
917146f86d8387302a2e1de6963115e7568bf3ee
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright 2020 Alibaba Group Holding Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import msgpack import simdjson from graphscope.framework import dag_utils from graphscope.proto import graph_def_pb2 from graphscope.proto import types_pb2 __all__ = ["Cache"] def get_neighbors(graph, n, pred=False): """Get the neighbors of node in graph. Parameters ---------- graph: the graph to query. n: node the node to get neighbors. report_type: the report type of report graph operation, types_pb2.SUCCS_BY_NODE: get the successors of node, types_pb2.PREDS_BY_NODE: get the predecessors of node, """ if graph.graph_type == graph_def_pb2.ARROW_PROPERTY: n = graph._convert_to_label_id_tuple(n) report_t = types_pb2.PREDS_BY_NODE if pred else types_pb2.SUCCS_BY_NODE op = dag_utils.report_graph(graph, report_t, node=simdjson.dumps(n).encode("utf-8")) archive = op.eval() return msgpack.unpackb(archive.get_bytes(), use_list=False) def get_neighbors_attr(graph, n, pred=False): """Get the neighbors attr of node in graph. Parameters ---------- graph: the graph to query. n: node the node to get neighbors. report_type: the report type of report graph operation, types_pb2.SUCC_ATTR_BY_NODE: get the successors attr of node, types_pb2.PRED_ATTR_BY_NODE: get the predecessors attr of node, Returns ------- attr: tuple """ if graph.graph_type == graph_def_pb2.ARROW_PROPERTY: n = graph._convert_to_label_id_tuple(n) report_t = types_pb2.PRED_ATTR_BY_NODE if pred else types_pb2.SUCC_ATTR_BY_NODE op = dag_utils.report_graph(graph, report_t, node=simdjson.dumps(n).encode("utf-8")) archive = op.eval() return simdjson.loads(archive.get_bytes()) def get_node_data(graph, n): """Returns the attribute dictionary of node n. This is identical to `G[n]`. Parameters ---------- n : nodes Returns ------- node_dict : dictionary The node attribute dictionary. Examples -------- >>> G = nx.path_graph(4) # or DiGraph etc >>> G[0] {} Warning: Assigning to `G[n]` is not permitted. But it is safe to assign attributes `G[n]['foo']` >>> G[0]['weight'] = 7 >>> G[0]['weight'] 7 >>> G = nx.path_graph(4) # or DiGraph etc >>> G.get_node_data(0, 1) {} """ if graph.graph_type == graph_def_pb2.ARROW_PROPERTY: n = graph._convert_to_label_id_tuple(n) op = dag_utils.report_graph( graph, types_pb2.NODE_DATA, node=simdjson.dumps(n).encode("utf-8") ) archive = op.eval() return msgpack.loads(archive.get_bytes(), use_list=False)
35.867925
88
0.614004
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright 2020 Alibaba Group Holding Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import concurrent.futures import io from functools import lru_cache import msgpack import simdjson from graphscope.framework import dag_utils from graphscope.nx.utils.misc import clear_mutation_cache from graphscope.proto import graph_def_pb2 from graphscope.proto import types_pb2 __all__ = ["Cache"] class Cache: """A adhoc cache for graphscope.nx Graph. The Cache is consists of two kind of cache: the iteration batch cache for __iter__ and the LRU cache for cache miss. """ def __init__(self, graph): self._graph = graph # the iteration caches for graph data self.node_id_cache = () self.node_attr_cache = () self.succ_cache = () self.succ_attr_cache = () self.pred_cache = () self.pred_attr_cache = () # status for iteration batch cache self._len = 0 self.id2i = {} self.enable_iter_cache = False self.iter_gid = 0 self.iter_pre_gid = 0 self.node_attr_align = False self.succ_align = False self.succ_attr_align = False self.pred_align = False self.pred_attr_align = False # thread pool and promises for iteration batch cache fetch self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=1) self.futures = { "node_id": None, "node_attr": None, "succ": None, "succ_attr": None, "pred": None, "pred_attr": None, } def warmup(self): """Warm up the iteration cache.""" self._len = self._graph.number_of_nodes() if self._len > 1000: # avoid much small graphs to compete thread resource self.enable_iter_cache = True self._async_fetch_node_id_cache(0) self._async_fetch_succ_cache(0) self._async_fetch_node_attr_cache(0) self._async_fetch_succ_attr_cache(0) # LRU Caches @lru_cache(1000000) def get_node_attr(self, n): return get_node_data(self._graph, n) @lru_cache(1000000) def get_successors(self, n): return get_neighbors(self._graph, n) @lru_cache(1000000) def get_succ_attr(self, n): return get_neighbors_attr(self._graph, n) @lru_cache(1000000) def get_predecessors(self, n): return get_neighbors(self._graph, n, pred=True) @lru_cache(1000000) def get_pred_attr(self, n): return get_neighbors_attr(self._graph, n, pred=True) def align_node_attr_cache(self): """Check and align the node attr cache with node id cache""" if self.enable_iter_cache and self.node_attr_align is False: f = self.futures["node_attr"] if f is not None: start_gid, self.node_attr_cache = f.result() if start_gid == self.iter_pre_gid: # align to current node_id_cache if self.iter_gid != self.iter_pre_gid: self._async_fetch_node_attr_cache(self.iter_gid) self.node_attr_align = True else: # not align to current node_id_cache, should fetch again self._async_fetch_node_attr_cache(self.iter_pre_gid) return self.node_attr_align def align_succ_cache(self): """Check and align the succ neighbor cache with node id cache""" if self.enable_iter_cache and self.succ_align is False: f = self.futures["succ"] start_gid, self.succ_cache = f.result() if start_gid == self.iter_pre_gid: if self.iter_gid != self.iter_pre_gid: self._async_fetch_succ_cache(self.iter_gid) self.succ_align = True else: self._async_fetch_succ_cache(self.iter_pre_gid) return self.succ_align def align_succ_attr_cache(self): """Check and align the succ neighbor attr cache with node id cache""" if self.enable_iter_cache and self.succ_attr_align is False: f = self.futures["succ_attr"] if f is not None: start_gid, self.succ_attr_cache = f.result() if start_gid == self.iter_pre_gid: if self.iter_gid != self.iter_pre_gid: self._async_fetch_succ_attr_cache(self.iter_gid) self.succ_attr_align = True else: self._async_fetch_succ_attr_cache(self.iter_pre_gid) return self.succ_attr_align def align_pred_cache(self): """Check and align the pred neighbor cache with node id cache""" if self.enable_iter_cache and self.pred_align is False: if self.futures["pred"] is None: self._async_fetch_pred_cache(self.iter_pre_gid) f = self.futures["pred"] start_gid, self.pred_cache = f.result() if start_gid == self.iter_pre_gid: if self.iter_gid != self.iter_pre_gid: self._async_fetch_pred_cache(self.iter_gid) self.pred_align = True else: print("pred not align", start_gid, self.iter_pre_gid) self._async_fetch_pred_cache(self.iter_pre_gid) return self.pred_align def align_pred_attr_cache(self): """Check and align the pred neighbor attr cache with node id cache""" if self.enable_iter_cache and self.pred_attr_align is False: if self.futures["pred_attr"] is None: self._async_fetch_pred_attr_cache(self.iter_pre_gid) f = self.futures["pred_attr"] start_gid, self.pred_attr_cache = f.result() if start_gid == self.iter_pre_gid: if self.iter_gid != self.iter_pre_gid: self._async_fetch_pred_attr_cache(self.iter_gid) self.pred_attr_align = True else: self._async_fetch_pred_attr_cache(self.iter_pre_gid) return self.pred_attr_align def align_neighbor_cache(self, pred=False): return self.align_pred_cache() if pred else self.align_succ_cache() def align_neighbor_attr_cache(self, pred=True): return self.align_pred_attr_cache() if pred else self.align_succ_attr_cache() @clear_mutation_cache def __contains__(self, key): if self.enable_iter_cache: if len(self.node_id_cache) == 0 and self.futures["node_id"] is not None: self.iter_pre_gid = self.iter_gid self.iter_gid, node_size, self.node_id_cache = self.futures[ "node_id" ].result() self.futures["node_id"] = None if self.iter_gid != self.iter_pre_gid: self._async_fetch_node_id_cache(self.iter_gid) if not self.id2i and self.node_id_cache: # initialize the id to index hash map self.id2i = {k: v for v, k in enumerate(self.node_id_cache)} return key in self.id2i @clear_mutation_cache def __len__(self): return self._len @clear_mutation_cache def __iter__(self): iter_n = 0 while True: if iter_n >= self._len: break if iter_n == 0 and len(self.node_id_cache) > 0: iter_n += len(self.node_id_cache) else: self.iter_pre_gid = self.iter_gid if self.enable_iter_cache: self.iter_gid, node_size, self.node_id_cache = self.futures[ "node_id" ].result() if self.iter_gid != self.iter_pre_gid: self._async_fetch_node_id_cache(self.iter_gid) else: ( self.iter_gid, node_size, self.node_id_cache, ) = self._get_node_id_cache(self.iter_gid) iter_n += node_size self.id2i.clear() self.node_attr_align = False self.succ_align = False self.succ_attr_align = False self.pred_align = False self.pred_attr_align = False yield from self.node_id_cache def shutdown(self): for _, future in self.futures.items(): if future is not None: future.cancel() for _, future in self.futures.items(): if future is not None: try: future.result() except concurrent.futures.CancelledError: pass future = None def clear(self): """Clear batch cache and lru cache, reset the status and warmup again""" if self.enable_iter_cache: self.shutdown() self.enable_iter_cache = False self.iter_gid = 0 self.iter_pre_gid = 0 self.id2i.clear() self.node_id_cache = () self.node_attr_cache = () self.succ_cache = () self.succ_attr_cache = () self.pred_cache = () self.pred_attr_cache = () self.node_attr_align = ( self.succ_align ) = self.succ_attr_align = self.pred_align = self.pred_attr_align = False self.get_node_attr.cache_clear() self.get_successors.cache_clear() self.get_succ_attr.cache_clear() self.get_predecessors.cache_clear() self.get_pred_attr.cache_clear() self.warmup() def clear_node_attr_cache(self): """Clear the node attr cache""" if self.futures["node_attr"] is not None: self.futures["node_attr"].cancel() if self.futures["node_attr"] is not None: try: self.futures["node_attr"].result() except concurrent.futures.CancelledError: pass self.futures["node_attr"] = None self.node_attr_cache = () self.get_node_attr.cache_clear() self.node_attr_align = False def clear_neighbor_attr_cache(self): """Clear the neighbor attr cache""" if self.futures["succ_attr"] is not None: self.futures["succ_attr"].cancel() if self.futures["pred_attr"] is not None: self.futures["pred_attr"].cancel() if self.futures["succ_attr"] is not None: try: self.futures["succ_attr"].result() except concurrent.futures.CancelledError: pass if self.futures["pred_attr"] is not None: try: self.futures["pred_attr"].result() except concurrent.futures.CancelledError: pass self.futures["succ_attr"] = None self.futures["pred_attr"] = None self.succ_attr_cache = () self.pred_attr_cache = () self.get_succ_attr.cache_clear() self.get_pred_attr.cache_clear() self.succ_attr_align = False self.pred_attr_align = False def _async_fetch_node_id_cache(self, gid): self.futures["node_id"] = self.executor.submit(self._get_node_id_cache, gid) def _async_fetch_node_attr_cache(self, gid): self.futures["node_attr"] = self.executor.submit(self._get_node_attr_cache, gid) def _async_fetch_succ_cache(self, gid): self.futures["succ"] = self.executor.submit(self._get_succ_cache, gid) def _async_fetch_pred_cache(self, gid): self.futures["pred"] = self.executor.submit(self._get_pred_cache, gid) def _async_fetch_succ_attr_cache(self, gid): self.futures["succ_attr"] = self.executor.submit(self._get_succ_attr_cache, gid) def _async_fetch_pred_attr_cache(self, gid): self.futures["pred_attr"] = self.executor.submit(self._get_pred_attr_cache, gid) def _get_node_id_cache(self, gid): op = dag_utils.report_graph( self._graph, types_pb2.NODE_ID_CACHE_BY_GID, gid=gid ) archive = op.eval() gid = archive.get_uint64() node_size = archive.get_uint32() fp = io.BytesIO(archive.get_bytes()) node_array = msgpack.load(fp, use_list=False) return gid, node_size, node_array def _get_node_attr_cache(self, gid): op = dag_utils.report_graph( self._graph, types_pb2.NODE_ATTR_CACHE_BY_GID, gid=gid ) archive = op.eval() gid = archive.get_uint64() fp = io.BytesIO(archive.get_bytes()) node_attr_cache = msgpack.load(fp, use_list=False) return gid, node_attr_cache def _get_succ_cache(self, gid): op = dag_utils.report_graph(self._graph, types_pb2.SUCC_BY_GID, gid=gid) archive = op.eval() gid = archive.get_uint64() fp = io.BytesIO(archive.get_bytes()) succ_cache = msgpack.load(fp, use_list=False) return gid, succ_cache def _get_pred_cache(self, gid): op = dag_utils.report_graph(self._graph, types_pb2.PRED_BY_GID, gid=gid) archive = op.eval() gid = archive.get_uint64() fp = io.BytesIO(archive.get_bytes()) pred_cache = msgpack.load(fp, use_list=False) return gid, pred_cache def _get_succ_attr_cache(self, gid): op = dag_utils.report_graph(self._graph, types_pb2.SUCC_ATTR_BY_GID, gid=gid) archive = op.eval() gid = archive.get_uint64() fp = io.BytesIO(archive.get_bytes()) succ_attr_cache = msgpack.load(fp, use_list=False) return gid, succ_attr_cache def _get_pred_attr_cache(self, gid): op = dag_utils.report_graph(self._graph, types_pb2.PRED_ATTR_BY_GID, gid=gid) archive = op.eval() gid = archive.get_uint64() fp = io.BytesIO(archive.get_bytes()) pred_attr_cache = msgpack.load(fp, use_list=False) return gid, pred_attr_cache def get_neighbors(graph, n, pred=False): """Get the neighbors of node in graph. Parameters ---------- graph: the graph to query. n: node the node to get neighbors. report_type: the report type of report graph operation, types_pb2.SUCCS_BY_NODE: get the successors of node, types_pb2.PREDS_BY_NODE: get the predecessors of node, """ if graph.graph_type == graph_def_pb2.ARROW_PROPERTY: n = graph._convert_to_label_id_tuple(n) report_t = types_pb2.PREDS_BY_NODE if pred else types_pb2.SUCCS_BY_NODE op = dag_utils.report_graph(graph, report_t, node=simdjson.dumps(n).encode("utf-8")) archive = op.eval() return msgpack.unpackb(archive.get_bytes(), use_list=False) def get_neighbors_attr(graph, n, pred=False): """Get the neighbors attr of node in graph. Parameters ---------- graph: the graph to query. n: node the node to get neighbors. report_type: the report type of report graph operation, types_pb2.SUCC_ATTR_BY_NODE: get the successors attr of node, types_pb2.PRED_ATTR_BY_NODE: get the predecessors attr of node, Returns ------- attr: tuple """ if graph.graph_type == graph_def_pb2.ARROW_PROPERTY: n = graph._convert_to_label_id_tuple(n) report_t = types_pb2.PRED_ATTR_BY_NODE if pred else types_pb2.SUCC_ATTR_BY_NODE op = dag_utils.report_graph(graph, report_t, node=simdjson.dumps(n).encode("utf-8")) archive = op.eval() return simdjson.loads(archive.get_bytes()) def get_node_data(graph, n): """Returns the attribute dictionary of node n. This is identical to `G[n]`. Parameters ---------- n : nodes Returns ------- node_dict : dictionary The node attribute dictionary. Examples -------- >>> G = nx.path_graph(4) # or DiGraph etc >>> G[0] {} Warning: Assigning to `G[n]` is not permitted. But it is safe to assign attributes `G[n]['foo']` >>> G[0]['weight'] = 7 >>> G[0]['weight'] 7 >>> G = nx.path_graph(4) # or DiGraph etc >>> G.get_node_data(0, 1) {} """ if graph.graph_type == graph_def_pb2.ARROW_PROPERTY: n = graph._convert_to_label_id_tuple(n) op = dag_utils.report_graph( graph, types_pb2.NODE_DATA, node=simdjson.dumps(n).encode("utf-8") ) archive = op.eval() return msgpack.loads(archive.get_bytes(), use_list=False)
0
2,352
0
11,255
0
0
0
38
112
e96b8708dc8be78814c697d042595105e2d873c2
80
py
Python
Getting_Started_With_Raspberry_Pi_Pico/variable/code.py
gamblor21/Adafruit_Learning_System_Guides
f5dab4a758bc82d0bfc3c299683fe89dc093912a
[ "MIT" ]
665
2017-09-27T21:20:14.000Z
2022-03-31T09:09:25.000Z
Getting_Started_With_Raspberry_Pi_Pico/variable/code.py
gamblor21/Adafruit_Learning_System_Guides
f5dab4a758bc82d0bfc3c299683fe89dc093912a
[ "MIT" ]
641
2017-10-03T19:46:37.000Z
2022-03-30T18:28:46.000Z
Getting_Started_With_Raspberry_Pi_Pico/variable/code.py
gamblor21/Adafruit_Learning_System_Guides
f5dab4a758bc82d0bfc3c299683fe89dc093912a
[ "MIT" ]
734
2017-10-02T22:47:38.000Z
2022-03-30T14:03:51.000Z
"""Example of assigning a variable.""" user_name = input("What is your name? ")
26.666667
40
0.6875
"""Example of assigning a variable.""" user_name = input("What is your name? ")
0
0
0
0
0
0
0
0
0
ba26ee36cc7ff86ae625d2c3ea20dd09a7c5df07
10,605
py
Python
generator/verify/verification.py
biarmic/OpenCache
bb9e110e434deb83900de328cc76b63901ba582f
[ "BSD-3-Clause" ]
5
2021-09-15T18:29:49.000Z
2022-03-26T04:41:01.000Z
generator/verify/verification.py
VLSIDA/OpenCache
0e79bf353c68d57dcc49d78178b12fd0b468f19a
[ "BSD-3-Clause" ]
null
null
null
generator/verify/verification.py
VLSIDA/OpenCache
0e79bf353c68d57dcc49d78178b12fd0b468f19a
[ "BSD-3-Clause" ]
null
null
null
# See LICENSE for licensing information. # # Copyright (c) 2021 Regents of the University of California and The Board # of Regents for the Oklahoma Agricultural and Mechanical College # (acting for and on behalf of Oklahoma State University) # All rights reserved. #
37.341549
107
0.587553
# See LICENSE for licensing information. # # Copyright (c) 2021 Regents of the University of California and The Board # of Regents for the Oklahoma Agricultural and Mechanical College # (acting for and on behalf of Oklahoma State University) # All rights reserved. # import os import datetime from shutil import copyfile from subprocess import call, DEVNULL, STDOUT from re import findall from .core import core from .test_bench import test_bench from .test_data import test_data from .sim_cache import sim_cache import debug from globals import OPTS, print_time class verification: """ Class to generate files for verification and verify the design by running EDA tools. """ def __init__(self, cache_config, name): cache_config.set_local_config(self) self.name = name self.core = core() if OPTS.simulate: self.tb = test_bench(cache_config, name) self.sim_cache = sim_cache(cache_config) self.data = test_data(self.sim_cache, cache_config) # Print subprocess outputs on the terminal if verbose debug is enabled self.stdout = None if OPTS.verbose_level >= 2 else DEVNULL self.stderr = None if OPTS.verbose_level >= 2 else STDOUT def verify(self): """ Run the verifier. """ debug.print_raw("Initializing verification...") self.prepare_files() if OPTS.simulate: self.simulate() if OPTS.synthesize: self.synthesize() debug.print_raw("Verification completed.") def simulate(self): """ Save required files and simulate the design by running an EDA tool's simulator. """ debug.info(1, "Initializing simulation...") debug.info(1, "Writing simulation files...") start_time = datetime.datetime.now() # Write the DRAM file dram_path = OPTS.temp_path + "dram.v" debug.info(1, "Verilog (DRAM): Writing to {}".format(dram_path)) self.sim_cache.dram.sim_dram_write(dram_path) # Write the test bench file tb_path = OPTS.temp_path + "test_bench.v" debug.info(1, "Verilog (Test bench): Writing to {}".format(tb_path)) self.tb.test_bench_write(tb_path) # Write the test data file data_path = OPTS.temp_path + "test_data.v" debug.info(1, "Verilog (Test data): Writing to {}".format(data_path)) self.data.generate_data(OPTS.sim_size) self.data.test_data_write(data_path) # Run FuseSoc for simulation debug.info(1, "Running FuseSoC for simulation...") self.run_fusesoc(self.name, self.core.core_name, OPTS.temp_path, True) # Check the result of the simulation self.check_sim_result(OPTS.temp_path, "icarus.log") print_time("Simulation", datetime.datetime.now(), start_time) def synthesize(self): """ Save required files and synthesize the design by running an EDA tool's synthesizer. """ debug.info(1, "Initializing synthesis...") start_time = datetime.datetime.now() # Convert SRAM modules to blackbox debug.info(1, "Converting OpenRAM modules to blackbox...") self.convert_to_blacbox(OPTS.temp_path + OPTS.tag_array_name + ".v") self.convert_to_blacbox(OPTS.temp_path + OPTS.data_array_name + ".v") if OPTS.replacement_policy.has_sram_array(): self.convert_to_blacbox(OPTS.temp_path + OPTS.use_array_name + ".v") # Run FuseSoc for synthesis debug.info(1, "Running FuseSoC for synthesis...") self.run_fusesoc(self.name, self.core.core_name, OPTS.temp_path, False) # Check the result of the synthesis self.check_synth_result(OPTS.temp_path, "yosys.log") print_time("Synthesis", datetime.datetime.now(), start_time) def prepare_files(self): """ Prepare common files among simulation and synthesis. """ # Write the CORE file core_path = OPTS.temp_path + "verify.core" debug.info(1, "CORE: Writing to {}".format(core_path)) self.core.core_write(core_path) # Copy the generated cache Verilog file cache_path = OPTS.temp_path + self.name + ".v" debug.info(1, "Copying the cache design file to the temp subfolder") copyfile(OPTS.output_path + self.name + ".v", cache_path) if OPTS.run_openram: # Copy the configuration files debug.info(1, "Copying the config files to the temp subfolder") self.copy_config_file(OPTS.data_array_name + "_config.py", OPTS.temp_path) self.copy_config_file(OPTS.tag_array_name + "_config.py", OPTS.temp_path) # Random replacement policy doesn't need a separate SRAM array if OPTS.replacement_policy.has_sram_array(): self.copy_config_file(OPTS.use_array_name + "_config.py", OPTS.temp_path) # Run OpenRAM to generate Verilog files of SRAMs debug.info(1, "Running OpenRAM for the data array...") self.run_openram("{}_config.py".format(OPTS.temp_path + OPTS.data_array_name)) debug.info(1, "Running OpenRAM for the tag array...") self.run_openram("{}_config.py".format(OPTS.temp_path + OPTS.tag_array_name)) # Random replacement policy doesn't need a separate SRAM array if OPTS.replacement_policy.has_sram_array(): debug.info(1, "Running OpenRAM for the use array...") self.run_openram("{}_config.py".format(OPTS.temp_path + OPTS.use_array_name)) else: debug.info(1, "Skipping to run OpenRAM") def run_openram(self, config_path): """ Run OpenRAM to generate Verilog modules. """ openram_command = "python3 $OPENRAM_HOME/openram.py" if call("{0} {1}".format(openram_command, config_path), cwd=OPTS.temp_path, shell=True, stdout=self.stdout, stderr=self.stderr) != 0: debug.error("OpenRAM failed!", -1) if not OPTS.keep_openram_files: for file in os.listdir(OPTS.temp_path): file_path = OPTS.temp_path + file if not os.path.isdir(file_path) and all([x not in file for x in [".v", ".py", ".core"]]): os.remove(file_path) def run_fusesoc(self, library_name, core_name, path, is_sim): """ Run FuseSoC for simulation or synthesis. """ fusesoc_library_command = "fusesoc library add {0} {1}".format(library_name, path) fusesoc_run_command = "fusesoc run --target={0} --no-export {1}".format("sim" if is_sim else "syn", core_name) debug.info(1, "Adding {} core as library...".format("simulation" if is_sim else "synthesis")) debug.info(1, "Running the {}...".format("simulation" if is_sim else "synthesis")) # Add the CORE file as a library if call(fusesoc_library_command, cwd=path, shell=True, stdout=self.stdout, stderr=self.stderr) != 0: debug.error("FuseSoC failed to add library!", -1) # Run the library for simulation or synthesis if call(fusesoc_run_command, cwd=path, shell=True, stdout=self.stdout, stderr=self.stderr) != 0: debug.error("FuseSoC failed to run!", -1) # Delete the temporary CONF file. # If this file is not deleted, it can cause syntheses to fail in the # future. os.remove(path + "fusesoc.conf") def copy_config_file(self, file_name, dest): """ Copy and modify the config file for simulation and synthesis. """ new_file = open(dest + file_name, "w") with open(OPTS.output_path + file_name) as f: for line in f: if line.startswith("output_path"): new_file.write("output_path = \"{}\"\n".format(dest)) else: new_file.write(line) # Verification needs only the Verilog files. # This option will decrease OpenRAM's runtime (hopefully). new_file.write("netlist_only = True\n") new_file.close() def convert_to_blacbox(self, file_path): """ Convert the given Verilog module file to blackbox. """ keep = [] # Save blackbox file as "filename_bb.v" bb_file_path = file_path[:-2] + "_bb.v" with open(file_path, "r") as f: delete = False for line in f: if line.lstrip().startswith("reg"): delete = True if not delete: keep.append(line) keep.append("endmodule\n") f = open(bb_file_path, "w") f.writelines(keep) f.close() def check_synth_result(self, path, file_name): """ Read the log file of the simulation. """ error_prefix = "found and reported" # Check the error count lines with open("{0}build/{1}/syn-yosys/{2}".format(path, self.core.core_name.replace(":", "_"), file_name)) as f: for line in f: # TODO: How to check whether the synthesis was successful? # Check if error count is nonzero if line.find(error_prefix) != -1 and int(findall(r"\d+", line)[0]) != 0: debug.error("Synthesis failed!", -1) # Check if there is an "ERROR" if line.find("ERROR") != -1: debug.error("Synthesis failed!", -1) debug.info(1, "Synthesis successful.") def check_sim_result(self, path, file_name): """ Read the log file of the simulation. """ # Result of the simulation is supposed to be at the end of the log file with open("{0}build/{1}/sim-icarus/{2}".format(path, self.core.core_name.replace(":", "_"), file_name)) as f: for line in f: pass if line.rstrip() == self.tb.success_message: debug.info(1, "Simulation successful.") else: debug.error("Simulation failed!", -1)
0
0
0
10,019
0
0
0
54
265
93162a2be83d4a32945d947bbd5f1a2645032e31
9,075
py
Python
pyfr/readers/gmsh.py
synthetik-technologies/PyFR
9d4d5e96a8a9d5ca47970ec197b251ae8b0ecdda
[ "BSD-3-Clause" ]
1
2020-06-23T16:37:06.000Z
2020-06-23T16:37:06.000Z
pyfr/readers/gmsh.py
synthetik-technologies/PyFR
9d4d5e96a8a9d5ca47970ec197b251ae8b0ecdda
[ "BSD-3-Clause" ]
null
null
null
pyfr/readers/gmsh.py
synthetik-technologies/PyFR
9d4d5e96a8a9d5ca47970ec197b251ae8b0ecdda
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*-
33.241758
78
0.523747
# -*- coding: utf-8 -*- from collections import defaultdict import re import numpy as np from pyfr.readers import BaseReader, NodalMeshAssembler from pyfr.readers.nodemaps import GmshNodeMaps def msh_section(mshit, section): endln = '$End{}\n'.format(section) endix = int(next(mshit)) - 1 for i, l in enumerate(mshit): if l == endln: raise ValueError('Unexpected end of section $' + section) yield l.strip() if i == endix: break else: raise ValueError('Unexpected EOF') if next(mshit) != endln: raise ValueError('Expected $End' + section) class GmshReader(BaseReader): # Supported file types and extensions name = 'gmsh' extn = ['.msh'] # Gmsh element types to PyFR type (petype) and node counts _etype_map = { 1: ('line', 2), 8: ('line', 3), 26: ('line', 4), 27: ('line', 5), 2: ('tri', 3), 9: ('tri', 6), 21: ('tri', 10), 23: ('tri', 15), 3: ('quad', 4), 10: ('quad', 9), 36: ('quad', 16), 37: ('quad', 25), 4: ('tet', 4), 11: ('tet', 10), 29: ('tet', 20), 30: ('tet', 35), 5: ('hex', 8), 12: ('hex', 27), 92: ('hex', 64), 93: ('hex', 125), 6: ('pri', 6), 13: ('pri', 18), 90: ('pri', 40), 91: ('pri', 75), 7: ('pyr', 5), 14: ('pyr', 14), 118: ('pyr', 30), 119: ('pyr', 55) } # First-order node numbers associated with each element face _petype_fnmap = { 'tri': {'line': [[0, 1], [1, 2], [2, 0]]}, 'quad': {'line': [[0, 1], [1, 2], [2, 3], [3, 0]]}, 'tet': {'tri': [[0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]]}, 'hex': {'quad': [[0, 1, 2, 3], [0, 1, 4, 5], [1, 2, 5, 6], [2, 3, 6, 7], [0, 3, 4, 7], [4, 5, 6, 7]]}, 'pri': {'quad': [[0, 1, 3, 4], [1, 2, 4, 5], [0, 2, 3, 5]], 'tri': [[0, 1, 2], [3, 4, 5]]}, 'pyr': {'quad': [[0, 1, 2, 3]], 'tri': [[0, 1, 4], [1, 2, 4], [2, 3, 4], [0, 3, 4]]} } # Mappings between the node ordering of PyFR and that of Gmsh _nodemaps = GmshNodeMaps def __init__(self, msh): if isinstance(msh, str): msh = open(msh) # Get an iterator over the lines of the mesh mshit = iter(msh) # Section readers sect_map = { 'MeshFormat': self._read_mesh_format, 'PhysicalNames': self._read_phys_names, 'Entities': self._read_entities, 'Nodes': self._read_nodes, 'Elements': self._read_eles } for l in filter(lambda l: l != '\n', mshit): # Ensure we have encountered a section if not l.startswith('$'): raise ValueError('Expected a mesh section') # Strip the '$' and '\n' to get the section name sect = l[1:-1] # Try to read the section try: sect_map[sect](mshit) # Else skip over it except KeyError: endsect = '$End{0}\n'.format(sect) for el in mshit: if el == endsect: break else: raise ValueError('Expected $End' + sect) def _read_mesh_format(self, mshit): ver, ftype, dsize = next(mshit).split() if ver == '2.2': self._read_nodes_impl = self._read_nodes_impl_v2 self._read_eles_impl = self._read_eles_impl_v2 elif ver == '4': self._read_nodes_impl = self._read_nodes_impl_v4 self._read_eles_impl = self._read_eles_impl_v4 else: raise ValueError('Invalid mesh version') if ftype != '0': raise ValueError('Invalid file type') if dsize != '8': raise ValueError('Invalid data size') if next(mshit) != '$EndMeshFormat\n': raise ValueError('Expected $EndMeshFormat') def _read_phys_names(self, mshit): # Physical entities can be divided up into: # - fluid elements ('the mesh') # - boundary faces # - periodic faces self._felespent = None self._bfacespents = {} self._pfacespents = defaultdict(list) # Seen physical names seen = set() # Extract the physical names for l in msh_section(mshit, 'PhysicalNames'): m = re.match(r'(\d+) (\d+) "((?:[^"\\]|\\.)*)"$', l) if not m: raise ValueError('Malformed physical entity') pent, name = int(m.group(2)), m.group(3).lower() # Ensure we have not seen this name before if name in seen: raise ValueError('Duplicate physical name: {}'.format(name)) # Fluid elements if name == 'fluid': self._felespent = pent # Periodic boundary faces elif name.startswith('periodic'): p = re.match(r'periodic[ _-]([a-z0-9]+)[ _-](l|r)$', name) if not p: raise ValueError('Invalid periodic boundary condition') self._pfacespents[p.group(1)].append(pent) # Other boundary faces else: self._bfacespents[name] = pent seen.add(name) if self._felespent is None: raise ValueError('No fluid elements in mesh') if any(len(pf) != 2 for pf in self._pfacespents.values()): raise ValueError('Unpaired periodic boundary in mesh') def _read_entities(self, mshit): self._tagpents = tagpents = {} # Iterate over the entities nent = sum(int(i) for i in next(mshit).split()) for i in range(nent): ent = next(mshit).split() etag, enphys = int(ent[0]), int(ent[7]) if enphys == 0: continue elif enphys == 1: tagpents[etag] = int(ent[8]) else: raise ValueError('Invalid physical tag count for entity') if next(mshit) != '$EndEntities\n': raise ValueError('Expected $EndEntities') def _read_nodes(self, mshit): self._read_nodes_impl(mshit) def _read_nodes_impl_v2(self, mshit): self._nodepts = nodepts = {} for l in msh_section(mshit, 'Nodes'): nv = l.split() nodepts[int(nv[0])] = np.array([float(x) for x in nv[1:]]) def _read_nodes_impl_v4(self, mshit): self._nodepts = nodepts = {} # Entity and total node count ne, nn = (int(i) for i in next(mshit).split()) for i in range(ne): nen = int(next(mshit).split()[-1]) for j in range(nen): nv = next(mshit).split() nodepts[int(nv[0])] = np.array([float(x) for x in nv[1:]]) if nn != len(nodepts): raise ValueError('Invalid node count') if next(mshit) != '$EndNodes\n': raise ValueError('Expected $EndNodes') def _read_eles(self, mshit): self._read_eles_impl(mshit) def _read_eles_impl_v2(self, mshit): elenodes = defaultdict(list) for l in msh_section(mshit, 'Elements'): # Extract the raw element data elei = [int(i) for i in l.split()] enum, etype, entags = elei[:3] etags, enodes = elei[3:3 + entags], elei[3 + entags:] if etype not in self._etype_map: raise ValueError('Unsupported element type {0}'.format(etype)) # Physical entity type (used for BCs) epent = etags[0] elenodes[etype, epent].append(enodes) self._elenodes = {k: np.array(v) for k, v in elenodes.items()} def _read_eles_impl_v4(self, mshit): elenodes = defaultdict(list) # Block and total element count nb, ne = (int(i) for i in next(mshit).split()) for i in range(nb): etag, _, etype, ecount = (int(j) for j in next(mshit).split()) if etype not in self._etype_map: raise ValueError('Unsupported element type {0}'.format(etype)) # Physical entity type (used for BCs) epent = self._tagpents.get(etag, -1) append = elenodes[etype, epent].append for j in range(ecount): append([int(k) for k in next(mshit).split()[1:]]) if ne != sum(len(v) for v in elenodes.values()): raise ValueError('Invalid element count') if next(mshit) != '$EndElements\n': raise ValueError('Expected $EndElements') self._elenodes = {k: np.array(v) for k, v in elenodes.items()} def _to_raw_pyfrm(self): # Assemble a nodal mesh maps = self._etype_map, self._petype_fnmap, self._nodemaps pents = self._felespent, self._bfacespents, self._pfacespents mesh = NodalMeshAssembler(self._nodepts, self._elenodes, pents, maps) rawm = {} rawm.update(mesh.get_connectivity()) rawm.update(mesh.get_shape_points()) return rawm
0
0
0
8,419
413
0
0
58
159
b4da4a65d4e00689281ae22f04447e598748b518
246
py
Python
tests/conftest.py
stephen-bunn/tomlark
5554801b1bccac2f780770e60ebd8f15e996d89d
[ "0BSD" ]
null
null
null
tests/conftest.py
stephen-bunn/tomlark
5554801b1bccac2f780770e60ebd8f15e996d89d
[ "0BSD" ]
null
null
null
tests/conftest.py
stephen-bunn/tomlark
5554801b1bccac2f780770e60ebd8f15e996d89d
[ "0BSD" ]
null
null
null
# -*- encoding: utf-8 -*- # Copyright (c) 2019 Stephen Bunn <[email protected]> # ISC License <https://opensource.org/licenses/isc> """ """
15.375
51
0.686992
# -*- encoding: utf-8 -*- # Copyright (c) 2019 Stephen Bunn <[email protected]> # ISC License <https://opensource.org/licenses/isc> """ """ import pytest from tomlark.parser import Parser @pytest.fixture def toml_parser(): return Parser()
0
33
0
0
0
0
0
4
69
a442d4a0784271f2955bb9cc4bd3cd28feea0760
67
py
Python
glft2vmd/constants.py
Sage-of-Mirrors/gltf2vmd
76aa5ae25785f8de50351daa27a5b986daa781f0
[ "MIT" ]
null
null
null
glft2vmd/constants.py
Sage-of-Mirrors/gltf2vmd
76aa5ae25785f8de50351daa27a5b986daa781f0
[ "MIT" ]
6
2019-02-05T03:35:26.000Z
2019-02-07T05:44:15.000Z
glft2vmd/constants.py
Sage-of-Mirrors/gltf2vmd
76aa5ae25785f8de50351daa27a5b986daa781f0
[ "MIT" ]
null
null
null
VERSION = 1 # The version number of the format SECTION_COUNT = 14
22.333333
47
0.746269
VERSION = 1 # The version number of the format SECTION_COUNT = 14
0
0
0
0
0
0
0
0
0
5b9afc7b9248105d7d8416827b48e86831ababb9
548
py
Python
easy/problem118/solution.py
cutoutsy/leetcode
0734f1060a0340370b8234e8072d70c10d4306d9
[ "Apache-2.0" ]
1
2018-02-25T03:45:04.000Z
2018-02-25T03:45:04.000Z
easy/problem118/solution.py
cutoutsy/leetcode
0734f1060a0340370b8234e8072d70c10d4306d9
[ "Apache-2.0" ]
null
null
null
easy/problem118/solution.py
cutoutsy/leetcode
0734f1060a0340370b8234e8072d70c10d4306d9
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*-
26.095238
59
0.410584
#!/usr/bin/python # -*- coding: utf-8 -*- class Solution(object): def generate(self, numRows): """ :type numRows: int :rtype: List[List[int]] """ ans = [] if numRows == 0: return ans ans.append([1]) for i in range(1,numRows): row = [] for j in range(i+1): if j == 0 or j == i: row.append(1) else: row.append(ans[i-1][j-1] + ans[i-1][j]) ans.append(row) return ans
0
0
0
484
0
0
0
0
22
e4f7f7cca2308469990c26afe281704cf43f3897
1,532
py
Python
src/astro/__init__.py
astro-projects/astro
7fa0404fc690569ff85e379ecca54778f09a9333
[ "Apache-2.0" ]
71
2021-12-06T22:41:59.000Z
2022-03-31T21:47:16.000Z
src/astro/__init__.py
astro-projects/astro
7fa0404fc690569ff85e379ecca54778f09a9333
[ "Apache-2.0" ]
171
2021-12-14T07:34:57.000Z
2022-03-31T21:04:15.000Z
src/astro/__init__.py
astro-projects/astro
7fa0404fc690569ff85e379ecca54778f09a9333
[ "Apache-2.0" ]
11
2021-12-06T22:46:23.000Z
2022-03-31T18:09:46.000Z
"""A decorator that allows users to run SQL queries natively in Airflow.""" __version__ = "0.9.1" # The following line is an import work-around to avoid raising a circular dependency issue related to `create_database` # Without this, if we run the following imports, in this specific order: # from astro.databases import create_database # from astro.sql.table import Metadata, Table, create_unique_table_name # We face ImportError, as it happened in: # https://github.com/astronomer/astro-sdk/pull/396/commits/fbe73bdbe46d65777258a5f79f461ef69f08a673 # https://github.com/astronomer/astro-sdk/actions/runs/2378526135 # Although astro.database does not depend on astro.sql, it depends on astro.sql.table - and, unless astro.sql was # imported beforehand, it will also load astro.sql. In astro.sql we import lots of operators which depend on # astro.database, and this is what leads to the circular dependency. # This is needed to allow Airflow to pick up specific metadata fields it needs # for certain features. We recognize it's a bit unclean to define these in # multiple places, but at this point it's the only workaround if you'd like # your custom conn type to show up in the Airflow UI.
46.424242
119
0.727807
"""A decorator that allows users to run SQL queries natively in Airflow.""" __version__ = "0.9.1" # The following line is an import work-around to avoid raising a circular dependency issue related to `create_database` # Without this, if we run the following imports, in this specific order: # from astro.databases import create_database # from astro.sql.table import Metadata, Table, create_unique_table_name # We face ImportError, as it happened in: # https://github.com/astronomer/astro-sdk/pull/396/commits/fbe73bdbe46d65777258a5f79f461ef69f08a673 # https://github.com/astronomer/astro-sdk/actions/runs/2378526135 # Although astro.database does not depend on astro.sql, it depends on astro.sql.table - and, unless astro.sql was # imported beforehand, it will also load astro.sql. In astro.sql we import lots of operators which depend on # astro.database, and this is what leads to the circular dependency. import astro.sql # noqa: F401 # This is needed to allow Airflow to pick up specific metadata fields it needs # for certain features. We recognize it's a bit unclean to define these in # multiple places, but at this point it's the only workaround if you'd like # your custom conn type to show up in the Airflow UI. def get_provider_info() -> dict: return { # Required. "package-name": "astro-sdk-python", "name": "Astro SQL Provider", "description": __doc__, "versions": [__version__], # Optional. "hook-class-names": [], "extra-links": [], }
0
0
0
0
0
278
0
-5
58
1c84f381723e000bfb669c57e2bd3a49b340519c
736
py
Python
packages/pyright-internal/src/tests/samples/variadicTypeVar12.py
Jasha10/pyright
0ce0cfa10fe7faa41071a2cc417bb449cf8276fe
[ "MIT" ]
3,934
2019-03-22T09:26:41.000Z
2019-05-06T21:03:08.000Z
packages/pyright-internal/src/tests/samples/variadicTypeVar12.py
Jasha10/pyright
0ce0cfa10fe7faa41071a2cc417bb449cf8276fe
[ "MIT" ]
107
2019-03-24T04:09:37.000Z
2019-05-06T17:00:04.000Z
packages/pyright-internal/src/tests/samples/variadicTypeVar12.py
Jasha10/pyright
0ce0cfa10fe7faa41071a2cc417bb449cf8276fe
[ "MIT" ]
119
2019-03-23T10:48:04.000Z
2019-05-06T08:57:56.000Z
# This sample tests the case where a variadic TypeVar is used in # conjunction with a keyword-only parameter. It also tests protocol # invariance validation when a TypeVarTuple is used in the protocol # along with a non-variadic TypeVar. # pyright: strict from typing import TypeVar from typing_extensions import TypeVarTuple T = TypeVar("T") Ts = TypeVarTuple("Ts") a: CallbackA[int, str, bool] = example reveal_type(a, expected_text="(a: int, b: str, *, keyed: bool) -> tuple[int, str, bool]")
27.259259
89
0.691576
# This sample tests the case where a variadic TypeVar is used in # conjunction with a keyword-only parameter. It also tests protocol # invariance validation when a TypeVarTuple is used in the protocol # along with a non-variadic TypeVar. # pyright: strict from typing import Protocol, TypeVar from typing_extensions import TypeVarTuple, Unpack T = TypeVar("T") Ts = TypeVarTuple("Ts") class CallbackA(Protocol[*Ts, T]): def __call__(self, *args: *Ts, keyed: T) -> tuple[Unpack[Ts], T]: ... def example(a: int, b: str, *, keyed: bool) -> tuple[int, str, bool]: return (a, b, keyed) a: CallbackA[int, str, bool] = example reveal_type(a, expected_text="(a: int, b: str, *, keyed: bool) -> tuple[int, str, bool]")
0
0
0
95
0
73
0
18
46
d10a63cc5cb88f955269d4ce6980f67addd2f947
4,440
py
Python
tests/service/contacts_test.py
mherrmann/dnsimple-python
a89127f0bafb2a001c902206fba87cbc4f3bc2d1
[ "MIT" ]
12
2020-06-18T17:16:03.000Z
2022-03-23T08:35:49.000Z
tests/service/contacts_test.py
mherrmann/dnsimple-python
a89127f0bafb2a001c902206fba87cbc4f3bc2d1
[ "MIT" ]
129
2020-06-25T12:15:51.000Z
2022-03-23T09:42:16.000Z
tests/service/contacts_test.py
mherrmann/dnsimple-python
a89127f0bafb2a001c902206fba87cbc4f3bc2d1
[ "MIT" ]
6
2020-07-03T09:34:01.000Z
2021-12-20T04:29:59.000Z
import unittest if __name__ == '__main__': unittest.main()
45.773196
115
0.621847
import unittest import responses from dnsimple import DNSimpleException from dnsimple.response import Pagination from dnsimple.struct import Contact from tests.helpers import DNSimpleMockResponse, DNSimpleTest class ContactsTest(DNSimpleTest): @responses.activate def test_list_contacts(self): responses.add(DNSimpleMockResponse(method=responses.GET, path='/1010/contacts', fixture_name='listContacts/success')) contacts = self.contacts.list_contacts(1010).data self.assertEqual(2, len(contacts)) self.assertIsInstance(contacts[0], Contact) @responses.activate def test_list_contacts_supports_pagination(self): responses.add(DNSimpleMockResponse(method=responses.GET, path='/1010/contacts?page=1&per_page=2', fixture_name='listContacts/success')) response = self.contacts.list_contacts(1010, page=1, per_page=2) self.assertIsInstance(response.pagination, Pagination) @responses.activate def test_create_contact(self): responses.add(DNSimpleMockResponse(method=responses.POST, path='/1010/contacts', fixture_name='createContact/created')) contact = Contact.new(label='Default', first_name='First', last_name='User', job_title='CEO', organization_name='Awesome Company', email='[email protected]', phone='+18001234567', fax='+18011234567', address1='Italian Street, 10', address2='', city='Roma', state_province='RM', postal_code='00100', country='IT') created = self.contacts.create_contact(1010, contact).data self.assertEqual(contact.label, created.label) self.assertEqual(contact.first_name, created.first_name) self.assertEqual(contact.last_name, created.last_name) self.assertEqual(contact.job_title, created.job_title) self.assertEqual(contact.organization_name, created.organization_name) self.assertEqual(contact.email, created.email) self.assertEqual(contact.phone, created.phone) self.assertEqual(contact.fax, created.fax) self.assertEqual(contact.address1, created.address1) self.assertEqual(contact.address2, created.address2) self.assertEqual(contact.city, created.city) self.assertEqual(contact.state_province, created.state_province) self.assertEqual(contact.postal_code, created.postal_code) self.assertEqual(contact.country, created.country) @responses.activate def test_get_contact(self): responses.add(DNSimpleMockResponse(method=responses.GET, path='/1010/contacts/1', fixture_name='getContact/success')) contact = self.contacts.get_contact(1010, 1).data self.assertIsInstance(contact, Contact) @responses.activate def test_update_contact(self): responses.add(DNSimpleMockResponse(method=responses.PATCH, path='/1010/contacts/1', fixture_name='updateContact/success')) contact = Contact.new(label='Default') updated = self.contacts.update_contact(1010, 1, contact).data self.assertEqual(contact.label, updated.label) @responses.activate def test_delete_contact(self): responses.add(DNSimpleMockResponse(method=responses.DELETE, path='/1010/contacts/1', fixture_name='deleteContact/success')) self.contacts.delete_contact(1010, 1) @responses.activate def test_delete_contact_in_use(self): responses.add(DNSimpleMockResponse(method=responses.DELETE, path='/1010/contacts/1', fixture_name='deleteContact/error-contact-in-use')) try: self.contacts.delete_contact(1010, 1) except DNSimpleException as dnse: self.assertEqual("The contact cannot be deleted because it's currently in use", dnse.message) if __name__ == '__main__': unittest.main()
0
3,955
0
12
0
0
0
84
323
f84ea56c56e51a875d50bc7307a31889f6562e9b
423
py
Python
replacedata/urls.py
judexzhu/dzhops
ffe089a734dd24d88bf433223ab8eb7e2eb099c5
[ "Apache-2.0" ]
202
2015-05-18T08:48:52.000Z
2021-07-16T13:59:07.000Z
replacedata/urls.py
judexzhu/dzhops
ffe089a734dd24d88bf433223ab8eb7e2eb099c5
[ "Apache-2.0" ]
19
2015-11-26T03:54:45.000Z
2019-03-02T13:58:24.000Z
replacedata/urls.py
Hasal/dzhops
fcd16adc61a941dccdaebee156b545784a5e96a8
[ "Apache-2.0" ]
172
2015-08-07T15:52:17.000Z
2021-07-16T13:59:11.000Z
# -*- coding: utf-8 -*- from django.conf.urls import patterns, url from django.contrib import admin admin.autodiscover() urlpatterns = patterns( 'replacedata.views', # url(r'^$', 'oms.views.home', name='home'), # url(r'^blog/', include('blog.urls')), url(r'^repair/history/$', 'repairHistoryData', name='repair_data'), url(r'^api/history/$', 'repairHistoryDataAPI', name='repair_data_api'), )
32.538462
75
0.664303
# -*- coding: utf-8 -*- from django.conf.urls import patterns, include, url from django.contrib import admin admin.autodiscover() urlpatterns = patterns( 'replacedata.views', # url(r'^$', 'oms.views.home', name='home'), # url(r'^blog/', include('blog.urls')), url(r'^repair/history/$', 'repairHistoryData', name='repair_data'), url(r'^api/history/$', 'repairHistoryDataAPI', name='repair_data_api'), )
0
0
0
0
0
0
0
9
0
980ab3bc4a57447b3222534b3167de92a4804cb1
1,641
py
Python
neural_sp/models/modules/zoneout.py
SunSki/neural_sp
4e4aca9b4cda1c7d95a1774d22f4d3298ad4ba4b
[ "Apache-2.0" ]
null
null
null
neural_sp/models/modules/zoneout.py
SunSki/neural_sp
4e4aca9b4cda1c7d95a1774d22f4d3298ad4ba4b
[ "Apache-2.0" ]
null
null
null
neural_sp/models/modules/zoneout.py
SunSki/neural_sp
4e4aca9b4cda1c7d95a1774d22f4d3298ad4ba4b
[ "Apache-2.0" ]
null
null
null
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2019 Kyoto University (Hirofumi Inaguma) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """Zoneout regularization.""" import torch.nn as nn
28.789474
71
0.606947
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2019 Kyoto University (Hirofumi Inaguma) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """Zoneout regularization.""" import torch.nn as nn class ZoneoutCell(nn.Module): def __init__(self, cell, zoneout_prob_h, zoneout_prob_c): super().__init__() self.cell = cell self.hidden_size = cell.hidden_size if not isinstance(cell, nn.RNNCellBase): raise TypeError("The cell is not a LSTMCell or GRUCell!") if isinstance(cell, nn.LSTMCell): self.prob = (zoneout_prob_h, zoneout_prob_c) else: self.prob = zoneout_prob_h def forward(self, inputs, state): """Forward pass. Args: inputs (FloatTensor): `[B, input_dim]' state (tuple or FloatTensor): Returns: state (tuple or FloatTensor): """ return self.zoneout(state, self.cell(inputs, state), self.prob) def zoneout(self, state, next_state, prob): if isinstance(state, tuple): return (self.zoneout(state[0], next_state[0], prob[0]), self.zoneout(state[1], next_state[1], prob[1])) mask = state.new(state.size()).bernoulli_(prob) if self.training: return mask * next_state + (1 - mask) * state else: return prob * next_state + (1 - prob) * state def zoneout_wrapper(cell, zoneout_prob_h=0, zoneout_prob_c=0): if zoneout_prob_h > 0 or zoneout_prob_c > 0: return ZoneoutCell(cell, zoneout_prob_h, zoneout_prob_c) else: return cell
0
0
0
1,192
0
185
0
0
46
b3152b4456ead975eb6f74831b450dea9597705e
810
py
Python
number programs/sum of digits in anumber.py
ZephyrAveryl777/Python-Programs
26de85c31af28382d406d27d54186b966a7b1bfc
[ "MIT" ]
6
2020-08-13T11:49:29.000Z
2021-03-07T05:46:17.000Z
number programs/sum of digits in anumber.py
ZephyrAveryl777/Python-Programs
26de85c31af28382d406d27d54186b966a7b1bfc
[ "MIT" ]
null
null
null
number programs/sum of digits in anumber.py
ZephyrAveryl777/Python-Programs
26de85c31af28382d406d27d54186b966a7b1bfc
[ "MIT" ]
1
2021-04-24T06:12:48.000Z
2021-04-24T06:12:48.000Z
##Problem Description ##The program takes in a number and finds the sum of digits in a number. print("-------------------Method 1----------------------------------") temp=n=int(input("Enter a number: ")) total = 0 while n>0 : total = total+(n%10) n=n//10 print("The total sum of digits in the number {0} is: {1} ".format(temp,total)) print("--------------------------------------------------------------") print("-------------------Method 2----------------------------------") l=[] temp=n=int(input("Enter a number: ")) sum_digits(n) print("The total sum of digits in the number {0} is: {1} ".format(temp,sum(l))) print("--------------------------------------------------------------")
33.75
80
0.437037
##Problem Description ##The program takes in a number and finds the sum of digits in a number. print("-------------------Method 1----------------------------------") temp=n=int(input("Enter a number: ")) total = 0 while n>0 : total = total+(n%10) n=n//10 print("The total sum of digits in the number {0} is: {1} ".format(temp,total)) print("--------------------------------------------------------------") print("-------------------Method 2----------------------------------") l=[] def sum_digits(b): if(b==0): return l l.append(b%10) sum_digits(b//10) temp=n=int(input("Enter a number: ")) sum_digits(n) print("The total sum of digits in the number {0} is: {1} ".format(temp,sum(l))) print("--------------------------------------------------------------")
0
0
0
0
0
73
0
0
23
f2c241e08bc11d95b523ca06dbb1790a155bc856
1,095
py
Python
pymarlin/utils/writer/aml.py
nifarn/PyMarlin
ea1f5f927aa85112ecebc206d53b5c3ee65704fa
[ "MIT" ]
20
2021-06-09T18:46:45.000Z
2022-02-09T01:08:13.000Z
pymarlin/utils/writer/aml.py
nifarn/PyMarlin
ea1f5f927aa85112ecebc206d53b5c3ee65704fa
[ "MIT" ]
50
2021-06-09T17:50:35.000Z
2022-02-07T23:02:30.000Z
pymarlin/utils/writer/aml.py
nifarn/PyMarlin
ea1f5f927aa85112ecebc206d53b5c3ee65704fa
[ "MIT" ]
5
2021-06-21T22:24:30.000Z
2021-12-21T17:08:21.000Z
""" AML writer module. """
26.707317
67
0.536073
""" AML writer module. """ from pymarlin.utils.logger.logging_utils import getlogger from .base import Writer class Aml(Writer): """ This class implements the Azure ML writer for stats. """ def __init__(self): super().__init__(getlogger(__name__)) self.run = None try: from azureml.core.run import Run self.run = Run.get_context() self.logger.info(self.run.get_status()) except Exception: # pylint: disable=broad-except self.run = None self.logger.warning('AML writer failed to initialize.') self.logger.info(f'run = {self.run}') def log_scalar(self, k, v, step): """ Log metric to AML. """ kwargs = { 'global_step': step, k: v } if self.run is not None: self.run.log_row(k, **kwargs) def log_multi(self, k, v, step): """ Log metrics to stdout. """ for key, val in v.items(): key = k+'/'+key self.log_scalar(key, val, step)
0
0
0
962
0
0
0
39
67
3f0de62c4c8c48e6ae02cd05d3405f7ac8d21e23
377
py
Python
LectureNote/03.array_linkedlist/14.py
Raziel-JKM/Study_turtleCoding
d09e03605cdc8130db2a279ec8193b29f3bca7a6
[ "MIT" ]
null
null
null
LectureNote/03.array_linkedlist/14.py
Raziel-JKM/Study_turtleCoding
d09e03605cdc8130db2a279ec8193b29f3bca7a6
[ "MIT" ]
null
null
null
LectureNote/03.array_linkedlist/14.py
Raziel-JKM/Study_turtleCoding
d09e03605cdc8130db2a279ec8193b29f3bca7a6
[ "MIT" ]
2
2021-12-13T08:02:31.000Z
2021-12-18T08:36:23.000Z
# Definition for singly-linked list.
25.133333
68
0.567639
# Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def mergeTwoLists(self, l1: ListNode, l2: ListNode) -> ListNode: if (not l1) or (l2 and l1.val > l2.val): l1, l2 = l2, l1 if l1: l1.next = self.mergeTwoLists(l1.next, l2) return l1
0
0
0
294
0
0
0
0
45
4f8e2aeb8fb094469d36a66d43fac5b6984cbe13
240
py
Python
OCT18A/BITOBYT.py
Chhekur/codechef-solutions
14ca902ea693139de13ffe5b9f602447bf34b79f
[ "MIT" ]
1
2019-03-25T14:14:47.000Z
2019-03-25T14:14:47.000Z
OCT18A/BITOBYT.py
Chhekur/codechef-solutions
14ca902ea693139de13ffe5b9f602447bf34b79f
[ "MIT" ]
null
null
null
OCT18A/BITOBYT.py
Chhekur/codechef-solutions
14ca902ea693139de13ffe5b9f602447bf34b79f
[ "MIT" ]
null
null
null
for _ in range(int(input())): n = int(input()) temp = (n - 1) // 26 temp2 = n % 26 ans = 2**temp if n == 0: print(1,0,0) elif temp2 > 0 and temp2 < 3: print(ans,0,0) elif temp2 > 2 and temp2 < 11: print(0,ans,0) else: print(0,0,ans)
26.666667
46
0.570833
for _ in range(int(input())): n = int(input()) temp = (n - 1) // 26 temp2 = n % 26 ans = 2**temp if n == 0: print(1,0,0) elif temp2 > 0 and temp2 < 3: print(ans,0,0) elif temp2 > 2 and temp2 < 11: print(0,ans,0) else: print(0,0,ans)
0
0
0
0
0
0
0
0
0
b1a4913225fbfc946d7637c1b7948e693eb990e2
8,110
py
Python
LinearRegression.py
Prasanna-Brabourame/Machine-Learning
f27811d1d0b280ac025cfc7d5610c646b9f5de35
[ "MIT" ]
null
null
null
LinearRegression.py
Prasanna-Brabourame/Machine-Learning
f27811d1d0b280ac025cfc7d5610c646b9f5de35
[ "MIT" ]
null
null
null
LinearRegression.py
Prasanna-Brabourame/Machine-Learning
f27811d1d0b280ac025cfc7d5610c646b9f5de35
[ "MIT" ]
null
null
null
# The problem to be solved: # We have trucks located in different cities and each truck brings a profit or loss. We have the historical data and determined that the profit depends on the city's population. We want to find this relation. import numpy as np print('Welcome to Machine Learning with Python!') print('Lesson 1: Linear regression') print('\n'+40*'=') # data contains the city population (in 10,000s) in the first column # and the profit/loss (in 10,000$) in the second columns # the data was rescaled to save on calculations and resources consumption # Based on the first entry, a truck in a city of population of 61,101 brought a profit of $175,920 data =\ [ [6.1101,17.592], [5.5277,9.1302], [8.5186,13.662], [7.0032,11.854], [5.8598,6.8233], [8.3829,11.886], [7.4764,4.3483], [8.5781,12], [6.4862,6.5987], [5.0546,3.8166], [5.7107,3.2522], [14.164,15.505], [5.734,3.1551], [8.4084,7.2258], [5.6407,0.71618], [5.3794,3.5129], [6.3654,5.3048], [5.1301,0.56077], [6.4296,3.6518], [7.0708,5.3893], [6.1891,3.1386], [20.27,21.767], [5.4901,4.263], [6.3261,5.1875], [5.5649,3.0825], [18.945,22.638], [12.828,13.501], [10.957,7.0467], [13.176,14.692], [22.203,24.147], [5.2524,-1.22], [6.5894,5.9966], [9.2482,12.134], [5.8918,1.8495], [8.2111,6.5426], [7.9334,4.5623], [8.0959,4.1164], [5.6063,3.3928], [12.836,10.117], [6.3534,5.4974], [5.4069,0.55657], [6.8825,3.9115], [11.708,5.3854], [5.7737,2.4406], [7.8247,6.7318], [7.0931,1.0463], [5.0702,5.1337], [5.8014,1.844], [11.7,8.0043], [5.5416,1.0179], [7.5402,6.7504], [5.3077,1.8396], [7.4239,4.2885], [7.6031,4.9981], [6.3328,1.4233], [6.3589,-1.4211], [6.2742,2.4756], [5.6397,4.6042], [9.3102,3.9624], [9.4536,5.4141], [8.8254,5.1694], [5.1793,-0.74279], [21.279,17.929], [14.908,12.054], [18.959,17.054], [7.2182,4.8852], [8.2951,5.7442], [10.236,7.7754], [5.4994,1.0173], [20.341,20.992], [10.136,6.6799], [7.3345,4.0259], [6.0062,1.2784], [7.2259,3.3411], [5.0269,-2.6807], [6.5479,0.29678], [7.5386,3.8845], [5.0365,5.7014], [10.274,6.7526], [5.1077,2.0576], [5.7292,0.47953], [5.1884,0.20421], [6.3557,0.67861], [9.7687,7.5435], [6.5159,5.3436], [8.5172,4.2415], [9.1802,6.7981], [6.002,0.92695], [5.5204,0.152], [5.0594,2.8214], [5.7077,1.8451], [7.6366,4.2959], [5.8707,7.2029], [5.3054,1.9869], [8.2934,0.14454], [13.394,9.0551], [5.4369,0.61705] ] # We want to make a model able to predict the profit/loss, based on a given population. In order to do some machine learning, the data has to be of a matrix type. # X matrix will hold city population X = np.matrix(data)[:,0] # y matrix will hold the profit/loss information y = np.matrix(data)[:,1] ''' Basically, we are looking for a function f(x) returning the _output_ value y based on its _input_ x. We assume a linear y = ax + b dependence, but it as well might have been a polynominal or any other function. So, we are looking for such a and b values that give us a function that will somehow reflect the profit based on the population. Like this: predicted_profit = a * city_population + b A quick look at the data shows that it is impossible to find a line which would cross all the datapoints. So, we want to have the best possible fit. How do we measure the quality of it? The best possible fit is such that makes the smallest prediction error on the whole dataset. The single error is calculated as the square of the difference between the real and predicted value, so the total error will simply be the sum of all single ones. We thus need a so-called cost function which would return the average error of a given f(x) when trying to explain the datapoints and make predictions. In order to make things quicker, we will look for a vector 'theta', containing the 'a' and 'b' (or more, for more complicated models - theta0, theta1, theta2,...) parameters. ''' print('\nLooking for y=a*x+b function (a,b=theta)') # function J calculates the cost under a given set of theta parameters # the transformation below adds a column of ones to the left of the X matrix, for calculation reasons dataX = np.matrix(data)[:,0:1] X = np.ones((len(dataX),2)) X[:,1:] = dataX # let's check the cost if we would assume theta at two different values print('\nChecking two example cases of theta:') for t in [0,0], [-1,2]: print('Assuming theta vector at {}, the cost would be {:.2f}'.format(t, J(X, y, t).item())) # 32.073, 54.242 ''' Now, how to find the optimal theta vector for our model to predict with the smallest possible error? Assuming that J is a cost function, this is an optimization problem - we need to find the minimum of J. We will use a technique called gradient descent - we will initialize theta at all-zeros and gradually move along the J curve updating all thetas (simultaneously) by small fractions. If J increases - we are going the wrong way, if it decreases - we are moving along this way. ''' # gradient descent function will iteratively update theta by a small fraction alpha (also called the learning rate) for a number of iterations print('\n'+40*'=') # we have the function ready, let's do some machine learning! theta = np.matrix([np.random.random(),np.random.random()]) # we initialize theta at random values alpha = 0.01 # learning rate - if too low, the algorithm will not converge, if too high, it can "explode" iters = 2000 # number of iterations - reduce if "Time limit exceeded" print('\n== Model summary ==\nLearning rate: {}\nIterations: {}\nInitial theta: {}\nInitial J: {:.2f}\n'.format(alpha, iters, theta, J(X,y,theta).item())) print('Training the model... ') # this actually trains our model and finds the optimal theta value J_history, theta_min = gradient(X, y, alpha, theta, iters) print('Done.') print('\nFinal theta: {}\nFinal J: {:.2f}'.format(theta_min.T, J(X,y,theta_min.T).item())) ''' Now that we have the model trained, we can use it to predict the profit/loss Usually, since we want to solve a real problem, we define our function to accept real numbers, not rescaled ones. However, we have to remember, that the model itself is trained on rescaled data, so we have to provide it. ''' # This function will calculate the predicted profit # Now, let's check for a random city p = 50000 + 100000 * np.random.random() print('\n'+40*'=') print('\nBased on learned data, predicted profit for a city of population of {:,.0f} is ${:,.2f}.\n'.format(p, predict_profit(p).item())) # For the business decision, it would also be good to know what is the minimal population of a city to start the profitable business (predicted value is at least positive) p_min = -theta_min[0].item() / theta_min[1].item() * 10000 print('In order for the business to be profitable, it has to be started in a city with population greater than {:,.0f}.'.format(p_min)) print('\n'+40*'=') print('\nNOTE: The code initializes the model with different theta each time, thus the model predicts different minimal viable population at each runtime.')
38.254717
441
0.69815
# The problem to be solved: # We have trucks located in different cities and each truck brings a profit or loss. We have the historical data and determined that the profit depends on the city's population. We want to find this relation. import numpy as np print('Welcome to Machine Learning with Python!') print('Lesson 1: Linear regression') print('\n'+40*'=') # data contains the city population (in 10,000s) in the first column # and the profit/loss (in 10,000$) in the second columns # the data was rescaled to save on calculations and resources consumption # Based on the first entry, a truck in a city of population of 61,101 brought a profit of $175,920 data =\ [ [6.1101,17.592], [5.5277,9.1302], [8.5186,13.662], [7.0032,11.854], [5.8598,6.8233], [8.3829,11.886], [7.4764,4.3483], [8.5781,12], [6.4862,6.5987], [5.0546,3.8166], [5.7107,3.2522], [14.164,15.505], [5.734,3.1551], [8.4084,7.2258], [5.6407,0.71618], [5.3794,3.5129], [6.3654,5.3048], [5.1301,0.56077], [6.4296,3.6518], [7.0708,5.3893], [6.1891,3.1386], [20.27,21.767], [5.4901,4.263], [6.3261,5.1875], [5.5649,3.0825], [18.945,22.638], [12.828,13.501], [10.957,7.0467], [13.176,14.692], [22.203,24.147], [5.2524,-1.22], [6.5894,5.9966], [9.2482,12.134], [5.8918,1.8495], [8.2111,6.5426], [7.9334,4.5623], [8.0959,4.1164], [5.6063,3.3928], [12.836,10.117], [6.3534,5.4974], [5.4069,0.55657], [6.8825,3.9115], [11.708,5.3854], [5.7737,2.4406], [7.8247,6.7318], [7.0931,1.0463], [5.0702,5.1337], [5.8014,1.844], [11.7,8.0043], [5.5416,1.0179], [7.5402,6.7504], [5.3077,1.8396], [7.4239,4.2885], [7.6031,4.9981], [6.3328,1.4233], [6.3589,-1.4211], [6.2742,2.4756], [5.6397,4.6042], [9.3102,3.9624], [9.4536,5.4141], [8.8254,5.1694], [5.1793,-0.74279], [21.279,17.929], [14.908,12.054], [18.959,17.054], [7.2182,4.8852], [8.2951,5.7442], [10.236,7.7754], [5.4994,1.0173], [20.341,20.992], [10.136,6.6799], [7.3345,4.0259], [6.0062,1.2784], [7.2259,3.3411], [5.0269,-2.6807], [6.5479,0.29678], [7.5386,3.8845], [5.0365,5.7014], [10.274,6.7526], [5.1077,2.0576], [5.7292,0.47953], [5.1884,0.20421], [6.3557,0.67861], [9.7687,7.5435], [6.5159,5.3436], [8.5172,4.2415], [9.1802,6.7981], [6.002,0.92695], [5.5204,0.152], [5.0594,2.8214], [5.7077,1.8451], [7.6366,4.2959], [5.8707,7.2029], [5.3054,1.9869], [8.2934,0.14454], [13.394,9.0551], [5.4369,0.61705] ] # We want to make a model able to predict the profit/loss, based on a given population. In order to do some machine learning, the data has to be of a matrix type. # X matrix will hold city population X = np.matrix(data)[:,0] # y matrix will hold the profit/loss information y = np.matrix(data)[:,1] ''' Basically, we are looking for a function f(x) returning the _output_ value y based on its _input_ x. We assume a linear y = ax + b dependence, but it as well might have been a polynominal or any other function. So, we are looking for such a and b values that give us a function that will somehow reflect the profit based on the population. Like this: predicted_profit = a * city_population + b A quick look at the data shows that it is impossible to find a line which would cross all the datapoints. So, we want to have the best possible fit. How do we measure the quality of it? The best possible fit is such that makes the smallest prediction error on the whole dataset. The single error is calculated as the square of the difference between the real and predicted value, so the total error will simply be the sum of all single ones. We thus need a so-called cost function which would return the average error of a given f(x) when trying to explain the datapoints and make predictions. In order to make things quicker, we will look for a vector 'theta', containing the 'a' and 'b' (or more, for more complicated models - theta0, theta1, theta2,...) parameters. ''' print('\nLooking for y=a*x+b function (a,b=theta)') # function J calculates the cost under a given set of theta parameters def J(X, y, theta): theta = np.matrix(theta).T # we need a transposed matrix theta m = len(y) # m is the number of datapoints predictions = X * theta # stores the outputs predicted by f(x) with a given theta as parameter vector sqError = np.power((predictions-y),[2]) # a matrix of squared errors between predictions and real values return 1/(2*m) * sum(sqError) # the value of the cost function J # the transformation below adds a column of ones to the left of the X matrix, for calculation reasons dataX = np.matrix(data)[:,0:1] X = np.ones((len(dataX),2)) X[:,1:] = dataX # let's check the cost if we would assume theta at two different values print('\nChecking two example cases of theta:') for t in [0,0], [-1,2]: print('Assuming theta vector at {}, the cost would be {:.2f}'.format(t, J(X, y, t).item())) # 32.073, 54.242 ''' Now, how to find the optimal theta vector for our model to predict with the smallest possible error? Assuming that J is a cost function, this is an optimization problem - we need to find the minimum of J. We will use a technique called gradient descent - we will initialize theta at all-zeros and gradually move along the J curve updating all thetas (simultaneously) by small fractions. If J increases - we are going the wrong way, if it decreases - we are moving along this way. ''' # gradient descent function will iteratively update theta by a small fraction alpha (also called the learning rate) for a number of iterations def gradient(X, y, alpha, theta, iters): J_history = np.zeros(iters) # will store historical values of J for each iteration m = len(y) # m is the number of datapoints theta = np.matrix(theta).T # theta has to be transposed again for i in range(iters): h0 = X * theta # zero hypothesis for each datapoint delta = (1 / m) * (X.T * h0 - X.T * y) # the gradient descent theta = theta - alpha * delta # update theta by learning rate times gradient J_history[i] = J(X, y, theta.T) # save the J of a particular iteration, it should drop in the next return J_history, theta # return the history of J plus the optimal theta print('\n'+40*'=') # we have the function ready, let's do some machine learning! theta = np.matrix([np.random.random(),np.random.random()]) # we initialize theta at random values alpha = 0.01 # learning rate - if too low, the algorithm will not converge, if too high, it can "explode" iters = 2000 # number of iterations - reduce if "Time limit exceeded" print('\n== Model summary ==\nLearning rate: {}\nIterations: {}\nInitial theta: {}\nInitial J: {:.2f}\n'.format(alpha, iters, theta, J(X,y,theta).item())) print('Training the model... ') # this actually trains our model and finds the optimal theta value J_history, theta_min = gradient(X, y, alpha, theta, iters) print('Done.') print('\nFinal theta: {}\nFinal J: {:.2f}'.format(theta_min.T, J(X,y,theta_min.T).item())) ''' Now that we have the model trained, we can use it to predict the profit/loss Usually, since we want to solve a real problem, we define our function to accept real numbers, not rescaled ones. However, we have to remember, that the model itself is trained on rescaled data, so we have to provide it. ''' # This function will calculate the predicted profit def predict_profit(population): pop = population / 10000 return [1, pop] * theta_min * 10000 # Now, let's check for a random city p = 50000 + 100000 * np.random.random() print('\n'+40*'=') print('\nBased on learned data, predicted profit for a city of population of {:,.0f} is ${:,.2f}.\n'.format(p, predict_profit(p).item())) # For the business decision, it would also be good to know what is the minimal population of a city to start the profitable business (predicted value is at least positive) p_min = -theta_min[0].item() / theta_min[1].item() * 10000 print('In order for the business to be profitable, it has to be started in a city with population greater than {:,.0f}.'.format(p_min)) print('\n'+40*'=') print('\nNOTE: The code initializes the model with different theta each time, thus the model predicts different minimal viable population at each runtime.')
0
0
0
0
0
1,120
0
0
66
451b547531e66a11eedfdad82d0ab5ec2c049406
989
py
Python
remindme/config.py
GochoMugo/remindme
6cf2f94ce07ead754f1ee5976a7e7d7cbfa1a2e4
[ "MIT" ]
17
2015-05-02T22:58:07.000Z
2017-04-17T06:33:43.000Z
remindme/config.py
GochoMugo/remindme
6cf2f94ce07ead754f1ee5976a7e7d7cbfa1a2e4
[ "MIT" ]
8
2015-02-14T16:22:27.000Z
2016-10-26T13:15:19.000Z
remindme/config.py
GochoMugo/remindme
6cf2f94ce07ead754f1ee5976a7e7d7cbfa1a2e4
[ "MIT" ]
2
2016-02-26T10:47:56.000Z
2019-10-09T05:49:51.000Z
import os import sys import colorama from . import metadata # project metadata METADATA = metadata # paths PATHS = {} PATHS["home"] = os.path.expanduser("~") PATHS["db_file"] = os.path.join(PATHS["home"], ".remindme.db") PATHS["config_file"] = os.path.join(PATHS["home"], ".remindme") # colors colorama.init() COLORS = {} COLORS["default"] = colorama.Fore.WHITE COLORS["error"] = colorama.Fore.RED COLORS["info"] = colorama.Fore.MAGENTA COLORS["reset"] = colorama.Style.RESET_ALL COLORS["success"] = colorama.Fore.GREEN # python version PY2 = sys.version_info[0] == 2 PY3 = sys.version_info[0] == 3 # cryptography settings CRYPTO = {} CRYPTO["kdf_iterations"] = 100000 CRYPTO["kdf_length"] = 32 # default user settings USER_SETTINGS = {} USER_SETTINGS["editor"] = None USER_SETTINGS["disable_encryption"] = False USER_SETTINGS["encrypt_by_default"] = True USER_SETTINGS["retry_password_match"] = True USER_SETTINGS["retry_decryption"] = False USER_SETTINGS["end_line"] = ":end"
21.5
63
0.722952
import os import sys import colorama from . import metadata # project metadata METADATA = metadata # paths PATHS = {} PATHS["home"] = os.path.expanduser("~") PATHS["db_file"] = os.path.join(PATHS["home"], ".remindme.db") PATHS["config_file"] = os.path.join(PATHS["home"], ".remindme") # colors colorama.init() COLORS = {} COLORS["default"] = colorama.Fore.WHITE COLORS["error"] = colorama.Fore.RED COLORS["info"] = colorama.Fore.MAGENTA COLORS["reset"] = colorama.Style.RESET_ALL COLORS["success"] = colorama.Fore.GREEN # python version PY2 = sys.version_info[0] == 2 PY3 = sys.version_info[0] == 3 # cryptography settings CRYPTO = {} CRYPTO["kdf_iterations"] = 100000 CRYPTO["kdf_length"] = 32 # default user settings USER_SETTINGS = {} USER_SETTINGS["editor"] = None USER_SETTINGS["disable_encryption"] = False USER_SETTINGS["encrypt_by_default"] = True USER_SETTINGS["retry_password_match"] = True USER_SETTINGS["retry_decryption"] = False USER_SETTINGS["end_line"] = ":end"
0
0
0
0
0
0
0
0
0
3c4fdc05b6325dc0d014850d64adf6128c1af6de
1,075
py
Python
telemetry/telemetry/internal/platform/platform_backend_unittest.py
Martijnve23/catapult
5c63b19d221af6a12889e8727acc85d93892cab7
[ "BSD-3-Clause" ]
1,894
2015-04-17T18:29:53.000Z
2022-03-28T22:41:06.000Z
telemetry/telemetry/internal/platform/platform_backend_unittest.py
Martijnve23/catapult
5c63b19d221af6a12889e8727acc85d93892cab7
[ "BSD-3-Clause" ]
4,640
2015-07-08T16:19:08.000Z
2019-12-02T15:01:27.000Z
telemetry/telemetry/internal/platform/platform_backend_unittest.py
Martijnve23/catapult
5c63b19d221af6a12889e8727acc85d93892cab7
[ "BSD-3-Clause" ]
698
2015-06-02T19:18:35.000Z
2022-03-29T16:57:15.000Z
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from __future__ import absolute_import
39.814815
74
0.728372
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from __future__ import absolute_import import unittest import mock from telemetry.core import platform as platform_module from telemetry.internal.platform import platform_backend from telemetry.internal.browser import possible_browser class PlatformBackendTest(unittest.TestCase): def testGetTypExpectationsTags(self): pbe = platform_backend.PlatformBackend() pb = possible_browser.PossibleBrowser('reference_debug', 'win', False) with mock.patch.object( pbe.__class__, 'GetOSName', return_value='win'): with mock.patch.object( pbe.__class__, 'GetOSVersionName', return_value='win 10'): with mock.patch.object( pb.__class__, '_InitPlatformIfNeeded', return_value=None): pb._platform = platform_module.Platform(pbe) self.assertEqual(set(pb.GetTypExpectationsTags()), {'win', 'win-10', 'reference-debug'})
0
0
0
652
0
0
0
86
134
704bb3776179c6385b0af47d73095b8ef624dce9
960
py
Python
files/update-lang-list.py
eumel8/translation_checksite
122acecf10e1de21320f8f0607d45ddada69d032
[ "Apache-2.0" ]
null
null
null
files/update-lang-list.py
eumel8/translation_checksite
122acecf10e1de21320f8f0607d45ddada69d032
[ "Apache-2.0" ]
4
2016-01-30T06:59:50.000Z
2021-12-02T17:55:54.000Z
files/update-lang-list.py
eumel8/translation_checksite
122acecf10e1de21320f8f0607d45ddada69d032
[ "Apache-2.0" ]
3
2016-01-30T03:44:15.000Z
2016-02-05T10:50:43.000Z
#!/usr/bin/env python import pprint import os from django.conf.locale import LANG_INFO from django.utils import translation HORIZON_DIR = '/opt/stack/horizon' langs_horizon = os.listdir(os.path.join(HORIZON_DIR, 'horizon', 'locale')) langs_dashboard = os.listdir(os.path.join(HORIZON_DIR, 'openstack_dashboard', 'locale')) # Pick up languages with both horizon and openstack_dashboard translations langs = set(langs_horizon) & set(langs_dashboard) lang_list = [get_django_lang_name(l, langs) for l in sorted(langs)] print 'LANGUAGES = ', pprint.pprint(tuple(lang_list))
28.235294
88
0.708333
#!/usr/bin/env python import pprint import os from django.conf.locale import LANG_INFO from django.utils import translation def get_django_lang_name(code, all_codes): code = code.lower().replace('_', '-') code_orig = code lang_info = LANG_INFO.get(code) if not lang_info: code = code.split('-', 1)[0] if code not in all_codes: lang_info = LANG_INFO.get(code) if lang_info: return code, lang_info['name'] else: return code_orig, code_orig HORIZON_DIR = '/opt/stack/horizon' langs_horizon = os.listdir(os.path.join(HORIZON_DIR, 'horizon', 'locale')) langs_dashboard = os.listdir(os.path.join(HORIZON_DIR, 'openstack_dashboard', 'locale')) # Pick up languages with both horizon and openstack_dashboard translations langs = set(langs_horizon) & set(langs_dashboard) lang_list = [get_django_lang_name(l, langs) for l in sorted(langs)] print 'LANGUAGES = ', pprint.pprint(tuple(lang_list))
0
0
0
0
0
360
0
0
23
fe6edc63bbf0559878618a4e33821990cd4a7535
235
py
Python
problems/Codeforces/Birthday.py
jspw/Basic_Python
aa159f576a471c6deebdf1e5f462dfc9ffb4930b
[ "Unlicense" ]
6
2020-06-25T14:52:09.000Z
2021-08-05T20:54:15.000Z
problems/Codeforces/Birthday.py
jspw/Basic_Python
aa159f576a471c6deebdf1e5f462dfc9ffb4930b
[ "Unlicense" ]
null
null
null
problems/Codeforces/Birthday.py
jspw/Basic_Python
aa159f576a471c6deebdf1e5f462dfc9ffb4930b
[ "Unlicense" ]
null
null
null
_ = input() m = map(int, input().split()) m = sorted(m) #print(m) l=[] for i in range(len(m)): if(i%2==0): l.append(str(m[i])) for i in range(len(m)-1,0,-1): if(i%2!=0): l.append(str(m[i])) print(' '.join(l))
15.666667
30
0.489362
_ = input() m = map(int, input().split()) m = sorted(m) #print(m) l=[] for i in range(len(m)): if(i%2==0): l.append(str(m[i])) for i in range(len(m)-1,0,-1): if(i%2!=0): l.append(str(m[i])) print(' '.join(l))
0
0
0
0
0
0
0
0
0
fc6a9e223a774f2d6514568d4a145897adc465d7
1,144
py
Python
figures/ring.py
deepsphere/paper-deepsphere-rlgm2019
e3b56f48da5b18bcf9a78426b19f203c5c0dda54
[ "CC-BY-4.0" ]
1
2020-11-05T13:45:40.000Z
2020-11-05T13:45:40.000Z
figures/ring.py
deepsphere/paper-iclr19-rlgm
e3b56f48da5b18bcf9a78426b19f203c5c0dda54
[ "CC-BY-4.0" ]
null
null
null
figures/ring.py
deepsphere/paper-iclr19-rlgm
e3b56f48da5b18bcf9a78426b19f203c5c0dda54
[ "CC-BY-4.0" ]
null
null
null
#!/usr/bin/env python3 import os import numpy as np import pygsp as gsp import matplotlib.pyplot as plt from matplotlib.patches import Arc # plt.rc('font', family='Latin Modern Roman') plt.rc('text', usetex=True) plt.rc('text.latex', preamble=r'\usepackage{lmodern}') fig = plt.figure(figsize = (3, 3)) ax = fig.add_subplot(1, 1, 1) G = gsp.graphs.ring.Ring(8) G.plot(edges=True, ax=ax, title='', vertex_color='r', edge_color='b') circle = plt.Circle((0, 0), radius=1, color='g', fill=False, LineWidth=3) ax.add_artist(circle) angle = 45*1.5 line_1 = plt.Line2D([1, 0], [0, 0], linewidth=2, linestyle="-", color="black") line_2 = plt.Line2D([np.cos(angle/360*2*np.pi), 0], [np.sin(angle/360*2*np.pi), 0], linewidth=2, linestyle = "--", color="black") ax.add_line(line_1) ax.add_line(line_2) angle_plot = Arc((0,0), 0.8, 0.8, 0, 0, angle, color='black', linewidth=2) ax.add_patch(angle_plot) ax.text(0.5*np.cos(angle/2/360*2*np.pi), 0.5*np.sin(angle/2/360*2*np.pi), r"$\theta$", fontsize=18) ax.axis('off') ax.axis('equal') fig.tight_layout() filename = os.path.splitext(os.path.basename(__file__))[0] + '.pdf' fig.savefig(filename)
27.902439
129
0.68007
#!/usr/bin/env python3 import os import numpy as np import pygsp as gsp import matplotlib.pyplot as plt from matplotlib.patches import Arc # plt.rc('font', family='Latin Modern Roman') plt.rc('text', usetex=True) plt.rc('text.latex', preamble=r'\usepackage{lmodern}') fig = plt.figure(figsize = (3, 3)) ax = fig.add_subplot(1, 1, 1) G = gsp.graphs.ring.Ring(8) G.plot(edges=True, ax=ax, title='', vertex_color='r', edge_color='b') circle = plt.Circle((0, 0), radius=1, color='g', fill=False, LineWidth=3) ax.add_artist(circle) angle = 45*1.5 line_1 = plt.Line2D([1, 0], [0, 0], linewidth=2, linestyle="-", color="black") line_2 = plt.Line2D([np.cos(angle/360*2*np.pi), 0], [np.sin(angle/360*2*np.pi), 0], linewidth=2, linestyle = "--", color="black") ax.add_line(line_1) ax.add_line(line_2) angle_plot = Arc((0,0), 0.8, 0.8, 0, 0, angle, color='black', linewidth=2) ax.add_patch(angle_plot) ax.text(0.5*np.cos(angle/2/360*2*np.pi), 0.5*np.sin(angle/2/360*2*np.pi), r"$\theta$", fontsize=18) ax.axis('off') ax.axis('equal') fig.tight_layout() filename = os.path.splitext(os.path.basename(__file__))[0] + '.pdf' fig.savefig(filename)
0
0
0
0
0
0
0
0
0
8fe47d6e92443b760621ca519956d6954987c080
6,343
py
Python
blend/test/TestConfiguration.py
azavea/blend
2cafbc326f2e6b3f1947581cca860ff544adada1
[ "MIT" ]
1
2017-03-06T14:55:29.000Z
2017-03-06T14:55:29.000Z
blend/test/TestConfiguration.py
azavea/blend
2cafbc326f2e6b3f1947581cca860ff544adada1
[ "MIT" ]
null
null
null
blend/test/TestConfiguration.py
azavea/blend
2cafbc326f2e6b3f1947581cca860ff544adada1
[ "MIT" ]
null
null
null
# By Justin Walgran # Copyright (c) 2012 Azavea, Inc. # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE.
40.401274
116
0.700457
# By Justin Walgran # Copyright (c) 2012 Azavea, Inc. # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. import unittest from blend import Configuration from blend import Analyzer from blend.Resource import Resource from blend.SizeAnalyzer import SizeAnalyzer from blend import Minifier from blend.YUICompressorMinifier import YUICompressorMinifier import os import shutil import tempfile from helpers import clean_output, create_file_with_content class TestConfiguration(unittest.TestCase): def setUp(self): self.test_env_dir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.test_env_dir) clean_output() def test_can_add_analyzer_for_filetype(self): conf = Configuration() analyzer = Analyzer() conf.add_analyzer_for_file_type(analyzer, 'javascript') resource = Resource('file.js') analyzers = conf.get_analyzers_for_resource(resource) self.assertListEqual([analyzer], analyzers) def test_returns_non_when_asking_for_analyzers_for_an_unknown_file_type(self): conf = Configuration() analyzer = Analyzer() conf.add_analyzer_for_file_type(analyzer, 'javascript') resource = Resource('file.foo') analyzers = conf.get_analyzers_for_resource(resource) self.assertIsNone(analyzers) def test_add_analyzer_checks_classes(self): conf = Configuration() self.assertRaises(Exception, conf.add_analyzer_for_file_type, 'string instead of an analyzer', 'javascript') # should not throw conf.add_analyzer_for_file_type(Analyzer(), 'javascript') # should not throw conf.add_analyzer_for_file_type(SizeAnalyzer(), 'javascript') def test_throws_when_passed_an_invalid_config_file_path(self): self.assertRaises(Exception, Configuration, '/some/non/existent/path') def test_can_load_analyzers_from_config_file(self): config_file_path = os.path.join(self.test_env_dir, 'blend.config') create_file_with_content(config_file_path, """{ "analyzers": { "javascript": [ { "name": "blend.SizeAnalyzer", "skip_list": [ "bin" ] } ] } }""") conf = Configuration(config_file_path) resource = Resource('file.js') actual_analyzers = conf.get_analyzers_for_resource(resource) self.assertIsNotNone(actual_analyzers) self.assertEqual(1, len(actual_analyzers)) self.assertIsInstance(actual_analyzers[0], SizeAnalyzer) self.assertIsNotNone(conf.analyzer_skip_lists) def test_can_load_minfiers_from_config_file(self): config_file_path = os.path.join(self.test_env_dir, 'blend.config') create_file_with_content(config_file_path, """{ "minifiers": { "javascript": { "name": "blend.YUICompressorMinifier" } } }""") conf = Configuration(config_file_path) resource = Resource('file.js') actual_minifier = conf.get_minifier_for_file_type(resource.file_type) self.assertIsNotNone(actual_minifier) self.assertIsInstance(actual_minifier, YUICompressorMinifier) def test_can_add_minifier_for_filetype(self): conf = Configuration() minifier = Minifier() conf.set_minifier_for_file_type(minifier, 'javascript') actual_minifier = conf.get_minifier_for_file_type('javascript') self.assertEqual(minifier, actual_minifier) def test_add_minifier_checks_classes(self): conf = Configuration() self.assertRaises(Exception, conf.set_minifier_for_file_type, 'string instead of an minifier', 'javascript') # should not throw conf.set_minifier_for_file_type(Minifier(), 'javascript') # should not throw conf.set_minifier_for_file_type(YUICompressorMinifier(), 'javascript') def test_returns_none_when_asking_for_minifier_for_an_unknown_file_type(self): conf = Configuration() minifier = Minifier() conf.set_minifier_for_file_type(minifier, 'javascript') analyzers = conf.get_minifier_for_file_type('some-other-type') self.assertIsNone(analyzers) def test_get_analyzers_for_resource_with_skip_list(self): lib_resource = Resource(os.path.join(os.getcwd(), 'lib', 'jquery.js')) deep_lib_resource = Resource(os.path.join(os.getcwd(), 'deeply', 'nested', 'lib', 'backbone.js')) src_resource = Resource(os.path.join(os.getcwd(), 'src', 'file.js')) conf = Configuration() analyzer = Analyzer() conf.add_analyzer_for_file_type(analyzer, 'javascript', [ os.path.join('lib', '*'), os.path.join('*', 'lib', '*') ]) self.assertIsNone(conf.get_analyzers_for_resource(lib_resource)) self.assertIsNone(conf.get_analyzers_for_resource(deep_lib_resource)) self.assertEqual([analyzer], conf.get_analyzers_for_resource(src_resource)) def test_add_analyzer_for_file_type_raises_when_skip_list_is_a_string(self): conf = Configuration() self.assertRaises(Exception, conf.add_analyzer_for_file_type, Analyzer(), 'javascript', 'something invalid')
0
0
0
4,855
0
0
0
101
269
7d4df8ca4fd9f6faefafdc8a8cbba5f7922eda77
1,876
py
Python
07/7.1.py
abe-101/ThinkPython-2
bcebb1e9b3cc63c403f59c3cc0f33017bb017363
[ "MIT" ]
1
2021-12-16T16:46:47.000Z
2021-12-16T16:46:47.000Z
07/7.1.py
abe-101/ThinkPython-2
bcebb1e9b3cc63c403f59c3cc0f33017bb017363
[ "MIT" ]
null
null
null
07/7.1.py
abe-101/ThinkPython-2
bcebb1e9b3cc63c403f59c3cc0f33017bb017363
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import math def mysqrt(a): """Compute the square root of a using Newton's method: start with an approximate answer and iteratively improving it """ estimate = a / 2 + 1 # Arbitrary estimae of the square root of a epsilon = 0.0000001 while True: approx = (estimate + a / estimate)/2 if abs(approx-estimate) < epsilon: return approx estimate = approx def test_square_root(a): """Print a table that, for all the numbers in the range a, compares the square roots calculated with the Newton's method with those calculated with the built in function math.sqrt() and display the absolute error between the two. """ n = float(1) print('n', ' '*10, 'mysqrt(n)', ' '*10, 'math.swrt(n)', ' '*10, 'diff') print('-', ' '*10, '---------', ' '*10, '------------', ' '*10, '----') for i in range(a): my_square = mysqrt(n) math_square = math.sqrt(n) abs_error = abs(math_square - my_square) x = str(n) if (len(x) >= 4): val = x + (' '*(9-(len(x)-3))) else: val = x + ' '*9 perfect_square = math_square*math_square == n my_square = format(my_square, '.12f') math_square = format(math_square, '.12f') abs_error = format(abs_error, '.12g') if (perfect_square): my_square = my_square[:3] math_square = math_square[:3] space1 = ' '*16 space2 = ' '*19 else: space1 = ' '*5 space2 = ' '*8 print(val, my_square, space1, math_square, space2, abs_error) n += 1 def ask_user(): """Prompt the user to enter how many numbers to be calculated""" a = int(input('Enter how many numbers you want to calculate: ')) test_square_root(a) ask_user()
31.266667
80
0.549041
#!/usr/bin/python3 import math def mysqrt(a): """Compute the square root of a using Newton's method: start with an approximate answer and iteratively improving it """ estimate = a / 2 + 1 # Arbitrary estimae of the square root of a epsilon = 0.0000001 while True: approx = (estimate + a / estimate)/2 if abs(approx-estimate) < epsilon: return approx estimate = approx def test_square_root(a): """Print a table that, for all the numbers in the range a, compares the square roots calculated with the Newton's method with those calculated with the built in function math.sqrt() and display the absolute error between the two. """ n = float(1) print('n', ' '*10, 'mysqrt(n)', ' '*10, 'math.swrt(n)', ' '*10, 'diff') print('-', ' '*10, '---------', ' '*10, '------------', ' '*10, '----') for i in range(a): my_square = mysqrt(n) math_square = math.sqrt(n) abs_error = abs(math_square - my_square) x = str(n) if (len(x) >= 4): val = x + (' '*(9-(len(x)-3))) else: val = x + ' '*9 perfect_square = math_square*math_square == n my_square = format(my_square, '.12f') math_square = format(math_square, '.12f') abs_error = format(abs_error, '.12g') if (perfect_square): my_square = my_square[:3] math_square = math_square[:3] space1 = ' '*16 space2 = ' '*19 else: space1 = ' '*5 space2 = ' '*8 print(val, my_square, space1, math_square, space2, abs_error) n += 1 def ask_user(): """Prompt the user to enter how many numbers to be calculated""" a = int(input('Enter how many numbers you want to calculate: ')) test_square_root(a) ask_user()
0
0
0
0
0
0
0
0
0
df668d722b67fd2443fb0e29147acb271a0d6a49
63,507
py
Python
tests/simulations/system/test_system_unitary.py
john-grando/pyExpandObjects
c08b1d1bc45684bc71c0f49b4d2f22c707cd4aa4
[ "BSD-3-Clause" ]
null
null
null
tests/simulations/system/test_system_unitary.py
john-grando/pyExpandObjects
c08b1d1bc45684bc71c0f49b4d2f22c707cd4aa4
[ "BSD-3-Clause" ]
1
2021-02-03T01:56:56.000Z
2021-02-03T01:56:56.000Z
tests/simulations/system/test_system_unitary.py
john-grando/pyExpandObjects
c08b1d1bc45684bc71c0f49b4d2f22c707cd4aa4
[ "BSD-3-Clause" ]
1
2022-01-11T18:31:05.000Z
2022-01-11T18:31:05.000Z
from pathlib import Path test_dir = Path(__file__).parent.parent.parent hot_water_objects = { "HVACTemplate:Plant:Boiler": { "Main Boiler": { "boiler_type": "HotWaterBoiler", "capacity": "Autosize", "efficiency": 0.8, "fuel_type": "NaturalGas", "priority": "1" } }, "HVACTemplate:Plant:HotWaterLoop": { "Hot Water Loop": { "hot_water_design_setpoint": 82, "hot_water_plant_operation_scheme_type": "Default", "hot_water_pump_configuration": "ConstantFlow", "hot_water_pump_rated_head": 179352, "hot_water_reset_outdoor_dry_bulb_high": 10, "hot_water_reset_outdoor_dry_bulb_low": -6.7, "hot_water_setpoint_at_outdoor_dry_bulb_high": 65.6, "hot_water_setpoint_at_outdoor_dry_bulb_low": 82.2, "hot_water_setpoint_reset_type": "OutdoorAirTemperatureReset", "pump_control_type": "Intermittent" } } } schedule_objects = { "Schedule:Compact": { "Always0.8": { "data": [ { "field": "Through: 12/31" }, { "field": "For: AllDays" }, { "field": "Until: 24:00" }, { "field": 0.8 } ], "schedule_type_limits_name": "Any Number" }, "Always6.8": { "data": [ { "field": "Through: 12/31" }, { "field": "For: AllDays" }, { "field": "Until: 24:00" }, { "field": 6.8 } ], "schedule_type_limits_name": "Any Number" }, "Always12.5": { "data": [ { "field": "Through: 12/31" }, { "field": "For: AllDays" }, { "field": "Until: 24:00" }, { "field": 12.5 } ], "schedule_type_limits_name": "Any Number" }, "Always15.5": { "data": [ { "field": "Through: 12/31" }, { "field": "For: AllDays" }, { "field": "Until: 24:00" }, { "field": 15.5 } ], "schedule_type_limits_name": "Any Number" }, "Always62": { "data": [ { "field": "Through: 12/31" }, { "field": "For: AllDays" }, { "field": "Until: 24:00" }, { "field": 62.0 } ], "schedule_type_limits_name": "Any Number" }, "Always29": { "data": [ { "field": "Through: 12/31" }, { "field": "For: AllDays" }, { "field": "Until: 24:00" }, { "field": 29.0 } ], "schedule_type_limits_name": "Any Number" } } }
56.652096
125
0.678366
from pathlib import Path from tests.simulations import BaseSimulationTest from src.epjson_handler import EPJSON test_dir = Path(__file__).parent.parent.parent hot_water_objects = { "HVACTemplate:Plant:Boiler": { "Main Boiler": { "boiler_type": "HotWaterBoiler", "capacity": "Autosize", "efficiency": 0.8, "fuel_type": "NaturalGas", "priority": "1" } }, "HVACTemplate:Plant:HotWaterLoop": { "Hot Water Loop": { "hot_water_design_setpoint": 82, "hot_water_plant_operation_scheme_type": "Default", "hot_water_pump_configuration": "ConstantFlow", "hot_water_pump_rated_head": 179352, "hot_water_reset_outdoor_dry_bulb_high": 10, "hot_water_reset_outdoor_dry_bulb_low": -6.7, "hot_water_setpoint_at_outdoor_dry_bulb_high": 65.6, "hot_water_setpoint_at_outdoor_dry_bulb_low": 82.2, "hot_water_setpoint_reset_type": "OutdoorAirTemperatureReset", "pump_control_type": "Intermittent" } } } schedule_objects = { "Schedule:Compact": { "Always0.8": { "data": [ { "field": "Through: 12/31" }, { "field": "For: AllDays" }, { "field": "Until: 24:00" }, { "field": 0.8 } ], "schedule_type_limits_name": "Any Number" }, "Always6.8": { "data": [ { "field": "Through: 12/31" }, { "field": "For: AllDays" }, { "field": "Until: 24:00" }, { "field": 6.8 } ], "schedule_type_limits_name": "Any Number" }, "Always12.5": { "data": [ { "field": "Through: 12/31" }, { "field": "For: AllDays" }, { "field": "Until: 24:00" }, { "field": 12.5 } ], "schedule_type_limits_name": "Any Number" }, "Always15.5": { "data": [ { "field": "Through: 12/31" }, { "field": "For: AllDays" }, { "field": "Until: 24:00" }, { "field": 15.5 } ], "schedule_type_limits_name": "Any Number" }, "Always62": { "data": [ { "field": "Through: 12/31" }, { "field": "For: AllDays" }, { "field": "Until: 24:00" }, { "field": 62.0 } ], "schedule_type_limits_name": "Any Number" }, "Always29": { "data": [ { "field": "Through: 12/31" }, { "field": "For: AllDays" }, { "field": "Until: 24:00" }, { "field": 29.0 } ], "schedule_type_limits_name": "Any Number" } } } class TestSimulationsSystemUnitary(BaseSimulationTest): def setUp(self): self.ej = EPJSON() base_idf_file_path = test_dir.joinpath('..', 'simulation', 'ExampleFiles', 'HVACTemplate-5ZoneFurnaceDX.idf') base_copy_file_path = self._copy_to_test_directory(base_idf_file_path) # read in base file, then edit inputs for alternate tests self.base_epjson = self.get_epjson_object_from_idf_file(base_copy_file_path) self.base_epjson.pop('Output:Variable') return def teardown(self): return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:minimum_inputs") def test_minimum_inputs(self): self.base_epjson['HVACTemplate:Zone:Unitary']['HVACTemplate:Zone:Unitary 1'][ 'zone_cooling_design_supply_air_temperature_input_method'] = 'SupplyAirTemperature' self.base_epjson['HVACTemplate:Zone:Unitary']['HVACTemplate:Zone:Unitary 2'][ 'zone_cooling_design_supply_air_temperature_input_method'] = 'SupplyAirTemperature' self.base_epjson['HVACTemplate:Zone:Unitary']['HVACTemplate:Zone:Unitary 3'][ 'zone_cooling_design_supply_air_temperature_input_method'] = 'SupplyAirTemperature' self.base_epjson['HVACTemplate:Zone:Unitary']['HVACTemplate:Zone:Unitary 4'][ 'zone_cooling_design_supply_air_temperature_input_method'] = 'SupplyAirTemperature' self.base_epjson['HVACTemplate:System:Unitary'].pop('Furnace DX 1-1') self.ej.merge_epjson( super_dictionary=self.base_epjson, object_dictionary={ 'HVACTemplate:System:Unitary': { 'Furnace DX 1-1': { } } } ) base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:system_availability_schedule_name") def test_system_availability_schedule_name(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'system_availability_schedule_name'] = 'OCCUPY-1' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'night_cycle_control'] = 'CycleOnAny' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'OCCUPY-1', epjson_output['Fan:OnOff']['Furnace DX 1-1 Supply Fan']['availability_schedule_name']) self.assertEqual( 'OCCUPY-1', epjson_output['AvailabilityManager:NightCycle']['Furnace DX 1-1 Availability']['fan_schedule_name']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:supply_fan_maximum_flow_rate") def test_supply_fan_maximum_flow_rate(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1']['supply_fan_maximum_flow_rate'] = 1.01 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 1.01, epjson_output['Sizing:System']['Furnace DX 1-1 Sizing System']['cooling_supply_air_flow_rate']) return @BaseSimulationTest._test_logger(doc_text="Simulation:Zone:Unitary:supply_fan_operating_mode_schedule_name") def test_supply_fan_operating_mode_schedule_name(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'supply_fan_operating_mode_schedule_name'] = 'OCCUPY-1' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'OCCUPY-1', epjson_output['AirLoopHVAC:Unitary:Furnace:HeatCool']['Furnace DX 1-1 Furnace with DX Cooling'][ 'supply_air_fan_operating_mode_schedule_name']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:supply_fan_total_efficiency") def test_supply_fan_total_efficiency(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1']['supply_fan_total_efficiency'] = 0.65 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 0.65, epjson_output['Fan:OnOff']['Furnace DX 1-1 Supply Fan']['fan_total_efficiency']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:supply_fan_delta_pressure") def test_supply_fan_delta_pressure(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1']['supply_fan_delta_pressure'] = 500 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 500, epjson_output['Fan:OnOff']['Furnace DX 1-1 Supply Fan']['pressure_rise']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:supply_fan_motor_efficiency") def test_supply_fan_motor_efficiency(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1']['supply_fan_motor_efficiency'] = 0.8 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 0.8, epjson_output['Fan:OnOff']['Furnace DX 1-1 Supply Fan']['motor_efficiency']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:supply_fan_motor_in_air_stream_fraction") def test_supply_fan_motor_in_air_stream_fraction(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'supply_fan_motor_in_air_stream_fraction'] = 0.9 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath('..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 0.9, epjson_output['Fan:OnOff']['Furnace DX 1-1 Supply Fan']['motor_in_airstream_fraction']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:cooling_coil_type_single_speed_dx") def test_cooling_coil_type_single_speed_dx(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'cooling_coil_type'] = 'SingleSpeedDX' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertIsNotNone( epjson_output['Coil:Cooling:DX:SingleSpeed'].get('Furnace DX 1-1 Cooling Coil')) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:cooling_coil_type_none") def test_cooling_coil_type_none(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'cooling_coil_type'] = 'None' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertIsNone( epjson_output['Coil:Cooling:DX:SingleSpeed'].get('Furnace DX 1-1 Cooling Coil')) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:cooling_coil_availability_schedule_name") def test_cooling_coil_availability_schedule_name(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'cooling_coil_availability_schedule_name'] = 'OCCUPY-1' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath('..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'OCCUPY-1', epjson_output['Coil:Cooling:DX:SingleSpeed']['Furnace DX 1-1 Cooling Coil']['availability_schedule_name']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:" "cooling_design_supply_air_temperature") def test_cooling_design_supply_air_temperature(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'cooling_design_supply_air_temperature'] = 12.9 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 12.9, epjson_output['Sizing:System']['Furnace DX 1-1 Sizing System'][ 'central_cooling_design_supply_air_temperature']) self.assertEqual( 12.9, epjson_output['SetpointManager:SingleZone:Cooling']['Furnace DX 1-1 Cooling Supply Air Temp Manager'][ 'minimum_supply_air_temperature']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:" "cooling_coil_gross_rated_total_capacity") def test_cooling_coil_gross_rated_total_capacity(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'cooling_coil_gross_rated_total_capacity'] = 2000 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 2000, epjson_output['Coil:Cooling:DX:SingleSpeed']['Furnace DX 1-1 Cooling Coil'][ 'gross_rated_total_cooling_capacity']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:" "cooling_coil_gross_rated_sensible_heat_ratio") def test_cooling_coil_gross_rated_sensible_heat_ratio(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'cooling_coil_gross_rated_sensible_heat_ratio'] = 0.75 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 0.75, epjson_output['Coil:Cooling:DX:SingleSpeed']['Furnace DX 1-1 Cooling Coil'][ 'gross_rated_sensible_heat_ratio']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:" "cooling_coil_gross_rated_cop") def test_cooling_coil_gross_rated_cop(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'cooling_coil_gross_rated_cop'] = 3.1 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 3.1, epjson_output['Coil:Cooling:DX:SingleSpeed']['Furnace DX 1-1 Cooling Coil'][ 'gross_rated_cooling_cop']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:heating_coil_type_electric") def test_heating_coil_type_electric(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'heating_coil_type'] = 'Electric' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertIsNotNone( epjson_output['Coil:Heating:Electric'].get('Furnace DX 1-1 Heating Coil')) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:heating_coil_type_gas") def test_heating_coil_type_gas(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'heating_coil_type'] = 'Gas' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertIsNotNone( epjson_output['Coil:Heating:Fuel'].get('Furnace DX 1-1 Heating Coil')) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:heating_coil_type_hot_water") def test_heating_coil_type_hot_water(self): self.ej.merge_epjson( super_dictionary=self.base_epjson, object_dictionary=hot_water_objects) self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'heating_coil_type'] = 'HotWater' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertIsNotNone( epjson_output['Coil:Heating:Water'].get('Furnace DX 1-1 Heating Coil')) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:heating_coil_availability_schedule_name") def test_heating_coil_availability_schedule_name(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'heating_coil_availability_schedule_name'] = 'OCCUPY-1' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'OCCUPY-1', epjson_output['Coil:Heating:Fuel']['Furnace DX 1-1 Heating Coil']['availability_schedule_name']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:" "heating_design_supply_air_temperature") def test_heating_design_supply_air_temperature(self): # todo_eo: why is the SetpointManager:SingleZone:Cooling object not affected by this input self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'heating_design_supply_air_temperature'] = 48 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 48, epjson_output['Sizing:System']['Furnace DX 1-1 Sizing System'][ 'central_heating_design_supply_air_temperature']) # self.assertEqual( # 48, # epjson_output['SetpointManager:SingleZone:Cooling']['Furnace DX 1-1 Cooling Supply Air Temp Manager'][ # 'maximum_supply_air_temperature']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:" "heating_coil_capacity") def test_heating_coil_capacity(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'heating_coil_capacity'] = 2000 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 2000, epjson_output['Coil:Heating:Fuel']['Furnace DX 1-1 Heating Coil'][ 'nominal_capacity']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:" "gas_heating_coil_efficiency") def test_gas_heating_coil_efficiency(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'gas_heating_coil_efficiency'] = 0.77 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 0.77, epjson_output['Coil:Heating:Fuel']['Furnace DX 1-1 Heating Coil']['burner_efficiency']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:" "gas_heating_coil_parasitic_electric_load") def test_gas_heating_coil_parasitic_electric_load(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'gas_heating_coil_parasitic_electric_load'] = 1 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 1, epjson_output['Coil:Heating:Fuel']['Furnace DX 1-1 Heating Coil']['parasitic_electric_load']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:" "outdoor_air_flow_rates") def test_outdoor_air_flow_rates(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'maximum_outdoor_air_flow_rate'] = 0.66 self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'minimum_outdoor_air_flow_rate'] = 0.1 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 0.66, epjson_output['Controller:OutdoorAir']['Furnace DX 1-1 OA Controller']['maximum_outdoor_air_flow_rate']) self.assertEqual( 0.1, epjson_output['Controller:OutdoorAir']['Furnace DX 1-1 OA Controller']['minimum_outdoor_air_flow_rate']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:minimum_outdoor_air_schedule_name") def test_minimum_outdoor_air_schedule_name(self): self.ej.merge_epjson( super_dictionary=self.base_epjson, object_dictionary=schedule_objects) self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'minimum_outdoor_air_schedule_name'] = 'Always0.8' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'Always0.8', epjson_output['Controller:OutdoorAir']['Furnace DX 1-1 OA Controller'][ 'minimum_outdoor_air_schedule_name']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:economizer_type_no_economizer") def test_economizer_type_no_economizer(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'economizer_type'] = 'NoEconomizer' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath('..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'NoEconomizer', epjson_output['Controller:OutdoorAir']['Furnace DX 1-1 OA Controller']['economizer_control_type']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:economizer_type_fixed_dry_bulb") def test_economizer_type_fixed_dry_bulb(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'economizer_type'] = 'FixedDryBulb' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath('..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'FixedDryBulb', epjson_output['Controller:OutdoorAir']['Furnace DX 1-1 OA Controller']['economizer_control_type']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:economizer_type_fixed_enthalpy") def test_economizer_type_fixed_enthalpy(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'economizer_type'] = 'FixedEnthalpy' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath('..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'FixedEnthalpy', epjson_output['Controller:OutdoorAir']['Furnace DX 1-1 OA Controller']['economizer_control_type']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:economizer_type_differential_dry_bulb") def test_economizer_type_differential_dry_bulb(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'economizer_type'] = 'DifferentialDryBulb' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath('..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'DifferentialDryBulb', epjson_output['Controller:OutdoorAir']['Furnace DX 1-1 OA Controller']['economizer_control_type']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:economizer_type_differential_enthalpy") def test_economizer_type_differential_enthalpy(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'economizer_type'] = 'DifferentialEnthalpy' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath('..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'DifferentialEnthalpy', epjson_output['Controller:OutdoorAir']['Furnace DX 1-1 OA Controller']['economizer_control_type']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:" "economizer_type_fixed_dew_point_and_dry_bulb") def test_economizer_type_fixed_dew_point_and_dry_bulb(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'economizer_type'] = 'FixedDewPointAndDryBulb' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath('..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'FixedDewPointAndDryBulb', epjson_output['Controller:OutdoorAir']['Furnace DX 1-1 OA Controller']['economizer_control_type']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:" "electronic_enthalpy") def test_economizer_type_electronic_enthalpy(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'economizer_type'] = 'ElectronicEnthalpy' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath('..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'ElectronicEnthalpy', epjson_output['Controller:OutdoorAir']['Furnace DX 1-1 OA Controller']['economizer_control_type']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:economizer_type_" "differential_dry_bulb_and_enthalpy") def test_economizer_type_differential_dry_bulb_and_enthalpy(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'economizer_type'] = 'DifferentialDryBulbAndEnthalpy' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath('..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'DifferentialDryBulbAndEnthalpy', epjson_output['Controller:OutdoorAir']['Furnace DX 1-1 OA Controller']['economizer_control_type']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:economizer_lockout_no_lockout") def test_economizer_lockout_no_lockout(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'economizer_lockout'] = 'NoLockout' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath('..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'NoLockout', epjson_output['Controller:OutdoorAir']['Furnace DX 1-1 OA Controller']['lockout_type']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:economizer_lockout_lockout_with_heating") def test_economizer_lockout_lockout_with_heating(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'economizer_lockout'] = 'LockoutWithHeating' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'LockoutWithHeating', epjson_output['Controller:OutdoorAir']['Furnace DX 1-1 OA Controller']['lockout_type']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:" "economizer_lockout_lockout_with_compressor") def test_economizer_lockout_lockout_with_compressor(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'economizer_lockout'] = 'LockoutWithCompressor' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'LockoutWithCompressor', epjson_output['Controller:OutdoorAir']['Furnace DX 1-1 OA Controller']['lockout_type']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:economizer_temperature_limits") def test_economizer_temperature_limits(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'economizer_type'] = 'FixedDryBulb' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'economizer_upper_temperature_limit'] = 18 self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'economizer_lower_temperature_limit'] = 5 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 18, epjson_output['Controller:OutdoorAir']['Furnace DX 1-1 OA Controller'][ 'economizer_maximum_limit_dry_bulb_temperature']) self.assertEqual( 5, epjson_output['Controller:OutdoorAir']['Furnace DX 1-1 OA Controller'][ 'economizer_minimum_limit_dry_bulb_temperature']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:economizer_upper_enthalpy_limit") def test_economizer_upper_enthalpy_limit(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'economizer_upper_enthalpy_limit'] = 100 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 100, epjson_output['Controller:OutdoorAir']['Furnace DX 1-1 OA Controller']['economizer_maximum_limit_enthalpy']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:economizer_maximum_limit_dewpoint_temperature") def test_economizer_maximum_limit_dewpoint_temperature(self): # todo_eo: Notes say that limit is applied regardless of what economizer type is applied. However, EO only # applies the value when certain economizer is selected. Figure out what is preferred method. self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'economizer_maximum_limit_dewpoint_temperature'] = 20 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 20, epjson_output['Controller:OutdoorAir']['Furnace DX 1-1 OA Controller'][ 'economizer_maximum_limit_dewpoint_temperature']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:supply_plenum_name") def test_supply_plenum_name(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'supply_plenum_name'] = 'PLENUM-1' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'PLENUM-1', epjson_output['AirLoopHVAC:SupplyPlenum']['Furnace DX 1-1 Supply Plenum']['zone_name']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:return_plenum_name") def test_return_plenum_name(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'return_plenum_name'] = 'PLENUM-1' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'PLENUM-1', epjson_output['AirLoopHVAC:ReturnPlenum']['Furnace DX 1-1 Return Plenum']['zone_name']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:supply_fan_placement_blow_through") def test_supply_fan_placement_blow_through(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'supply_fan_placement'] = 'BlowThrough' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'BlowThrough', epjson_output['AirLoopHVAC:Unitary:Furnace:HeatCool']['Furnace DX 1-1 Furnace with DX Cooling'][ 'fan_placement']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:supply_fan_placement_draw_through") def test_supply_fan_placement_draw_through(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'supply_fan_placement'] = 'DrawThrough' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'DrawThrough', epjson_output['AirLoopHVAC:Unitary:Furnace:HeatCool']['Furnace DX 1-1 Furnace with DX Cooling'][ 'fan_placement']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:night_cycle_control_stay_off") def test_night_cycle_control_stay_off(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'night_cycle_control'] = 'StayOff' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath('..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'StayOff', epjson_output['AvailabilityManager:NightCycle']['Furnace DX 1-1 Availability']['control_type']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:night_cycle_control_cycle_on_any") def test_night_cycle_control_cycle_on_any(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'night_cycle_control'] = 'CycleOnAny' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath('..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'CycleOnAny', epjson_output['AvailabilityManager:NightCycle']['Furnace DX 1-1 Availability']['control_type']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:night_cycle_control_cycle_on_control_zone") def test_night_cycle_control_cycle_on_control_zone(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'night_cycle_control'] = 'CycleOnControlZone' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'night_cycle_control_zone_name'] = 'SPACE1-1' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath('..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'CycleOnControlZone', epjson_output['AvailabilityManager:NightCycle']['Furnace DX 1-1 Availability']['control_type']) self.assertEqual( 'SPACE1-1', epjson_output['AvailabilityManager:NightCycle']['Furnace DX 1-1 Availability']['control_zone_or_zone_list_name']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:heat_recovery_sensible") def test_heat_recovery_sensible(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'heat_recovery_type'] = 'Sensible' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertIsNotNone(epjson_output.get('HeatExchanger:AirToAir:SensibleAndLatent')) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:heat_recovery_enthalpy") def test_heat_recovery_enthalpy(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'heat_recovery_type'] = 'Enthalpy' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertIsNotNone(epjson_output.get('HeatExchanger:AirToAir:SensibleAndLatent')) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:heat_recovery_effectiveness_sensible") def test_heat_recovery_effectiveness_sensible(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'heat_recovery_type'] = 'Sensible' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'sensible_heat_recovery_effectiveness'] = 0.72 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath('..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertIsNotNone(epjson_output.get('HeatExchanger:AirToAir:SensibleAndLatent')) self.assertEqual( 0.77, epjson_output['HeatExchanger:AirToAir:SensibleAndLatent']['Furnace DX 1-1 Heat Recovery'][ 'sensible_effectiveness_at_75_cooling_air_flow']) self.assertEqual( 0.77, epjson_output['HeatExchanger:AirToAir:SensibleAndLatent']['Furnace DX 1-1 Heat Recovery'][ 'sensible_effectiveness_at_75_heating_air_flow']) self.assertEqual( 0.72, epjson_output['HeatExchanger:AirToAir:SensibleAndLatent']['Furnace DX 1-1 Heat Recovery'][ 'sensible_effectiveness_at_100_cooling_air_flow']) self.assertEqual( 0.72, epjson_output['HeatExchanger:AirToAir:SensibleAndLatent']['Furnace DX 1-1 Heat Recovery'][ 'sensible_effectiveness_at_100_heating_air_flow']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:heat_recovery_effectiveness_enthalpy") def test_heat_recovery_effectiveness_enthalpy(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'heat_recovery_type'] = 'Enthalpy' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'sensible_heat_recovery_effectiveness'] = 0.72 self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'latent_heat_recovery_effectiveness'] = 0.61 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath('..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertIsNotNone(epjson_output.get('HeatExchanger:AirToAir:SensibleAndLatent')) self.assertEqual( 0.77, epjson_output['HeatExchanger:AirToAir:SensibleAndLatent']['Furnace DX 1-1 Heat Recovery'][ 'sensible_effectiveness_at_75_cooling_air_flow']) self.assertEqual( 0.77, epjson_output['HeatExchanger:AirToAir:SensibleAndLatent']['Furnace DX 1-1 Heat Recovery'][ 'sensible_effectiveness_at_75_heating_air_flow']) self.assertEqual( 0.72, epjson_output['HeatExchanger:AirToAir:SensibleAndLatent']['Furnace DX 1-1 Heat Recovery'][ 'sensible_effectiveness_at_100_cooling_air_flow']) self.assertEqual( 0.72, epjson_output['HeatExchanger:AirToAir:SensibleAndLatent']['Furnace DX 1-1 Heat Recovery'][ 'sensible_effectiveness_at_100_heating_air_flow']) self.assertEqual( 0.61, epjson_output['HeatExchanger:AirToAir:SensibleAndLatent']['Furnace DX 1-1 Heat Recovery'][ 'latent_effectiveness_at_100_cooling_air_flow']) self.assertEqual( 0.61, epjson_output['HeatExchanger:AirToAir:SensibleAndLatent']['Furnace DX 1-1 Heat Recovery'][ 'latent_effectiveness_at_100_heating_air_flow']) self.assertEqual( 0.66, epjson_output['HeatExchanger:AirToAir:SensibleAndLatent']['Furnace DX 1-1 Heat Recovery'][ 'latent_effectiveness_at_75_cooling_air_flow']) self.assertEqual( 0.66, epjson_output['HeatExchanger:AirToAir:SensibleAndLatent']['Furnace DX 1-1 Heat Recovery'][ 'latent_effectiveness_at_75_heating_air_flow']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:dehumidification_control_type_none") def test_dehumidification_control_type_none(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'dehumidification_control_type'] = 'None' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:" "dehumidification_control_type_cool_reheat_gas") def test_dehumidification_control_type_cool_reheat_heating_coil_gas(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'heating_coil_type'] = 'Gas' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'dehumidification_control_type'] = 'CoolReheatHeatingCoil' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'dehumidification_control_zone_name'] = 'SPACE1-1' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'dehumidification_setpoint'] = 62 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'HVACTemplate-Always62.0', epjson_output['ZoneControl:Humidistat']['Furnace DX 1-1 Dehumidification Humidistat'][ 'dehumidifying_relative_humidity_setpoint_schedule_name']) self.assertEqual( 'Coil:Heating:Fuel', epjson_output['AirLoopHVAC:Unitary:Furnace:HeatCool']['Furnace DX 1-1 Furnace with DX Cooling'][ 'heating_coil_object_type']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:" "dehumidification_control_type_cool_reheat_electric") def test_dehumidification_control_type_cool_reheat_heating_coil_electric(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'heating_coil_type'] = 'Electric' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'dehumidification_control_type'] = 'CoolReheatHeatingCoil' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'dehumidification_control_zone_name'] = 'SPACE1-1' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'dehumidification_setpoint'] = 62 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'HVACTemplate-Always62.0', epjson_output['ZoneControl:Humidistat']['Furnace DX 1-1 Dehumidification Humidistat'][ 'dehumidifying_relative_humidity_setpoint_schedule_name']) self.assertEqual( 'Coil:Heating:Electric', epjson_output['AirLoopHVAC:Unitary:Furnace:HeatCool']['Furnace DX 1-1 Furnace with DX Cooling'][ 'heating_coil_object_type']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:" "dehumidification_control_type_cool_reheat_hot_water") def test_dehumidification_control_type_cool_reheat_heating_coil_hot_water(self): self.ej.merge_epjson( super_dictionary=self.base_epjson, object_dictionary=hot_water_objects) self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'heating_coil_type'] = 'HotWater' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'dehumidification_control_type'] = 'CoolReheatHeatingCoil' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'dehumidification_control_zone_name'] = 'SPACE1-1' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'dehumidification_setpoint'] = 62 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'HVACTemplate-Always62.0', epjson_output['ZoneControl:Humidistat']['Furnace DX 1-1 Dehumidification Humidistat'][ 'dehumidifying_relative_humidity_setpoint_schedule_name']) self.assertEqual( 'Coil:Heating:Water', epjson_output['AirLoopHVAC:Unitary:Furnace:HeatCool']['Furnace DX 1-1 Furnace with DX Cooling'][ 'heating_coil_object_type']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:humidifier_type") def test_humidifier_type(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'humidifier_type'] = 'ElectricSteam' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'humidifier_control_zone_name'] = 'SPACE1-1' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'humidifier_setpoint'] = 29 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertIsNotNone(epjson_output['Humidifier:Steam:Electric'].get('Furnace DX 1-1 Humidifier')) self.assertEqual( 'HVACTemplate-Always29.0', epjson_output['ZoneControl:Humidistat']['Furnace DX 1-1 Humidification Humidistat'][ 'humidifying_relative_humidity_setpoint_schedule_name']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:humidifier_inputs") def test_humidifier_inputs(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'humidifier_type'] = 'ElectricSteam' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'humidifier_control_zone_name'] = 'SPACE1-1' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'humidifier_relative_humidity_setpoint'] = 29 self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'humidifier_availability_schedule_name'] = 'OCCUPY-1' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'humidifier_rated_capacity'] = 1 self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'humidifier_rated_electric_power'] = 1000 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath('..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertIsNotNone(epjson_output['Humidifier:Steam:Electric'].get('Furnace DX 1-1 Humidifier')) self.assertEqual( 'OCCUPY-1', epjson_output['Humidifier:Steam:Electric']['Furnace DX 1-1 Humidifier']['availability_schedule_name']) self.assertEqual( 1, epjson_output['Humidifier:Steam:Electric']['Furnace DX 1-1 Humidifier']['rated_capacity']) self.assertEqual( 1000, epjson_output['Humidifier:Steam:Electric']['Furnace DX 1-1 Humidifier']['rated_power']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:humidifier_type") def test_humidifier_and_dehumidifier(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'humidifier_type'] = 'ElectricSteam' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'humidifier_control_zone_name'] = 'SPACE1-1' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'humidifier_setpoint'] = 29 self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'heating_coil_type'] = 'Electric' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'dehumidification_control_type'] = 'CoolReheatHeatingCoil' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'dehumidification_control_zone_name'] = 'SPACE1-1' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'dehumidification_setpoint'] = 62 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath( '..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 'HVACTemplate-Always62.0', epjson_output['ZoneControl:Humidistat']['Furnace DX 1-1 Humidistat'][ 'dehumidifying_relative_humidity_setpoint_schedule_name']) self.assertEqual( 'Coil:Heating:Electric', epjson_output['AirLoopHVAC:Unitary:Furnace:HeatCool']['Furnace DX 1-1 Furnace with DX Cooling'][ 'heating_coil_object_type']) self.assertIsNotNone(epjson_output['Humidifier:Steam:Electric'].get('Furnace DX 1-1 Humidifier')) self.assertEqual( 'HVACTemplate-Always29.0', epjson_output['ZoneControl:Humidistat']['Furnace DX 1-1 Humidistat'][ 'humidifying_relative_humidity_setpoint_schedule_name']) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:return_fan_yes") def test_return_fan_yes(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'return_fan'] = 'Yes' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath('..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertIsNotNone(epjson_output['Fan:ConstantVolume'].get('Furnace DX 1-1 Return Fan')) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:return_fan_no") def test_return_fan_no(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'return_fan'] = 'No' base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath('..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertIsNone(epjson_output.get('Fan:ConstantVolume')) return @BaseSimulationTest._test_logger(doc_text="Simulation:System:Unitary:return_fan_inputs") def test_return_fan_inputs(self): self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'return_fan'] = 'Yes' self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'return_fan_total_efficiency'] = 0.72 self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'return_fan_delta_pressure'] = 295 self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'return_fan_motor_efficiency'] = 0.85 self.base_epjson['HVACTemplate:System:Unitary']['Furnace DX 1-1'][ 'return_fan_motor_in_air_stream_fraction'] = 0.9 base_file_path = self.create_idf_file_from_epjson(epjson=self.base_epjson, file_name='base_pre_input.epJSON') self.perform_full_comparison(base_idf_file_path=base_file_path) epjson_output = self.ej._get_json_file(test_dir.joinpath('..', 'simulation', 'test', 'test_input_epjson.epJSON')) self.assertEqual( 0.72, epjson_output['Fan:ConstantVolume']['Furnace DX 1-1 Return Fan']['fan_total_efficiency']) self.assertEqual( 295, epjson_output['Fan:ConstantVolume']['Furnace DX 1-1 Return Fan']['pressure_rise']) self.assertEqual( 0.85, epjson_output['Fan:ConstantVolume']['Furnace DX 1-1 Return Fan']['motor_efficiency']) self.assertEqual( 0.9, epjson_output['Fan:ConstantVolume']['Furnace DX 1-1 Return Fan']['motor_in_airstream_fraction']) return
0
57,525
0
2,153
0
0
0
43
68
b309c952311c2ba99fc6444d9dabcacf6b2a8a7a
1,287
py
Python
apps/base/migrations/0052_fill_new_item_order.py
KolevDarko/lifehq
88d92f5fe76f2fb6511f2a892e096d95a69985d8
[ "MIT" ]
null
null
null
apps/base/migrations/0052_fill_new_item_order.py
KolevDarko/lifehq
88d92f5fe76f2fb6511f2a892e096d95a69985d8
[ "MIT" ]
null
null
null
apps/base/migrations/0052_fill_new_item_order.py
KolevDarko/lifehq
88d92f5fe76f2fb6511f2a892e096d95a69985d8
[ "MIT" ]
null
null
null
# Generated by Django 2.0 on 2019-01-31 07:28
33.868421
73
0.62704
# Generated by Django 2.0 on 2019-01-31 07:28 from django.db import migrations class Migration(migrations.Migration): def forwards_func(apps, schema_editor): ProjectTodoList = apps.get_model('base', 'ProjectTodoList') PersonalTodoList = apps.get_model('base', 'PersonalTodoList') for project_list in ProjectTodoList.objects.all(): i = 1 for todo_item in project_list.todos.order_by('id'): todo_item.project_list_order = i todo_item.save() i+=1 for personal_list in PersonalTodoList.objects.all(): i = 1 for todo_item in personal_list.personal_todos.order_by('id'): todo_item.personal_list_order = i todo_item.save() i+=1 def reverse_func(apps, schema_editor): ProjectTodoItem = apps.get_model('base', 'ProjectTodoItem') for project_item in ProjectTodoItem.objects.all(): project_item.personal_list_order = None project_item.project_list_order = None project_item.save() dependencies = [ ('base', '0051_create_new_order_fields'), ] operations = [ migrations.RunPython(forwards_func, reverse_func, atomic=False) ]
0
0
0
1,183
0
0
0
11
46
c32b35ee54e2b205d3b64c553ab89bbe78d5c853
7,697
py
Python
tests/bibkey_formatter/test_formatters/test_author_formatters.py
astamminger/zotero-bibtize
bd518c85d5ea03f952903b721e0d66e8990bd185
[ "MIT" ]
2
2019-11-20T02:46:46.000Z
2022-03-08T18:32:32.000Z
tests/bibkey_formatter/test_formatters/test_author_formatters.py
astamminger/zotero-bibtize
bd518c85d5ea03f952903b721e0d66e8990bd185
[ "MIT" ]
8
2019-11-20T15:31:37.000Z
2020-05-05T09:07:05.000Z
tests/bibkey_formatter/test_formatters/test_author_formatters.py
astamminger/zotero-bibtize
bd518c85d5ea03f952903b721e0d66e8990bd185
[ "MIT" ]
null
null
null
""" Test suite for BibKey formatting sequences. Tests the generation of key contents based on the author entry """ from zotero_bibtize.bibkey_formatter import KeyFormatter # # Test lower author formatting # # # Test upper author formatting # # # Test capitalized author formatting # # # Test abbreviated author formatting # def test_missing_author(): """Test editor is used if author is missing""" key_format = '[author]' # check that editor is used if author not present editors = 'Surname, Firstname and Prefix Surname, Firstname' authors = '' key_formatter = KeyFormatter({'author': authors, 'editor': editors}) assert key_formatter.generate_key(key_format) == 'Surname' # check authors take precedence over editors editors = 'Editor, Firstname and Prefix Author, Firstname' authors = 'Author, Firstname and Prefix Author, Firstname' key_formatter = KeyFormatter({'author': authors, 'editor': editors}) assert key_formatter.generate_key(key_format) == 'Author' # check No Name author is used if none is present editors = '' authors = '' key_formatter = KeyFormatter({'author': authors, 'editor': editors}) assert key_formatter.generate_key(key_format) == 'NoName' def test_author_list_split_for_name_containing_and(): """Test that author lists are only split at and that is not part of a name""" key_format = '[author]' authors = 'Ackland, G. J. and Bacon, D. J. and Calder, A. F.' key_formatter = KeyFormatter({'author': authors}) assert key_formatter.generate_key(key_format) == 'Ackland'
36.478673
81
0.715214
""" Test suite for BibKey formatting sequences. Tests the generation of key contents based on the author entry """ from zotero_bibtize.bibkey_formatter import KeyFormatter # # Test lower author formatting # def test_no_author_lower(): key_formatter = KeyFormatter({}) key_format = '[author:lower]' assert key_formatter.generate_key(key_format) == 'noname' def test_single_author_lower(): authors = 'Surname, Firstname' key_formatter = KeyFormatter({'author': authors}) key_format = '[author:lower]' assert key_formatter.generate_key(key_format) == 'surname' def test_prefixed_author_lower(): authors = 'Prefix Surname, Firstname' key_formatter = KeyFormatter({'author': authors}) key_format = '[author:lower]' assert key_formatter.generate_key(key_format) == 'prefixsurname' def test_multi_author_lower(): authors = 'Surname, Firstname and Prefix Surname, Firstname' key_formatter = KeyFormatter({'author': authors}) # default only first author key_format = '[author:lower]' assert key_formatter.generate_key(key_format) == 'surname' # use only one author (i.e. the first author) key_format = '[author:1:lower]' assert key_formatter.generate_key(key_format) == 'surname' # use two authors from the list key_format = '[author:2:lower]' assert key_formatter.generate_key(key_format) == 'surnameprefixsurname' # use maximal three authors key_format = '[author:3:lower]' assert key_formatter.generate_key(key_format) == 'surnameprefixsurname' # # Test upper author formatting # def test_no_author_upper(): key_formatter = KeyFormatter({}) key_format = '[author:upper]' assert key_formatter.generate_key(key_format) == 'NONAME' def test_single_author_upper(): authors = 'Surname, Firstname' key_formatter = KeyFormatter({'author': authors}) key_format = '[author:upper]' assert key_formatter.generate_key(key_format) == 'SURNAME' def test_prefixed_author_upper(): authors = 'Prefix Surname, Firstname' key_formatter = KeyFormatter({'author': authors}) key_format = '[author:upper]' assert key_formatter.generate_key(key_format) == 'PREFIXSURNAME' def test_multi_author_upper(): authors = 'Surname, Firstname and Prefix Surname, Firstname' key_formatter = KeyFormatter({'author': authors}) # default only first author key_format = '[author:upper]' assert key_formatter.generate_key(key_format) == 'SURNAME' # use only one author (i.e. the first author) key_format = '[author:1:upper]' assert key_formatter.generate_key(key_format) == 'SURNAME' # use two authors from the list key_format = '[author:2:upper]' assert key_formatter.generate_key(key_format) == 'SURNAMEPREFIXSURNAME' # use maximal three authors key_format = '[author:3:upper]' assert key_formatter.generate_key(key_format) == 'SURNAMEPREFIXSURNAME' # # Test capitalized author formatting # def test_no_author_capitalize(): key_formatter = KeyFormatter({}) key_format = '[author:capitalize]' assert key_formatter.generate_key(key_format) == 'NoName' def test_single_author_capitalize(): authors = 'Surname, Firstname' key_formatter = KeyFormatter({'author': authors}) key_format = '[author:capitalize]' assert key_formatter.generate_key(key_format) == 'Surname' def test_prefixed_author_upper(): authors = 'Prefix Surname, Firstname' key_formatter = KeyFormatter({'author': authors}) key_format = '[author:capitalize]' assert key_formatter.generate_key(key_format) == 'PrefixSurname' def test_multi_author_upper(): authors = 'Surname, Firstname and Prefix Surname, Firstname' key_formatter = KeyFormatter({'author': authors}) # default only first author key_format = '[author:capitalize]' assert key_formatter.generate_key(key_format) == 'Surname' # use only one author (i.e. the first author) key_format = '[author:1:upper]' key_format = '[author:1:capitalize]' assert key_formatter.generate_key(key_format) == 'Surname' # use two authors from the list key_format = '[author:2:capitalize]' assert key_formatter.generate_key(key_format) == 'SurnamePrefixSurname' # use maximal three authors key_format = '[author:3:capitalize]' assert key_formatter.generate_key(key_format) == 'SurnamePrefixSurname' # # Test abbreviated author formatting # def test_no_author_abbreviate(): key_formatter = KeyFormatter({}) key_format = '[author:abbreviate]' assert key_formatter.generate_key(key_format) == 'NN' key_formatter = KeyFormatter({}) key_format = '[author:abbr]' assert key_formatter.generate_key(key_format) == 'NN' def test_single_author_abbreviate(): authors = 'Surname, Firstname' key_formatter = KeyFormatter({'author': authors}) key_format = '[author:abbreviate]' assert key_formatter.generate_key(key_format) == 'S' key_format = '[author:abbr]' assert key_formatter.generate_key(key_format) == 'S' def test_prefixed_author_abbreviate(): authors = 'Prefix Surname, Firstname' key_formatter = KeyFormatter({'author': authors}) key_format = '[author:abbreviate]' assert key_formatter.generate_key(key_format) == 'PS' key_format = '[author:abbr]' assert key_formatter.generate_key(key_format) == 'PS' def test_multi_author_abbreviate(): authors = 'Surname, Firstname and Prefix Surname, Firstname' key_formatter = KeyFormatter({'author': authors}) # default only first author key_format = '[author:abbreviate]' assert key_formatter.generate_key(key_format) == 'S' key_format = '[author:abbr]' assert key_formatter.generate_key(key_format) == 'S' # use only one author (i.e. the first author) key_format = '[author:1:abbreviate]' assert key_formatter.generate_key(key_format) == 'S' key_format = '[author:1:abbr]' assert key_formatter.generate_key(key_format) == 'S' # use two authors from the list key_format = '[author:2:abbreviate]' assert key_formatter.generate_key(key_format) == 'SPS' key_format = '[author:2:abbr]' assert key_formatter.generate_key(key_format) == 'SPS' # use maximal three authors key_format = '[author:3:abbreviate]' assert key_formatter.generate_key(key_format) == 'SPS' key_format = '[author:3:abbr]' assert key_formatter.generate_key(key_format) == 'SPS' def test_missing_author(): """Test editor is used if author is missing""" key_format = '[author]' # check that editor is used if author not present editors = 'Surname, Firstname and Prefix Surname, Firstname' authors = '' key_formatter = KeyFormatter({'author': authors, 'editor': editors}) assert key_formatter.generate_key(key_format) == 'Surname' # check authors take precedence over editors editors = 'Editor, Firstname and Prefix Author, Firstname' authors = 'Author, Firstname and Prefix Author, Firstname' key_formatter = KeyFormatter({'author': authors, 'editor': editors}) assert key_formatter.generate_key(key_format) == 'Author' # check No Name author is used if none is present editors = '' authors = '' key_formatter = KeyFormatter({'author': authors, 'editor': editors}) assert key_formatter.generate_key(key_format) == 'NoName' def test_author_list_split_for_name_containing_and(): """Test that author lists are only split at and that is not part of a name""" key_format = '[author]' authors = 'Ackland, G. J. and Bacon, D. J. and Calder, A. F.' key_formatter = KeyFormatter({'author': authors}) assert key_formatter.generate_key(key_format) == 'Ackland'
0
0
0
0
0
5,724
0
0
364
d9bdf38b8225d5bcf36515d8ff0fd7d07cd4ddee
2,900
py
Python
ontobio/io/entitywriter.py
alliance-genome/ontobio
0ec3aa6fea9d4492a9873a4b9b394c4866f741b6
[ "BSD-3-Clause" ]
null
null
null
ontobio/io/entitywriter.py
alliance-genome/ontobio
0ec3aa6fea9d4492a9873a4b9b394c4866f741b6
[ "BSD-3-Clause" ]
null
null
null
ontobio/io/entitywriter.py
alliance-genome/ontobio
0ec3aa6fea9d4492a9873a4b9b394c4866f741b6
[ "BSD-3-Clause" ]
null
null
null
""" Classes for exporting entities. So far only one implementation """ import re external_taxon = re.compile("taxon:([0-9]+)") internal_taxon = re.compile("NCBITaxon:([0-9]+)")
24.576271
80
0.556897
""" Classes for exporting entities. So far only one implementation """ import re def stringify(s): if s is None: return "" elif isinstance(s,list): return "|".join(s) else: return s external_taxon = re.compile("taxon:([0-9]+)") internal_taxon = re.compile("NCBITaxon:([0-9]+)") def normalize_taxon(taxon): global internal_taxon global external_taxon if external_taxon.match(taxon): # If we match here, then the internal view already exists and we're good return internal_taxon match = internal_taxon.match(taxon) if match: taxon_id = match.group(1) return "taxon:{num}".format(num=taxon_id) return taxon class EntityWriter(): """ Abstract superclass of all association writer objects (Gpad, GAF) """ # TODO: add to superclass def _split_prefix(self, ref): id = ref['id'] [prefix, local_id] = id.split(':', maxsplit=1) return prefix, local_id # TODO: add to superclass def _write_row(self, vals): vals = [stringify(v) for v in vals] line = "\t".join(vals) self.file.write(line + "\n") # TODO: add to superclass def write_entity(self, e): """ Write a single entity """ pass ## Implemented in subclasses def write(self, entities, meta=None): """ Write a complete set of entities to a file Arguments --------- entities: list[dict] A list of entity dict objects meta: Meta metadata about association set (not yet implemented) """ for e in entities: self.write_entity(e) class GpiWriter(EntityWriter): """ Writes entities in GPI format Takes an entity dictionary: { 'id': id, (String) 'label': db_object_symbol, (String) 'full_name': db_object_name, (String) 'synonyms': synonyms, (List[str]) 'type': db_object_type, (String) 'parents': parents, (List[Str]) 'xrefs': xref_ids, (List[Str]) 'taxon': { 'id': self._taxon_id(taxon) (String) } } """ def __init__(self, file=None): self.file = file if self.file: self.file.write("!gpi-version: 2.1") def write_entity(self, entity): """ Write a single entity to a line in the output file """ db, db_object_id = self._split_prefix(entity) taxon = normalize_taxon(entity["taxon"]["id"]) vals = [ db, db_object_id, entity.get('label'), entity.get('full_name'), entity.get('synonyms'), entity.get('type'), taxon, entity.get('parents'), entity.get('xrefs'), entity.get('properties') ] self._write_row(vals)
0
0
0
2,150
0
478
0
0
92
7bc67dc45c88bf77bfd385e03be6efef81543692
101
py
Python
src/pagnn/training/dcn/__init__.py
ostrokach/protein-adjacency-net
fd3ad0b9034eb61b0187752c1f38f7eed1a8f1dc
[ "MIT" ]
1
2022-01-16T12:06:13.000Z
2022-01-16T12:06:13.000Z
src/pagnn/training/dcn/__init__.py
ostrokach/protein-adjacency-net
fd3ad0b9034eb61b0187752c1f38f7eed1a8f1dc
[ "MIT" ]
null
null
null
src/pagnn/training/dcn/__init__.py
ostrokach/protein-adjacency-net
fd3ad0b9034eb61b0187752c1f38f7eed1a8f1dc
[ "MIT" ]
null
null
null
"""Train a network."""
20.2
29
0.732673
"""Train a network.""" from .args import Args from .stats import Stats from .main import main, train
0
0
0
0
0
0
0
12
66
c90a19220af8528b49927128e469ba9aff6561ab
291
py
Python
export_readiness/migrations/0064_merge_20191009_1320.py
uktrade/directory-cms
8c8d13ce29ea74ddce7a40f3dd29c8847145d549
[ "MIT" ]
6
2018-03-20T11:19:07.000Z
2021-10-05T07:53:11.000Z
export_readiness/migrations/0064_merge_20191009_1320.py
uktrade/directory-cms
8c8d13ce29ea74ddce7a40f3dd29c8847145d549
[ "MIT" ]
802
2018-02-05T14:16:13.000Z
2022-02-10T10:59:21.000Z
export_readiness/migrations/0064_merge_20191009_1320.py
uktrade/directory-cms
8c8d13ce29ea74ddce7a40f3dd29c8847145d549
[ "MIT" ]
6
2019-01-22T13:19:37.000Z
2019-07-01T10:35:26.000Z
# Generated by Django 2.2.4 on 2019-10-09 13:20
19.4
56
0.670103
# Generated by Django 2.2.4 on 2019-10-09 13:20 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('export_readiness', '0063_auto_20191009_1239'), ('export_readiness', '0063_auto_20191008_1307'), ] operations = [ ]
0
0
0
185
0
0
0
11
46
e607fd13a8a8af9d7b0dd6db2c1d5a67f9b2d4bc
16,202
py
Python
skating_etl/skating_etl.py
gcp825/gcp_public
3208249658b227de4a3d5e054de8df42042429a5
[ "Apache-2.0" ]
null
null
null
skating_etl/skating_etl.py
gcp825/gcp_public
3208249658b227de4a3d5e054de8df42042429a5
[ "Apache-2.0" ]
null
null
null
skating_etl/skating_etl.py
gcp825/gcp_public
3208249658b227de4a3d5e054de8df42042429a5
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python3 if __name__ == '__main__': run()
70.751092
146
0.398901
#!/usr/bin/python3 def run(cloud=False): # imports import apache_beam as ab from apache_beam import io from apache_beam import ToString as ts from apache_beam.options.pipeline_options import PipelineOptions, SetupOptions, StandardOptions, GoogleCloudOptions from gcp_tools import beam_tools as bt from python_tools import scalar_functions as sf # field-level transform functions def forename(x): return x[sf.translate(x,'','abcdefghijklmnopqrstuvwxyz','x').find('x',x.find(' '))-1:].strip().title() def surname(x): return x[:sf.translate(x,'','abcdefghijklmnopqrstuvwxyz','x').find('x',x.find(' '))-1].strip().title() def name1(x): return x.split('/')[0].strip() def name2(x): return (x + '/').split('/')[1].strip() def gender1(x): return 'M' if x.title().find('Men ') >= 0 else 'F' def gender2(x): return 'M' if x.find('/') >= 0 else '' def program(x): return x[0:x[::-1].replace(' ','|',2)[::-1].find('|')].rstrip('-').strip() def element(x): return x[(x[::-1].replace(' ','|',2)[::-1].find('|'))+1:].strip() def asp_type(x): return x[0:1].upper() def str_int(x): return '0' if x == '' else str(int(float(x))) def nullify(x): return '' if x == '0' else x # set up pipeline arguments and variables shards = '-SSSSS-of-NNNNN' if cloud else '' path = 'gs://your-bucket/' if cloud else '/home/your_user_dir/' input_path = path + 'input' + '/' output_path = path + 'output' + '/' opt = PipelineOptions(flags=[]) if cloud: opt.view_as(SetupOptions).save_main_session = True opt.view_as(SetupOptions).setup_file = './setup.py' opt.view_as(StandardOptions).runner = 'DataflowRunner' opt.view_as(GoogleCloudOptions).project = 'your-project' opt.view_as(GoogleCloudOptions).job_name = 'skating-etl' opt.view_as(GoogleCloudOptions).staging_location = path + 'temp' opt.view_as(GoogleCloudOptions).temp_location = path + 'temp' opt.view_as(GoogleCloudOptions).region = 'us-central1' # run the pipeline with ab.Pipeline(options=opt) as pipe: # extract the data p00 = (pipe | 'p00 Read Performance' >> io.ReadFromText(input_path + 'performances.csv', skip_header_lines=1) | 'p00 Switch Delimiter' >> ab.ParDo(bt.SwitchDelimiters(',','|')) | 'p00 ToList' >> ab.ParDo(bt.ConvertRecTo(list,'|'))) p01 = (pipe | 'p01 Read Judges' >> io.ReadFromText(input_path + 'judges.csv', skip_header_lines=1) | 'p01 Switch Delimiter' >> ab.ParDo(bt.SwitchDelimiters(',','|')) | 'p01 ToList' >> ab.ParDo(bt.ConvertRecTo(list,'|'))) p02 = (pipe | 'p02 Read Aspects' >> io.ReadFromText(input_path + 'judged-aspects.csv', skip_header_lines=1) | 'p02 Switch Delimiter' >> ab.ParDo(bt.SwitchDelimiters(',','|')) | 'p02 ToList' >> ab.ParDo(bt.ConvertRecTo(list,'|'))) p03 = (pipe | 'p03 Read Scores' >> io.ReadFromText(input_path + 'judge-scores.csv', skip_header_lines=1) | 'p03 Switch Delimiter' >> ab.ParDo(bt.SwitchDelimiters(',','|')) | 'p03 ToList' >> ab.ParDo(bt.ConvertRecTo(list,'|'))) # transform the data p10 = (p00 | 'p10 Events: Drop Fields' >> bt.KeepFields(1,2,0) # Keep: Comp, Prog/Element, Performance ID | 'p10 Events: Distinct' >> bt.DistinctList() | 'p10 Events: Count' >> bt.Count(0,1)) # Outp: Comp, Prog/Element, Entries (Count(*)) p15 = (p00 | 'p15 Perf: Split Skaters' >> bt.XFormAppend(a3=name1, b3=name2, a2=gender1, c3=gender2)) # Add: Sk.Name 1 & 2, Sk.Gender 1 & 2 p20 = (p15 | 'p20 Skaters: Drop Fields' >> bt.KeepFields(4,11,12,13,14) # Keep: Ctry, Sk.Name 1 & 2, Gender 1 & 2 | 'p20 Skaters: Parse Names' >> bt.XFormAppend(a1=forename, b1=surname, a2=forename, b2=surname) # Add: Sk.1 Fore & Surname, Sk.2 Fore & Surname | 'p20 Skaters: Parse' >> bt.Normalise(2,1,5,6,3,2,7, 8,4,blanks='n') # Outp: Ctry, Name, Forename, Surname, Gender | 'p20 Skaters: Rearrange' >> bt.KeepFields(1,2,3,4,0) # Outp: Name, Forename, Surname, Gender, Ctry | 'p20 Skaters: Distinct' >> bt.DistinctList()) p25 = (p01 | 'p25 Judges: Drop Fields' >> bt.KeepFields(2,2,2,'x',7) # Keep: Name, Name, Name, Null, Ctry | 'p25 Judges: Distinct' >> bt.DistinctList() | 'p25 Judges: Parse Names' >> bt.XForm(t1=forename, t2=surname)) # Outp: Name, Forename, Surname, Null, Ctry p30 = ((p20, p25) | 'p30 Person: Combine' >> ab.Flatten() # Combine: Skaters & Judges | 'p30 Person: Sort' >> bt.Sort(2,1,4,3) # Sort: Surname, Forename, Ctry, Gender | 'p30 Person: Generate SKs' >> bt.GenerateSKs()) # Outp: PersonID, Name, Fore & Surname, Gender, Ctry p35 = (p01 | 'p35 Events: Drop Fields' >> bt.KeepFields(5,4) # Keep: Comp, Prog/Element | 'p35 Events: Distinct' >> bt.DistinctList() | 'p35 Events: Sort' >> bt.Sort(0,1) # Sort: Comp, Prog/Element | 'p35 Events: Add Entries' >> bt.Join(p10,'Left', key='0,1', keep='0,1,4') # Outp: Comp, Prog/Element, Entries | 'p35 Events: Generate SKs' >> bt.GenerateSKs()) # Outp: EventID, Comp, Prog/Element, Entries p40 = (p01 | 'p40 J.Roles: Drop Fields' >> bt.KeepFields(5,2,4,6) # Keep: Comp, Name, Prog/Element, Role | 'p40 J.Roles: Add Person FK' >> bt.Join(p30,'Left', key=1, keep='3,0,2,4') # Outp: Role, Comp, Prog/Element, PersonID | 'p40 J.Roles: Add Events FK' >> bt.Join(p35,'Left', key='1,2', keep='0,3,4')) # Outp: Role, PersonID, EventID p45 = (p15 | 'p45 Perf: Drop Fields' >> bt.DropFields(3,4,7,13,14) # Keep: PerfID, Comp, Prog/Elm, Rank, Seq, El.Score # Co.Score, Ded, Sk.1 Name, Sk.2 Name | 'p45 Perf: Add Events FK' >> bt.Lookup(p35,'Left', side_val=0, key='1,2', # Outp: PerfID, Rank, Seq, El.Score, Co.Score, Ded, keep='0,3,4,5,6,7,8,9,10') # Sk.1 Name, Sk.2 Name, EventID | 'p45 Perf: Add Skater 1 FK' >> bt.Lookup(p30,'Left', side_val=0, main_key=6,side_key=1, keep='0,1,2,3,4,5,7,8,9') | 'p45 Perf: Add Skater 2 FK' >> bt.Lookup(p30,'Left', side_val=0, main_key=6,side_key=1, # Outp: PerfID, Rank, Seq, El.Score, Co.Score, Ded, keep='0,1,2,3,4,5,7,8,9') # EventID, Sk.1 ID, Sk.2 ID | 'p45 Perf: Distinct' >> bt.DistinctList() | 'p45 Perf: Sort' >> bt.Sort(6.,2.,0) # Sort: EventID, Seq, PerfID | 'p45 Perf: Generate SKs' >> bt.GenerateSKs()) # Outp: PerformanceID, PerfID, Rank, Seq, El.Score, # Co.Score, Ded, EventID, Sk.1 ID, Sk.2 ID p50 = (p02 | 'p50 J.Aspect: Drop Fields' >> bt.KeepFields(0,1,2,4,3,7,11) # Keep: J.AspectID, PerfID, Type, Desc, Seq, # B.Diff, Score | 'p50 J.Aspect: Distinct' >> bt.DistinctList() | 'p50 J.Aspect: Transform' >> bt.XForm(t2=asp_type, t4=str_int)) p55 = (p50 | 'p55 Aspect: Drop Fields' >> bt.KeepFields(2,3) # Keep: Type, Desc | 'p55 Aspect: Distinct' >> bt.DistinctList() | 'p55 Aspect: Sort' >> bt.Sort(0,1) # Sort: Type, Desc | 'p55 Aspect: Generate SKs' >> bt.GenerateSKs()) # Outp: AspectID, Aspect Type, Aspect Desc p60 = (p50 | 'p60 J.Aspect: Apply Perf FK' >> bt.Lookup(p45,'Left', # Keep: J.AspectID, Type, Desc, Seq, B.Diff, key=1,side_val=0, # Score, PerformanceID keep='0,2,3,4,5,6,7') | 'p60 J.Aspect: Apply Asp. FK' >> bt.Lookup(p55,'Left', # Keep: J.AspectID, Seq, B.Diff, Score key='1,2',side_val=0, # PerformanceID, AspectID keep='0,3,4,5,6,7') | 'p60 J.Aspect: Sort' >> bt.Sort(4.,1.,5.,0) # Sort: PerformanceID, Seq, AspectID, J.AspectID | 'p60 J.Aspect: XForm Seq' >> bt.XForm(t1=nullify) | 'p60 J.Aspect: Generate SKs' >> bt.GenerateSKs()) # Outp: JudgedAspectID, J.AspectID, Seq, B.Diff, # Score, PerformanceID, AspectID p65 = (p03 | 'p65 Scores: Distinct' >> bt.DistinctList() | 'p65 Scores: Add J.Aspect ID' >> bt.Lookup(p60,'Left', # Outp: Role, Score, JudgedAspectID side_key=1,side_val=0, main_key=0, keep='1,2,3') | 'p65 Scores: Add Perf. ID' >> bt.Lookup(p60,'Left', # Outp: Role, Score, JudgedAspectID, PerformanceID side_key=0,side_val=5, main_key=2, keep='0,1,2,3') | 'p65 Scores: Add Event. ID' >> bt.Lookup(p45,'Left', # Outp: Role, Score, JudgedAspectID, EventID side_key=0,side_val=7, main_key=3, keep='0,1,2,4') | 'p65 Scores: Add Person ID' >> bt.Lookup(p40,'Left', side_key='2,0',side_val=1, main_key='3,0', keep='2,4,1') # Outp: JudgedAspectID, PersonID, Score | 'p65 Scores: Sort' >> bt.Sort(0.,1.) # Sort: JudgedAspectID, PersonID | 'p65 Scores: Generate SKs' >> bt.GenerateSKs()) # Outp: ScoreID, JudgedAspectID, PersonID, Score # load the data p91 = (p30 | 'p91 Person: Reformat' >> bt.DropFields(1) # Outp: PersonID, Forename, Surname, Gender, Ctry | 'p91 Person: ToStr' >> ts.Iterables(delimiter='|') | 'p91 Person: Write File ' >> io.WriteToText (output_path + 'person.dat', shard_name_template=shards)) p92 = (p35 | 'p92 Event: Dupe Prog/Elem' >> bt.KeepFields(0,1,2,2,3) # Outp: EventID, Comp, Prog/Elm, Prog/Elm, Entries | 'p92 Event: Parse Prog/Elem' >> bt.XForm(t2=program, t3=element) # Outp: EventID, Comp, Program, Element, Entries | 'p92 Event: ToStr' >> ts.Iterables(delimiter='|') | 'p92 Event: Write File' >> io.WriteToText (output_path + 'event.dat', shard_name_template=shards)) p93 = (p45 | 'p93 Perf: Reformat' >> bt.KeepFields(0,7,3,8,9, # Outp: PerformanceID, EventID, Seq, Sk1 ID, Sk2 ID 2,5,4,6) # Rank, Co.Score, El.Score, Ded | 'p93 Perf: ToStr' >> ts.Iterables(delimiter='|') | 'p93 Perf: Write File' >> io.WriteToText (output_path + 'performance.dat', shard_name_template=shards)) p94 = (p55 | 'p94 Aspect: ToStr' >> ts.Iterables(delimiter='|') | 'p94 Aspect: Write File' >> io.WriteToText (output_path + 'aspect.dat', shard_name_template=shards)) p95 = (p60 | 'p95 J.Aspect: Reformat' >> bt.KeepFields(0,5,2,6,3,4) # Outp: J.Asp.ID, Perf.ID, Seq, AspID, B.Diff, Score | 'p95 J.Aspect: ToStr' >> ts.Iterables(delimiter='|') | 'p95 J.Aspect: Write File' >> io.WriteToText (output_path + 'performance_aspect.dat', shard_name_template=shards)) p96 = (p65 | 'p96 Scores: ToStr' >> ts.Iterables(delimiter='|') | 'p96 Scores: Write_File' >> io.WriteToText (output_path + 'performance_scores.dat', shard_name_template=shards)) if __name__ == '__main__': run()
0
0
0
0
0
16,126
0
0
23
0997b2bb53b3e94433d1abfed3c5673193adb7bc
1,393
py
Python
main_adco.py
maple-research-lab/AdCo
a9f25fc18c12df88c732b33700f3bb698454dd3f
[ "MIT" ]
139
2021-03-05T01:20:26.000Z
2022-03-24T02:25:20.000Z
main_adco.py
maple-research-lab/AdCo
a9f25fc18c12df88c732b33700f3bb698454dd3f
[ "MIT" ]
12
2021-03-09T02:59:40.000Z
2021-09-27T05:25:25.000Z
main_adco.py
maple-research-lab/AdCo
a9f25fc18c12df88c732b33700f3bb698454dd3f
[ "MIT" ]
18
2021-03-05T02:44:52.000Z
2022-03-14T02:37:09.000Z
#Copyright (C) 2020 Xiao Wang #License: MIT for academic use. #Contact: Xiao Wang ([email protected], [email protected]) #Some codes adopted from https://github.com/facebookresearch/moco from ops.argparser import argparser if __name__ == '__main__': #use_cuda = torch.cuda.is_available() #print("starting check cuda status",use_cuda) #if use_cuda: parser = argparser() args = parser.parse_args() main(args)
36.657895
81
0.729361
#Copyright (C) 2020 Xiao Wang #License: MIT for academic use. #Contact: Xiao Wang ([email protected], [email protected]) #Some codes adopted from https://github.com/facebookresearch/moco import os from ops.argparser import argparser from ops.Config_Environment import Config_Environment import torch.multiprocessing as mp from training.main_worker import main_worker def main(args): if args.choose is not None: os.environ['CUDA_VISIBLE_DEVICES'] = args.choose print("Current we choose gpu:%s" % args.choose) #config environment ngpus_per_node=Config_Environment(args) # call training main control function if args.multiprocessing_distributed==1: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.world_size # Use torch.multiprocessing.spawn to launch distributed processes: the # main_worker process function mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) else: # Simply call main_worker function main_worker(args.gpu, ngpus_per_node, args) if __name__ == '__main__': #use_cuda = torch.cuda.is_available() #print("starting check cuda status",use_cuda) #if use_cuda: parser = argparser() args = parser.parse_args() main(args)
0
0
0
0
0
781
0
57
110
4c1974ce7ed5abfe14e791e0f8209d92e3dcc752
638
py
Python
yk_utils/images/image_parser.py
jppdpf/yk-utils-python
2c101feda900713c8cbb0223326031ba09cd48e9
[ "MIT" ]
null
null
null
yk_utils/images/image_parser.py
jppdpf/yk-utils-python
2c101feda900713c8cbb0223326031ba09cd48e9
[ "MIT" ]
null
null
null
yk_utils/images/image_parser.py
jppdpf/yk-utils-python
2c101feda900713c8cbb0223326031ba09cd48e9
[ "MIT" ]
1
2022-02-16T19:04:33.000Z
2022-02-16T19:04:33.000Z
"""Image parser module. """ import os import base64 def parse_image(image) -> str: """Check whether the image is a string or a file path or a file-like object. :param image: A base64 string or a file path or a file-like object representing an image. :return: Image as a base64 string. """ data = None if hasattr(image, 'read'): # When image is a file-like object. data = image.read() elif os.path.isfile(image): # When image is a file path. with open(image, 'rb') as file: data = file.read() return base64.b64encode(data).decode('utf-8') if data else image
29
83
0.628527
"""Image parser module. """ import os import base64 def parse_image(image) -> str: """Check whether the image is a string or a file path or a file-like object. :param image: A base64 string or a file path or a file-like object representing an image. :return: Image as a base64 string. """ data = None if hasattr(image, 'read'): # When image is a file-like object. data = image.read() elif os.path.isfile(image): # When image is a file path. with open(image, 'rb') as file: data = file.read() return base64.b64encode(data).decode('utf-8') if data else image
0
0
0
0
0
0
0
0
0
3d022cac11f1e60bc2bcab537423ff5ea3705e37
3,983
py
Python
client/gym_carla/experiment_suite/experiment_suite.py
wielgosz-info/carla-rl
8841c0c7997299ed76388ad93b34834bd6b55d3e
[ "MIT" ]
null
null
null
client/gym_carla/experiment_suite/experiment_suite.py
wielgosz-info/carla-rl
8841c0c7997299ed76388ad93b34834bd6b55d3e
[ "MIT" ]
null
null
null
client/gym_carla/experiment_suite/experiment_suite.py
wielgosz-info/carla-rl
8841c0c7997299ed76388ad93b34834bd6b55d3e
[ "MIT" ]
null
null
null
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de # Barcelona (UAB). # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. # # ------------------------------------------------------------------------------- # # This file is intended to provide the same functions as # https://github.com/carla-simulator/driving-benchmarks/blob/master/version084/benchmark_tools/experiment_suites/experiment_suite.py # but working with CARLA 0.9.11 and gym
32.647541
132
0.644489
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de # Barcelona (UAB). # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. # # ------------------------------------------------------------------------------- # # This file is intended to provide the same functions as # https://github.com/carla-simulator/driving-benchmarks/blob/master/version084/benchmark_tools/experiment_suites/experiment_suite.py # but working with CARLA 0.9.11 and gym import abc from collections import OrderedDict from gym_carla.converters.observations.sensors.camera.rgb import RGBCameraSensorObservations from carla import Transform, Location, Rotation class ExperimentSuite(object): def __init__(self, city_name): self._city_name = city_name self._experiments = self.build_experiments() def calculate_time_out(self, path_distance): """ Function to return the timeout, in seconds, that is calculated based on distance (in meters). """ # Originally, path distance was in map coordinates # and I have no idea how it corresponded to meters. # But now we will supply it in meters since that's # what we can get from # GlobalRoutePlanner.track_route() * waypoints resolution. # Also, we're only really ever interested in seconds # (not milliseconds as documented in the original file). # So, assuming the path_distance is in meters, # and the minimal sensible average velocity is 10km/h (~2.78 m/s), # and we're adding 10s of "bonus" time (start/stop), # and we want the result to be in seconds # we get the exact same equation ;) return ((path_distance / 1000.0) / 10.0) * 3600.0 + 10.0 def get_number_of_poses_task(self): """ Get the number of poses a task have for this benchmark """ # Warning: assumes that all tasks have the same size return len(self._experiments[0].poses) def get_number_of_reps_poses(self): """ Get the number of poses a task have for this benchmark """ # Warning: assumes that all poses have the same number of repetitions return self._experiments[0].repetitions def get_experiments(self): """ Getter for the experiment set. """ return self._experiments def prepare_sensors(self, blueprint_library): sensors = OrderedDict( rgb_camera=self._prepare_camera(blueprint_library) ) return sensors def _prepare_camera(self, blueprint_library): blueprint_camera = blueprint_library.find('sensor.camera.rgb') blueprint_camera.set_attribute('image_size_x', '800') blueprint_camera.set_attribute('image_size_y', '600') blueprint_camera.set_attribute('fov', '100') blueprint_camera.set_attribute('sensor_tick', '0.1') transform_camera = Transform( location=Location(x=+2.0, y=0.0, z=1.4), rotation=Rotation(-15.0, 0, 0) ) return (blueprint_camera, transform_camera) @property def weathers(self): weathers = set(self.train_weathers) weathers.update(self.test_weathers) return weathers @property def collision_as_failure(self): return False @property def traffic_light_as_failure(self): return False @abc.abstractmethod def build_experiments(self): """ Returns a set of experiments to be evaluated Must be redefined in an inherited class. """ @abc.abstractproperty def train_weathers(self): """ Return the weathers that are considered as training conditions """ @abc.abstractproperty def test_weathers(self): """ Return the weathers that are considered as testing conditions """
0
623
0
2,612
0
0
0
100
112
96c8a4ff91d3e3ca6afe90078f997ac43327e709
3,675
py
Python
w4_tiled_converter/main.py
restitux/w4-tiled-converter
7cdee2d425c53a54d46617f9499a43dad3806594
[ "MIT" ]
null
null
null
w4_tiled_converter/main.py
restitux/w4-tiled-converter
7cdee2d425c53a54d46617f9499a43dad3806594
[ "MIT" ]
null
null
null
w4_tiled_converter/main.py
restitux/w4-tiled-converter
7cdee2d425c53a54d46617f9499a43dad3806594
[ "MIT" ]
null
null
null
# Convert a tiled tmx tilemap to source files if __name__ == "__main__": main()
22.826087
88
0.688163
import argparse import json from os.path import basename, join, split, splitext import sys from w4_tiled_converter import converters # Convert a tiled tmx tilemap to source files def tilemap_subcommand(filename: str): print(f"INFO: Processing tilemap {filename}") name = basename(splitext(splitext(filename)[0])[0]) # Calculate output filenames h_filename = splitext(filename)[0] + ".h" c_filename = splitext(filename)[0] + ".c" converters.convert_tilemap(filename, h_filename, c_filename, name) def tileset_subcommand(filename: str): print(f"INFO: Processing tileset {filename}") # Calculate output filenames h_filename = splitext(filename)[0] + ".h" c_filename = splitext(filename)[0] + ".c" # Read in JSON tileset with open(filename) as f: tileset_json = json.load(f) # Validate tiles are square tile_w = tileset_json["tilewidth"] tile_h = tileset_json["tileheight"] if tile_w != tile_h: print(f"ERROR: Tiles of different h / w are not supported ({tile_w}, {tile_h})") sys.exit(-1) # Convert tileset to source files png_filename = join(split(filename)[0], tileset_json["image"]) converters.convert_tileset( png_filename, h_filename, c_filename, tile_w, tileset_json["name"] ) def header_subcommand(filename: str): header = """ #ifndef __TILED_H_ #define __TILED_H_ #include <stdint.h> #include <stdbool.h> #include <stdlib.h> struct Entrance; struct TileSet { const uint8_t *tileset; }; struct TileMap_MapLayer { uint32_t width; uint32_t height; const uint8_t *map; const uint8_t *map_rotations; const struct TileSet *tileset; }; struct TileMap_DataLayer { uint32_t width; uint32_t height; const uint8_t *map; }; struct TileMap_Entrance { uint32_t x; uint32_t y; uint32_t width; uint32_t height; uint8_t id; const struct TileMap *target_map; bool is_entrance; uint32_t target_entrance; }; struct TileMap_BlockSpawn { uint32_t x; uint32_t y; uint8_t id; }; struct TileMap_Entrances { struct TileMap_Entrance *entrances; uint32_t length; }; struct TileMap_BlockSpawns { struct TileMap_BlockSpawn *block_spawns; uint32_t length; }; struct TileMap_TextTrigger { uint8_t id; uint32_t x; uint32_t y; uint32_t width; uint32_t height; char *string; uint16_t length; int8_t ability_pickup; }; struct TileMap_TextTriggers { struct TileMap_TextTrigger *text_triggers; uint32_t length; }; struct TileMap { uint16_t id; struct TileMap_MapLayer static_map; struct TileMap_MapLayer overlay_map; struct TileMap_DataLayer collision_map; struct TileMap_DataLayer special_map; struct TileMap_Entrances entrances; struct TileMap_BlockSpawns block_spawns; struct TileMap_TextTriggers text_triggers; }; #endif // __TILED_H """ with open(filename, "w") as out: out.write(header) def main(): # exit(-1) # print("w4 tileset converter") parser = argparse.ArgumentParser(description="Generate sources from a tilemap") parser.add_argument( "filetype", action="store", help="tilemap, tileset or header", choices=("tilemap", "tileset", "header"), ) parser.add_argument("filename", action="store", help="filename") args = parser.parse_args() if args.filetype == "tilemap": tilemap_subcommand(args.filename) elif args.filetype == "tileset": tileset_subcommand(args.filename) elif args.filetype == "header": header_subcommand(args.filename) if __name__ == "__main__": main()
0
0
0
0
0
3,360
0
23
202
3899d52834f5585b5ae4c4435ca9a8f8025273e4
404
py
Python
rallybooking/migrations/0007_rally_site_name.py
DaleShipp/devoncc
8bec11cf363ac5a5c16eda9a6c50e9f901142211
[ "BSD-3-Clause" ]
null
null
null
rallybooking/migrations/0007_rally_site_name.py
DaleShipp/devoncc
8bec11cf363ac5a5c16eda9a6c50e9f901142211
[ "BSD-3-Clause" ]
null
null
null
rallybooking/migrations/0007_rally_site_name.py
DaleShipp/devoncc
8bec11cf363ac5a5c16eda9a6c50e9f901142211
[ "BSD-3-Clause" ]
null
null
null
# Generated by Django 2.1.1 on 2018-10-05 22:33
21.263158
63
0.60396
# Generated by Django 2.1.1 on 2018-10-05 22:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('rallybooking', '0006_auto_20181005_2042'), ] operations = [ migrations.AddField( model_name='rally', name='site_name', field=models.CharField(default='', max_length=300), ), ]
0
0
0
290
0
0
0
19
46
cc323e6f4b8b6d89a4bc83d3a457b2b702135f01
154
py
Python
book_library_app/commands/__init__.py
szymcio32/flask-book-library-api
9406bb5ff6ec04cc7c049d416913ae084e73a9dc
[ "MIT" ]
1
2022-02-03T17:10:03.000Z
2022-02-03T17:10:03.000Z
book_library_app/commands/__init__.py
szymcio32/flask-book-library-api
9406bb5ff6ec04cc7c049d416913ae084e73a9dc
[ "MIT" ]
null
null
null
book_library_app/commands/__init__.py
szymcio32/flask-book-library-api
9406bb5ff6ec04cc7c049d416913ae084e73a9dc
[ "MIT" ]
2
2021-04-26T20:57:24.000Z
2021-09-20T10:19:00.000Z
from flask import Blueprint db_manage_bp = Blueprint('db_manage_cmd', __name__, cli_group=None)
30.8
67
0.850649
from flask import Blueprint db_manage_bp = Blueprint('db_manage_cmd', __name__, cli_group=None) from book_library_app.commands import db_manage_commands
0
0
0
0
0
0
0
35
23
fc6a61ad09b5a2873ca3d0bbf8908a1fe92aac0e
1,549
py
Python
example.py
ssocolow/Neural-Network-Saves
78870623cec9752a765d8bb43d00f0c3f0f677b0
[ "MIT" ]
3
2019-06-22T05:53:18.000Z
2019-06-22T05:53:48.000Z
example.py
ssocolow/Neural-Network-Python-Lib
78870623cec9752a765d8bb43d00f0c3f0f677b0
[ "MIT" ]
2
2019-06-22T06:16:19.000Z
2019-06-22T06:22:38.000Z
example.py
ssocolow/Neural-Network-Python-Lib
78870623cec9752a765d8bb43d00f0c3f0f677b0
[ "MIT" ]
null
null
null
#importing the library #nn requires matrix2d.py and the math module and random module for dependencies import nn import random #create the neural network to solve the XOR problem #takes an array of arrays for argument #the 2, 4 and 1 represent two nodes in the input and 4 nodes in the hidden layer and 1 node in the output layer #you can add more layers by adding an array to the larger array with a number in it for the number of nodes you want like [[2],[3],[3],[4]] #you can set the learning rate and the network's weights and biases after you give it its shape (0.1 is default for learning rate) example_neural_network = nn.NeuralNetwork([[2],[4],[1]], learning_rate = 0.2) #have your inputs and targets in an array which match the number of inputs and outputs specificed in the initialization of the neural network #if you want to use backpropagation and gradient descent in supervised learning inputs = [[1,0.01],[0.01,1],[1,1],[0.01,0.01]] targets = [[0.99],[0.99],[0.01],[0.01]] #train the network on the inputs and the targets for i in range(20000): index = random.randint(0,3) example_neural_network.train(inputs[index], targets[index]) #check what the network outputs after it has been trained #this should be close to the targets print(example_neural_network.feedforward(inputs[0])) print(example_neural_network.feedforward(inputs[1])) print(example_neural_network.feedforward(inputs[2])) print(example_neural_network.feedforward(inputs[3])) #print out some of the information in the network example_neural_network.print()
48.40625
141
0.769529
#importing the library #nn requires matrix2d.py and the math module and random module for dependencies import nn import random #create the neural network to solve the XOR problem #takes an array of arrays for argument #the 2, 4 and 1 represent two nodes in the input and 4 nodes in the hidden layer and 1 node in the output layer #you can add more layers by adding an array to the larger array with a number in it for the number of nodes you want like [[2],[3],[3],[4]] #you can set the learning rate and the network's weights and biases after you give it its shape (0.1 is default for learning rate) example_neural_network = nn.NeuralNetwork([[2],[4],[1]], learning_rate = 0.2) #have your inputs and targets in an array which match the number of inputs and outputs specificed in the initialization of the neural network #if you want to use backpropagation and gradient descent in supervised learning inputs = [[1,0.01],[0.01,1],[1,1],[0.01,0.01]] targets = [[0.99],[0.99],[0.01],[0.01]] #train the network on the inputs and the targets for i in range(20000): index = random.randint(0,3) example_neural_network.train(inputs[index], targets[index]) #check what the network outputs after it has been trained #this should be close to the targets print(example_neural_network.feedforward(inputs[0])) print(example_neural_network.feedforward(inputs[1])) print(example_neural_network.feedforward(inputs[2])) print(example_neural_network.feedforward(inputs[3])) #print out some of the information in the network example_neural_network.print()
0
0
0
0
0
0
0
0
0
fe1792e616a3318ec0936ccae1a3979964e73622
5,345
py
Python
geeksbot_web/rcon/models.py
dustinpianalto/geeksbot_web
ee02452dd5a61b0487706782020f9647ae202238
[ "MIT" ]
null
null
null
geeksbot_web/rcon/models.py
dustinpianalto/geeksbot_web
ee02452dd5a61b0487706782020f9647ae202238
[ "MIT" ]
null
null
null
geeksbot_web/rcon/models.py
dustinpianalto/geeksbot_web
ee02452dd5a61b0487706782020f9647ae202238
[ "MIT" ]
null
null
null
# Create your models here.
41.434109
101
0.636109
from django.db import models from django.core.exceptions import ObjectDoesNotExist from rest_framework import status from guilds.models import Guild from dmessages.models import Message from users.models import User from channels.models import Channel from .utils import create_error_response from .utils import create_success_response # Create your models here. class RconServer(models.Model): guild = models.ForeignKey(Guild, on_delete=models.CASCADE) name = models.CharField(max_length=50) ip = models.GenericIPAddressField() port = models.PositiveIntegerField() password = models.CharField(max_length=50) monitor_chat = models.BooleanField() monitor_chat_channel = models.ForeignKey( Channel, on_delete=models.DO_NOTHING, related_name="+", null=True, blank=True, default=None ) alerts_channel = models.ForeignKey( Channel, on_delete=models.DO_NOTHING, related_name="+", null=True, blank=True, default=None ) info_channel = models.ForeignKey( Channel, on_delete=models.DO_NOTHING, related_name="+", null=True, blank=True, default=None ) info_message = models.ForeignKey( Message, on_delete=models.DO_NOTHING, related_name="+", null=True, blank=True, default=None ) settings_message = models.ForeignKey( Message, on_delete=models.DO_NOTHING, related_name="+", null=True, blank=True, default=None ) whitelist = models.ManyToManyField(User, blank=True) def update_server(self, data): if data.get('name'): self.name = data.get('name') if data.get('ip'): self.ip = data.get('ip') if data.get('port'): self.port = data.get('port') if data.get('password'): self.password = data.get('password') if data.get('monitor_chat'): self.monitor_chat = data.get('monitor_chat') if 'monitor_chat_channel' in data.keys(): self.monitor_chat_channel = Channel.get_channel_by_id(data.get('monitor_chat_channel')) if 'alerts_channel' in data.keys(): self.alerts_channel = Channel.get_channel_by_id(data.get('alerts_channel')) if 'info_channel' in data.keys(): self.alerts_channel = Channel.get_channel_by_id(data.get('info_channel')) if 'info_message' in data.keys(): self.info_message = Message.get_message_by_id(data.get('info_message')) if 'settings_message' in data.keys(): self.settings_message = Message.get_message_by_id(data.get('settings_message')) self.save() return create_success_response(self, status.HTTP_202_ACCEPTED, many=False) def add_whitelist(self, user_id): user = User.get_user_by_id(user_id) if not isinstance(user, User): return create_error_response("User Does Not Exist", status=status.HTTP_404_NOT_FOUND) if not user.steam_id: return create_error_response("User does not have a Steam 64ID attached to their account", status=status.HTTP_406_NOT_ACCEPTABLE) self.whitelist.add(user) return create_error_response("User has been added to the whitelist", status=status.HTTP_200_OK) def remove_from_whitelist(self, user_id): user = User.get_user_by_id(user_id) if not isinstance(user, User): return create_error_response("User Does Not Exist", status=status.HTTP_404_NOT_FOUND) self.whitelist.remove(user) return create_error_response("User has been removed from the whitelist", status=status.HTTP_200_OK) @classmethod def add_new_server(cls, data): guild_id = data.get('guild') name = data.get('name') ip = data.get('ip') port = data.get('port') password = data.get('password') if not (guild_id and name and ip and port and password): return create_error_response("One or more of the required fields are missing", status=status.HTTP_400_BAD_REQUEST) guild = Guild.get_guild_by_id(guild_id) if not isinstance(guild, Guild): return create_error_response("Guild Does Not Exist", status=status.HTTP_404_NOT_FOUND) server = cls( guild=guild, name=name, ip=ip, port=port, password=password, monitor_chat=data.get('monitor_chat', False) ) server.save() return create_success_response(server, status.HTTP_201_CREATED, many=False) @classmethod def get_server(cls, guild_id, name): guild_servers = cls.get_guild_servers(guild_id) if guild_servers: try: return guild_servers.get(name=name) except ObjectDoesNotExist: return None return None @classmethod def get_guild_servers(cls, guild_id): guild = Guild.get_guild_by_id(guild_id) if not isinstance(guild, Guild): return None return cls.objects.filter(guild=guild) def __str__(self): return f"{self.guild.id} | {self.name}"
0
1,436
0
3,520
0
0
0
138
222
daad75627bc6162d2ea4e3136cfa6943ffef9ecd
1,127
py
Python
post.py
seqcode/seqview-web-docker-public
56dfc222fd25a630cbc63d2841d9ce4fb1c7045c
[ "MIT" ]
null
null
null
post.py
seqcode/seqview-web-docker-public
56dfc222fd25a630cbc63d2841d9ce4fb1c7045c
[ "MIT" ]
null
null
null
post.py
seqcode/seqview-web-docker-public
56dfc222fd25a630cbc63d2841d9ce4fb1c7045c
[ "MIT" ]
null
null
null
main()
40.25
174
0.721384
from urllib.parse import urlencode from urllib.request import Request, urlopen import json import argparse import configparser def main(): parser = argparse.ArgumentParser(description="Post ingest tileset request to higlass") parser.add_argument('--genome', action="store", dest="genome", default='', help="genome version") parser.add_argument('--uuid', action="store", dest="uuid", default='', help="higlass tileset uuid") args = parser.parse_args() post(**vars(args)) #post(**args) def post(genome, uuid): config = configparser.ConfigParser() config.read('post.ini') r = Request("http://127.0.0.1:9000/api/api-token-auth/", urlencode({'username': config['Credentials']['username'], 'password' : config['Credentials']['password']}).encode()) response = urlopen(r).read().decode() response_json = json.loads(response) postTrack = Request("http://127.0.0.1:9000/api/", urlencode({'genome': genome, 'uid' : uuid}).encode()) postTrack.add_header('Authorization', "Token " + response_json['token']) response = urlopen(postTrack).read().decode() response_json = json.loads(response) print(response_json) main()
0
0
0
0
0
945
0
17
157
eb282e96df605c49958261d1bcdd1be576d4b1bf
3,574
py
Python
story_chain/flaskrunner.py
muchu1983/story_chain
3af4bb158be128a52c753f88eaffaed872d85880
[ "BSD-3-Clause" ]
null
null
null
story_chain/flaskrunner.py
muchu1983/story_chain
3af4bb158be128a52c753f88eaffaed872d85880
[ "BSD-3-Clause" ]
null
null
null
story_chain/flaskrunner.py
muchu1983/story_chain
3af4bb158be128a52c753f88eaffaed872d85880
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Copyright (C) 2015, MuChu Hsu Contributed by Muchu Hsu ([email protected]) This file is part of BSD license <https://opensource.org/licenses/BSD-3-Clause> """ from flask import Flask app = Flask(__name__.split(".")[0]) # server # jsonp response # (return id) # # (/) # or (return id list) # # () #= Flask = #GET POST #template #post json if __name__ == "__main__": start_flask_server()
34.038095
94
0.689144
# -*- coding: utf-8 -*- """ Copyright (C) 2015, MuChu Hsu Contributed by Muchu Hsu ([email protected]) This file is part of BSD license <https://opensource.org/licenses/BSD-3-Clause> """ import json from flask import Flask from flask import request from flask import render_template from flask import jsonify from story_chain.localdb import LocalDbForStoryChain app = Flask(__name__.split(".")[0]) #啟動 server def start_flask_server(): app.run(host="0.0.0.0", port=5000, debug=True) #建立 jsonp response def make_jsonp_response(dicJsonObj=None): strCallback = request.args.get("strJsonpCallback", 0, type=str) return strCallback + "(" + json.dumps(dicJsonObj) + ")" #在指定的段落之後 加入新的故事段落 (return 新段落 id) @app.route("/story_chain/api_post/story", methods=["GET"]) def apiPostNewStory(): db = LocalDbForStoryChain() strStoryContent = request.args.get("str_story_content", type=str) intPrevStoryId = request.args.get("int_prev_story_id", type=int) intNewStoryId = db.insertNewStory(strContent=strStoryContent, intPrevId=intPrevStoryId) return make_jsonp_response(dicJsonObj={"new_story_id":intNewStoryId}) #取得指定段落內容 @app.route("/story_chain/api_get/story/<int:intStoryId>", methods=["GET"]) def apiGetStoryById(intStoryId=0): db = LocalDbForStoryChain() (strContent, intLike, intDislike) = db.fetchStoryById(intStoryId=intStoryId) dicJsonObj = {"str_content":strContent, "int_like":intLike, "int_dislike":intDislike} return make_jsonp_response(dicJsonObj=dicJsonObj) #修改指定段落內容 (按贊/按噓) @app.route("/story_chain/api_put/story/<int:intStoryId>", methods=["GET"]) def apiPutStoryById(intStoryId=0): pass #取得 前 or 後 故事段 列表 (return 段落 id list) @app.route("/story_chain/api_get/story", methods=["GET"]) def apiGetStoryList(): db = LocalDbForStoryChain() strType = request.args.get("str_type", type=str) #"next" or "prev" intStoryId = request.args.get("int_story_id", type=int) lstIntStoryId = db.fetchNextOrPrevStoryId(intStoryId=intStoryId, strFetchType=strType) dicJsonObj = None if strType == "prev": #前一段必定是唯一的 dicJsonObj = {"int_prev_story_id":(lstIntStoryId[0] if lstIntStoryId else 0)} elif strType == "next": #下一段可能有多個選擇 dicJsonObj = {"lst_int_next_story_id":lstIntStoryId} else: dicJsonObj = {} return make_jsonp_response(dicJsonObj) #讀取書籤 @app.route("/story_chain/api_get/tag/<strTagName>", methods=["GET"]) def apiGetTagByName(strTagName=None): pass #新增書籤 (書籤有時限) @app.route("/story_chain/api_post/tag", methods=["GET"]) def apiPostTag(strTagName=None): request.args.get("strTagName") request.args.get("intStoryId") pass #= Flask 範例 = #GET POST參數範例 @app.route("/hello/<username>/<int:num>", methods=["GET", "POST"]) def hello(username, num): #http://192.168.1.101:5000/hello/muchu/7?love=lunna request.form #get form data when POST return "Hello World! %s %d method: %s args: %s"%(username, num, request.method, request.args.get("love")) #template範例 @app.route("/template/") @app.route("/template/<name>") def template(name=None): return render_template("temp.html", name=name) #post json範例 @app.route("/jsonpapi", methods=["GET"]) def jsonpapi(): x = request.args.get("x", 0, type=int) y = request.args.get("y", 0, type=int) dicResultJson = {"result":x+y} return make_jsonp_response(dicJsonObj=dicResultJson) if __name__ == "__main__": start_flask_server()
288
2,405
0
0
0
203
0
41
352
f0463eb840dd62de3267468df2df8a11a6d08fe8
2,913
py
Python
venv/Lib/site-packages/xero_python/accounting/models/report_fields.py
RobMilinski/Xero-Starter-Branched-Test
c82382e674b34c2336ee164f5a079d6becd1ed46
[ "MIT" ]
77
2020-02-16T03:50:18.000Z
2022-03-11T03:53:26.000Z
venv/Lib/site-packages/xero_python/accounting/models/report_fields.py
RobMilinski/Xero-Starter-Branched-Test
c82382e674b34c2336ee164f5a079d6becd1ed46
[ "MIT" ]
50
2020-04-06T10:15:52.000Z
2022-03-29T21:27:50.000Z
venv/Lib/site-packages/xero_python/accounting/models/report_fields.py
RobMilinski/Xero-Starter-Branched-Test
c82382e674b34c2336ee164f5a079d6becd1ed46
[ "MIT" ]
27
2020-06-04T11:16:17.000Z
2022-03-19T06:27:36.000Z
# coding: utf-8 """ Xero Accounting API No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 Contact: [email protected] Generated by: https://openapi-generator.tech """
24.897436
124
0.597666
# coding: utf-8 """ Xero Accounting API No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 from xero_python.models import BaseModel class ReportFields(BaseModel): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = {"field_id": "str", "description": "str", "value": "str"} attribute_map = { "field_id": "FieldID", "description": "Description", "value": "Value", } def __init__(self, field_id=None, description=None, value=None): # noqa: E501 """ReportFields - a model defined in OpenAPI""" # noqa: E501 self._field_id = None self._description = None self._value = None self.discriminator = None if field_id is not None: self.field_id = field_id if description is not None: self.description = description if value is not None: self.value = value @property def field_id(self): """Gets the field_id of this ReportFields. # noqa: E501 :return: The field_id of this ReportFields. # noqa: E501 :rtype: str """ return self._field_id @field_id.setter def field_id(self, field_id): """Sets the field_id of this ReportFields. :param field_id: The field_id of this ReportFields. # noqa: E501 :type: str """ self._field_id = field_id @property def description(self): """Gets the description of this ReportFields. # noqa: E501 :return: The description of this ReportFields. # noqa: E501 :rtype: str """ return self._description @description.setter def description(self, description): """Sets the description of this ReportFields. :param description: The description of this ReportFields. # noqa: E501 :type: str """ self._description = description @property def value(self): """Gets the value of this ReportFields. # noqa: E501 :return: The value of this ReportFields. # noqa: E501 :rtype: str """ return self._value @value.setter def value(self, value): """Sets the value of this ReportFields. :param value: The value of this ReportFields. # noqa: E501 :type: str """ self._value = value
0
1,287
0
1,283
0
0
0
7
83
f594e48a4780469ce9c3653912d489a7c0714b11
1,458
py
Python
Python Basics/scipy_basics.py
python-sonchau/python-visualization
eb139aaabbff858663a96f8e19e30f1418e4330c
[ "MIT" ]
null
null
null
Python Basics/scipy_basics.py
python-sonchau/python-visualization
eb139aaabbff858663a96f8e19e30f1418e4330c
[ "MIT" ]
null
null
null
Python Basics/scipy_basics.py
python-sonchau/python-visualization
eb139aaabbff858663a96f8e19e30f1418e4330c
[ "MIT" ]
null
null
null
from scipy import stats import numpy as np ############################ # CALCULATING CORRELATIONS # ############################ array_1 = np.array([1,2,3,4,5,6]) # Create a numpy array from a list array_2 = array_1 # Create another array with the same values print(stats.pearsonr(array_1, array_2)) # Calculate the correlation which will be 1 since the values are the same ####################### # NORMAL DISTRIBUTION # ####################### x = stats.norm.rvs(loc=0, scale=10, size=10) # Generate 10 values randomly sampled from a normal distribution with mean 0 and standard deviation of 10 print(x) ################################ # PROBABILITY DENSITY FUNCTION # ################################ p1 = stats.norm.pdf(x=-100, loc=0, scale=10) # Get probability of sampling a value of -100 p2 = stats.norm.pdf(x=0, loc=0, scale=10) # Get probability of sampling a value of 0 print(p1) print(p2) #################################### # CUMULATIVE DISTRIBUTION FUNCTION # #################################### p1 = stats.norm.cdf(x=0, loc=0, scale=10) # Get probability of sampling a value less than or equal to 0 print(p1) ###################################### # CALCULATING DESCRIPTIVE STATISTICS # ###################################### print(stats.describe(stats.norm.rvs(loc=0, scale=1, size=500))) # Calculate descriptive statistics for 500 data points sampled from normal distribution with mean 0 and standard deviation of 1
36.45
192
0.580933
from scipy import stats import numpy as np ############################ # CALCULATING CORRELATIONS # ############################ array_1 = np.array([1,2,3,4,5,6]) # Create a numpy array from a list array_2 = array_1 # Create another array with the same values print(stats.pearsonr(array_1, array_2)) # Calculate the correlation which will be 1 since the values are the same ####################### # NORMAL DISTRIBUTION # ####################### x = stats.norm.rvs(loc=0, scale=10, size=10) # Generate 10 values randomly sampled from a normal distribution with mean 0 and standard deviation of 10 print(x) ################################ # PROBABILITY DENSITY FUNCTION # ################################ p1 = stats.norm.pdf(x=-100, loc=0, scale=10) # Get probability of sampling a value of -100 p2 = stats.norm.pdf(x=0, loc=0, scale=10) # Get probability of sampling a value of 0 print(p1) print(p2) #################################### # CUMULATIVE DISTRIBUTION FUNCTION # #################################### p1 = stats.norm.cdf(x=0, loc=0, scale=10) # Get probability of sampling a value less than or equal to 0 print(p1) ###################################### # CALCULATING DESCRIPTIVE STATISTICS # ###################################### print(stats.describe(stats.norm.rvs(loc=0, scale=1, size=500))) # Calculate descriptive statistics for 500 data points sampled from normal distribution with mean 0 and standard deviation of 1
0
0
0
0
0
0
0
0
0
b76ae8aebcf19bf3deee56b36c1edd3ec1852d21
50,717
py
Python
Src/Scripts/DarunGrim.py
fengjixuchui/DarunGrim
a6cbe5c064f9399423845dea0ab67355d5ac5852
[ "BSD-3-Clause" ]
null
null
null
Src/Scripts/DarunGrim.py
fengjixuchui/DarunGrim
a6cbe5c064f9399423845dea0ab67355d5ac5852
[ "BSD-3-Clause" ]
null
null
null
Src/Scripts/DarunGrim.py
fengjixuchui/DarunGrim
a6cbe5c064f9399423845dea0ab67355d5ac5852
[ "BSD-3-Clause" ]
null
null
null
import time RedirectStdOutErr=True if __name__=='__main__': multiprocessing.freeze_support() import sys import time if len(sys.argv)>1: database_name=sys.argv[1] else: database_name='' app=QApplication(sys.argv) pixmap=QPixmap('DarunGrimSplash.png') splash=QSplashScreen(pixmap) splash.show() app.processEvents() time.sleep(0.5) window=MainWindow(database_name) window.show() splash.finish(window) sys.exit(app.exec_())
32.242212
318
0.763354
from PySide.QtCore import * from PySide.QtGui import * from PySide.QtSql import * import DarunGrimDatabase import DiffEngine from Graphs import * import FlowGrapher import FileStoreBrowser import FileStoreDatabase import DarunGrimEngine import pprint from multiprocessing import Process from multiprocessing import Queue import time import os import operator import subprocess from Log import * RedirectStdOutErr=True class FunctionMatchTable(QAbstractTableModel): Debug=0 def __init__(self,parent, database_name='', *args): QAbstractTableModel.__init__(self,parent,*args) self.match_list=[] if database_name: database = DarunGrimDatabase.Database(database_name) for function_match_info in database.GetFunctionMatchInfo(): if function_match_info.match_rate < 100: if self.Debug>0: print "%s\t%s\t%s\t%s\t%s%%\t%d\t%d\t%d\t%d\t%d\t%d" % (function_match_info.source_function_name, function_match_info.target_function_name, str(function_match_info.block_type), str(function_match_info.type), str( function_match_info.match_rate ), function_match_info.match_count_for_the_source, function_match_info.non_match_count_for_the_source, function_match_info.match_count_with_modificationfor_the_source, function_match_info.match_count_for_the_target, function_match_info.non_match_count_for_the_target, function_match_info.match_count_with_modification_for_the_target) self.match_list.append([function_match_info.source_function_name, function_match_info.target_function_name, "%d%%" % (function_match_info.match_rate), function_match_info]) def GetFunctionAddresses(self,index): return [self.match_list[index][3].source_address, self.match_list[index][3].target_address] def rowCount(self,parent): return len(self.match_list) def columnCount(self,parent): return 3 def data(self,index,role): if not index.isValid(): return None elif role!=Qt.DisplayRole: return None return self.match_list[index.row()][index.column()] def headerData(self,col,orientation,role): if orientation==Qt.Horizontal and role==Qt.DisplayRole: return ["Orig", "Patched", "Match"][col] return None def sort(self,col,order): self.emit(SIGNAL("layoutAboutToBeChanged()")) self.match_list=sorted(self.match_list,key=operator.itemgetter(col)) if order==Qt.DescendingOrder: self.match_list.reverse() self.emit(SIGNAL("layoutChanged()")) class BBMatchTable(QAbstractTableModel): def __init__(self,parent, database_name='', *args): QAbstractTableModel.__init__(self,parent,*args) self.match_list=[] if database_name: database = DarunGrimDatabase.Database(database_name) [matches,source_non_matched,target_non_matched]=database.GetBBMatchInfo() for (match_map,source_basic_block,source_function_oli,target_basic_block,target_function_oli) in matches: source_function_name='' if source_function_oli!=None: source_function_name=source_function_oli.name target_function_name='' if target_function_oli!=None: target_function_name=target_function_oli.name self.match_list.append([source_basic_block.disasm_lines, target_basic_block.disasm_lines, source_function_name, target_function_name, match_map.match_rate]) for (basic_block, function_basic_block, match_function_basic_block) in source_non_matched: function_name='' if function_basic_block!=None: function_name=function_basic_block.name match_function_name='' if match_function_basic_block!=None: match_function_name=match_function_basic_block.name self.match_list.append([basic_block.disasm_lines, "", function_name, match_function_name, 0]) for (basic_block, function_basic_block, match_function_basic_block) in target_non_matched: function_name='' if function_basic_block!=None: function_name=function_basic_block.name match_function_name='' if match_function_basic_block!=None: match_function_name=match_function_basic_block.name self.match_list.append(["", basic_block.disasm_lines, match_function_name, function_name, 0]) def rowCount(self,parent): return len(self.match_list) def columnCount(self,parent): return 5 def data(self,index,role): if not index.isValid(): return None elif role!=Qt.DisplayRole: return None return self.match_list[index.row()][index.column()] def headerData(self,col,orientation,role): if orientation==Qt.Horizontal and role==Qt.DisplayRole: return ["Orig", "Patched", "Orig Func", "Patched Func", "Match"][col] return None class BlockTable(QAbstractTableModel): def __init__(self,parent,database_name='',source_function_address=0, target_function_address=0, *args): QAbstractTableModel.__init__(self,parent,*args) self.match_list=[] self.full_match_list=[] self.ShowFullMatches=False if database_name: database = DarunGrimDatabase.Database(database_name) self.SourceMatchInfo={} self.TargetMatchInfo={} [match_hash, source_non_matches,target_non_matches]=database.GetBlockMatches( source_function_address, target_function_address ) for ( source_address, ( target_address, match_rate ) ) in match_hash.items(): if self.ShowFullMatches or match_rate<100: self.match_list.append([source_address, target_address, match_rate]) self.full_match_list.append([source_address, target_address, match_rate]) self.SourceMatchInfo[source_address]=[target_address, match_rate] self.TargetMatchInfo[target_address]=[source_address, match_rate] for non_match in source_non_matches: self.match_list.append([non_match, 0, 0]) for non_match in target_non_matches: self.match_list.append([0, non_match, 0]) def GetSourceMatchInfo(self): return self.SourceMatchInfo def GetTargetMatchInfo(self): return self.TargetMatchInfo def GetBlockAddresses(self,index): return [self.match_list[index][0], self.match_list[index][1]] def GetMatchAddresses(self,col,address): for (addr1,addr2,match_rate) in self.full_match_list: if col==0 and address==addr1: return addr2 if col==1 and address==addr2: return addr1 return None def rowCount(self,parent): return len(self.match_list) def columnCount(self,parent): return 3 def data(self,index,role): if not index.isValid(): return None elif role!=Qt.DisplayRole: return None value=self.match_list[index.row()][index.column()] if index.column()<2: if value==0: return "" return "%.8X" % value elif index.column()==2: if value==0: return "Non match" return "%d%%" % value return value def headerData(self,col,orientation,role): if orientation==Qt.Horizontal and role==Qt.DisplayRole: return ["Orig", "Patched", "Match"][col] return None def sort(self,col,order): self.emit(SIGNAL("layoutAboutToBeChanged()")) self.match_list=sorted(self.match_list,key=operator.itemgetter(col)) if order==Qt.DescendingOrder: self.match_list.reverse() self.emit(SIGNAL("layoutChanged()")) class NewDiffingDialog(QDialog): def __init__(self,parent=None): super(NewDiffingDialog,self).__init__(parent) self.setWindowTitle("New Diffing") self.setWindowIcon(QIcon('DarunGrim.png')) self.Filenames={'Orig':'','Patched':'','Result':''} orig_button=QPushButton('Orig File:',self) orig_button.clicked.connect(self.getOrigFilename) self.orig_line=QLineEdit("") self.orig_line.setAlignment(Qt.AlignLeft) self.orig_line.setMinimumWidth(250) patched_button=QPushButton('Patched File:',self) patched_button.clicked.connect(self.getPatchedFilename) self.patched_line=QLineEdit("") self.patched_line.setAlignment(Qt.AlignLeft) self.patched_line.setMinimumWidth(250) result_button=QPushButton('Result:',self) result_button.clicked.connect(self.getResultFilename) self.result_line=QLineEdit("") self.result_line.setAlignment(Qt.AlignLeft) self.result_line.setMinimumWidth(250) buttonBox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) buttonBox.accepted.connect(self.accept) buttonBox.rejected.connect(self.reject) main_layout=QGridLayout() main_layout.addWidget(orig_button,0,0) main_layout.addWidget(self.orig_line,0,1) main_layout.addWidget(patched_button,1,0) main_layout.addWidget(self.patched_line,1,1) main_layout.addWidget(result_button,2,0) main_layout.addWidget(self.result_line,2,1) main_layout.addWidget(buttonBox,3,1) self.setLayout(main_layout) def keyPressEvent(self,e): key=e.key() if key==Qt.Key_Return or key==Qt.Key_Enter: return else: super(NewDiffingDialog,self).keyPressEvent(e) def getOrigFilename(self): filename=self.getFilename("Orig") self.orig_line.setText(filename) def getPatchedFilename(self): filename=self.getFilename("Patched") self.patched_line.setText(filename) def getResultFilename(self): (filename,filter)=QFileDialog.getSaveFileName(self,"Result", filter="*.dgf") self.Filenames['Result']=filename self.result_line.setText(filename) def getFilename(self,type): (filename,filter)=QFileDialog.getOpenFileName(self,type) if filename: self.Filenames[type]=filename return filename class FileStoreBrowserDialog(QDialog): ShowResultButton=False def __init__(self,parent=None,database_name='',darungrim_storage_dir=''): super(FileStoreBrowserDialog,self).__init__(parent) self.setWindowTitle("File Store Browser") self.setWindowIcon(QIcon('DarunGrim.png')) self.FileStoreDir=darungrim_storage_dir self.filesWidgetsTemplate=FileStoreBrowser.FilesWidgetsTemplate(self,database_name,qApp) self.filesWidgetsTemplate.setDarunGrimStore(self.FileStoreDir) buttonBox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) buttonBox.accepted.connect(self.accept) buttonBox.rejected.connect(self.reject) bottom_layout=QGridLayout() bottom_layout.addWidget(buttonBox,0,3) main_layout=QVBoxLayout() main_layout.addWidget(self.filesWidgetsTemplate.tab_widget) main_layout.addLayout(bottom_layout) self.setLayout(main_layout) self.resize(950,500) self.setWindowFlags(self.windowFlags()|Qt.WindowSystemMenuHint|Qt.WindowMinMaxButtonsHint) self.show() def keyPressEvent(self,e): key=e.key() if key==Qt.Key_Return or key==Qt.Key_Enter: return else: super(FileStoreBrowserDialog,self).keyPressEvent(e) class NewDiffingFromFileStoreDialog(QDialog): ShowResultButton=False def __init__(self,parent=None,database_name='',darungrim_storage_dir=''): super(NewDiffingFromFileStoreDialog,self).__init__(parent) self.setWindowTitle("File Store Browser") self.setWindowIcon(QIcon('DarunGrim.png')) self.FileStoreDir=darungrim_storage_dir self.InitVars() self.filesWidgetsTemplate=FileStoreBrowser.FilesWidgetsTemplate(self,database_name,qApp) self.filesWidgetsTemplate.setDarunGrimStore(self.FileStoreDir) orig_button=QPushButton('Orig File >> ',self) orig_button.clicked.connect(self.getOrigFilename) self.orig_line=QLineEdit("") self.orig_line.setAlignment(Qt.AlignLeft) patched_button=QPushButton('Patched File >> ',self) patched_button.clicked.connect(self.getPatchedFilename) self.patched_line=QLineEdit("") self.patched_line.setAlignment(Qt.AlignLeft) if self.ShowResultButton: result_button=QPushButton('Result:',self) result_button.clicked.connect(self.getResultFilename) self.result_line=QLineEdit("") self.result_line.setAlignment(Qt.AlignLeft) name_label=QLabel('Name:') self.name_line=QLineEdit("") self.name_line.setAlignment(Qt.AlignLeft) description_label=QLabel('Description:') self.description_line=QLineEdit("") self.description_line.setAlignment(Qt.AlignLeft) buttonBox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) buttonBox.accepted.connect(self.accept) buttonBox.rejected.connect(self.reject) bottom_layout=QGridLayout() bottom_layout.addWidget(orig_button,0,0) bottom_layout.addWidget(self.orig_line,0,1) bottom_layout.addWidget(patched_button,0,2) bottom_layout.addWidget(self.patched_line,0,3) if self.ShowResultButton: bottom_layout.addWidget(result_button,1,0) bottom_layout.addWidget(self.result_line,2,1) bottom_layout.addWidget(name_label,1,0) bottom_layout.addWidget(self.name_line,1,1) bottom_layout.addWidget(description_label,1,2) bottom_layout.addWidget(self.description_line,1,3) bottom_layout.addWidget(buttonBox,4,3) main_layout=QVBoxLayout() main_layout.addWidget(self.filesWidgetsTemplate.tab_widget) main_layout.addLayout(bottom_layout) self.setLayout(main_layout) self.resize(950,500) self.setWindowFlags(self.windowFlags()|Qt.WindowSystemMenuHint|Qt.WindowMinMaxButtonsHint) self.show() def keyPressEvent(self,e): key=e.key() if key==Qt.Key_Return or key==Qt.Key_Enter: return else: super(NewDiffingFromFileStoreDialog,self).keyPressEvent(e) def InitVars(self): self.OrigFileID=0 self.OrigFilename='' self.OrigFileSHA1='' self.PatchedFileID=0 self.PatchedFilename='' self.PatchedFileSHA1='' self.ResultFilename='' self.Name='' self.Description='' def getOrigFilename(self): ret = self.filesWidgetsTemplate.getCurrentSelection() if ret!=None: self.OrigFileID=ret['id'] self.OrigFilename=os.path.join(self.FileStoreDir,ret['filename']) self.OrigFileSHA1=ret['sha1'] self.orig_line.setText(self.OrigFilename) def getPatchedFilename(self): ret = self.filesWidgetsTemplate.getCurrentSelection() if ret!=None: self.PatchedFileID=ret['id'] self.PatchedFilename=os.path.join(self.FileStoreDir,ret['filename']) self.PatchedFileSHA1=ret['sha1'] self.patched_line.setText(self.PatchedFilename) def getResultFilename(self): (filename,filter)=QFileDialog.getOpenFileName(self,"Result...") if filename: self.ResultFilename=str(filename.replace("/","\\")) if self.ResultFilename[-4:0].lower()!='.dgf': self.ResultFilename+='.dgf' self.result_line.setText(self.ResultFilename) class SessionTable(QAbstractTableModel): def __init__(self,parent,database_name='',*args): QAbstractTableModel.__init__(self,parent,*args) self.list=[] database=FileStoreDatabase.Database(database_name) for (session,src_tag,dst_tag) in database.GetSessions(): src_tag_name='' dst_tag_name='' if src_tag!=None: src_tag_name=src_tag.tag if dst_tag!=None: dst_tag_name=dst_tag.tag src_filename=database.GetFileNameWithVersionByID(session.src) dst_filename=database.GetFileNameWithVersionByID(session.dst) description="%s - %s vs %s - %s" % (src_filename, src_tag_name, dst_filename, dst_tag_name) self.list.append([session.name, session.description, src_filename, src_tag_name, dst_filename, dst_tag_name, session.result, description]) def GetFilename(self,row): return self.list[row][6] def GetDescription(self,row): return self.list[row][7] def rowCount(self,parent): return len(self.list) def columnCount(self,parent): return 6 def data(self,index,role): if not index.isValid(): return None elif role!=Qt.DisplayRole: return None return self.list[index.row()][index.column()] def headerData(self,col,orientation,role): if orientation==Qt.Horizontal and role==Qt.DisplayRole: return ["Name", "Description", "Orig", "Tag", "Patched", "Tag"][col] return None def sort(self,col,order): self.emit(SIGNAL("layoutAboutToBeChanged()")) self.list=sorted(self.list,key=operator.itemgetter(col)) if order==Qt.DescendingOrder: self.list.reverse() self.emit(SIGNAL("layoutChanged()")) class SessionsDialog(QDialog): def __init__(self,parent=None,database_name=''): super(SessionsDialog,self).__init__(parent) self.setWindowTitle("Sessions") self.setWindowIcon(QIcon('DarunGrim.png')) self.Filename='' view=QTableView() vheader=QHeaderView(Qt.Orientation.Vertical) vheader.setResizeMode(QHeaderView.ResizeToContents) view.setVerticalHeader(vheader) view.horizontalHeader().setResizeMode(QHeaderView.Stretch) view.setSortingEnabled(True) view.setSelectionBehavior(QAbstractItemView.SelectRows) self.SessionTableView=view self.SessionTable=SessionTable(self,database_name) self.SessionTableView.setModel(self.SessionTable) vlayout=QVBoxLayout() vlayout.addWidget(view) buttonBox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) buttonBox.accepted.connect(self.accept) buttonBox.rejected.connect(self.reject) vlayout.addWidget(buttonBox) self.setLayout(vlayout) self.resize(800,400) self.setWindowFlags(self.windowFlags()|Qt.WindowSystemMenuHint|Qt.WindowMinMaxButtonsHint) self.show() def GetFilename(self): selection=self.SessionTableView.selectionModel() if selection!=None: for index in selection.selection().indexes(): return self.SessionTable.GetFilename(index.row()) return '' def GetDescription(self): selection=self.SessionTableView.selectionModel() if selection!=None: for index in selection.selection().indexes(): return self.SessionTable.GetDescription(index.row()) return '' def headerData(self,col,orientation,role): if orientation==Qt.Horizontal and role==Qt.DisplayRole: return ["Name", "Description", "Orig", "Patched"][col] return None class ServerInfoDialog(QDialog): def __init__(self,parent=None, port=0): super(ServerInfoDialog,self).__init__(parent) self.setWindowTitle("Server Information") self.setWindowIcon(QIcon('DarunGrim.png')) port_label=QLabel('Port:',self) if port==0: port_text='None' else: port_text='%d' % port port_number_label=QLabel(port_text, self) buttonBox = QDialogButtonBox(QDialogButtonBox.Ok) buttonBox.accepted.connect(self.accept) main_layout=QGridLayout() main_layout.addWidget(port_label,0,0) main_layout.addWidget(port_number_label,0,1) main_layout.addWidget(buttonBox,1,1) self.setLayout(main_layout) class ConfigurationDialog(QDialog): def __init__(self,parent=None, file_store_dir='', data_files_dir='', ida_path='', ida64_path='', log_level=0): super(ConfigurationDialog,self).__init__(parent) self.setWindowTitle("Configuration") self.setWindowIcon(QIcon('DarunGrim.png')) file_store_dir_button=QPushButton('FileSotre Dir:',self) file_store_dir_button.clicked.connect(self.getFileStoreDir) self.file_store_dir_line=QLineEdit("") self.file_store_dir_line.setAlignment(Qt.AlignLeft) self.file_store_dir_line.setMinimumWidth(250) self.file_store_dir_line.setText(file_store_dir) data_files_dir_button=QPushButton('Data Files Dir:',self) data_files_dir_button.clicked.connect(self.getDataFilesDir) self.data_files_dir_line=QLineEdit("") self.data_files_dir_line.setAlignment(Qt.AlignLeft) self.data_files_dir_line.setMinimumWidth(250) self.data_files_dir_line.setText(data_files_dir) ida_path_button=QPushButton('IDA Path:',self) ida_path_button.clicked.connect(self.getIDAPath) self.ida_path_line=QLineEdit(ida_path) self.ida_path_line.setAlignment(Qt.AlignLeft) self.ida_path_line.setMinimumWidth(250) self.ida_path_line.setText(ida_path) self.IDAPath=ida_path ida64_path_button=QPushButton('IDA64 Path:',self) ida64_path_button.clicked.connect(self.getIDA64Path) self.ida64_path_line=QLineEdit(ida64_path) self.ida64_path_line.setAlignment(Qt.AlignLeft) self.ida64_path_line.setMinimumWidth(250) self.ida64_path_line.setText(ida64_path) self.IDA64Path=ida64_path log_level_button=QLabel('Log Level:',self) self.log_level_line=QLineEdit("") self.log_level_line.setAlignment(Qt.AlignLeft) self.log_level_line.setMinimumWidth(250) self.log_level_line.setText('%d' % log_level) buttonBox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) buttonBox.accepted.connect(self.accept) buttonBox.rejected.connect(self.reject) main_layout=QGridLayout() main_layout.addWidget(file_store_dir_button,0,0) main_layout.addWidget(self.file_store_dir_line,0,1) main_layout.addWidget(data_files_dir_button,2,0) main_layout.addWidget(self.data_files_dir_line,2,1) main_layout.addWidget(ida_path_button,3,0) main_layout.addWidget(self.ida_path_line,3,1) main_layout.addWidget(ida64_path_button,4,0) main_layout.addWidget(self.ida64_path_line,4,1) main_layout.addWidget(log_level_button,5,0) main_layout.addWidget(self.log_level_line,5,1) main_layout.addWidget(buttonBox,6,1) self.setLayout(main_layout) def keyPressEvent(self,e): key=e.key() if key==Qt.Key_Return or key==Qt.Key_Enter: return else: super(ConfigurationDialog,self).keyPressEvent(e) def getFileStoreDir(self): dir_name=QFileDialog.getExistingDirectory(self,'FileStore Dir') if dir_name: self.file_store_dir_line.setText(dir_name) def getFileStoreDatabase(self): (filename,filter)=QFileDialog.getOpenFileName(self,'FileStore Database File') if filename: self.file_store_database_line.setText(filename) def getDataFilesDir(self): dir_name=QFileDialog.getExistingDirectory(self,'Data Files Dir') if dir_name: self.data_files_dir_line.setText(dir_name) def getIDAPath(self): (filename,filter)=QFileDialog.getOpenFileName(self,'IDA Path',filter="*.exe") if filename: self.ida_path_line.setText(filename) def getIDA64Path(self): (filename,filter)=QFileDialog.getOpenFileName(self,'IDA64 Path',filter="*.exe") if filename: self.ida64_path_line.setText(filename) def SendLogMessage(message,q): q.put(message) def PerformDiffThread(src_filename, target_filename, result_filename, log_filename='', log_level=100, dbg_storage_dir='', is_src_target_storage=False, src_ida_log_filename = 'src.log', target_ida_log_filename = 'target.log', ida_path='', ida64_path='', q=None): if q!=None and RedirectStdOutErr: ph_out=PrintHook(True,func=SendLogMessage,arg=q) ph_out.Start() ph_err=PrintHook(False,func=SendLogMessage,arg=q) ph_err.Start() if is_src_target_storage: darungrim=DarunGrimEngine.DarunGrim() darungrim.SetStorageNames(src_filename, target_filename) else: darungrim=DarunGrimEngine.DarunGrim(src_filename, target_filename) darungrim.SetIDAPath(ida_path) darungrim.SetIDAPath(ida64_path,True) darungrim.SetDGFSotrage(dbg_storage_dir) if log_filename: darungrim.SetLogFile(log_filename,log_level) darungrim.PerformDiff(result_filename,src_ida_log_filename = src_ida_log_filename, target_ida_log_filename = target_ida_log_filename) class MainWindow(QMainWindow): UseDock=False ShowBBMatchTableView=False def __init__(self,database_name): super(MainWindow,self).__init__() self.setWindowTitle("DarunGrim 4") self.setWindowIcon(QIcon('DarunGrim.png')) self.PerformDiffProcess=None self.DatabaseName=database_name self.LogDialog=LogTextBoxDialog() self.LogDialog.resize(800,600) if RedirectStdOutErr: self.PHOut=PrintHook(True,func=self.onTextBoxDataReady) self.PHOut.Start() self.PHErr=PrintHook(False,func=self.onTextBoxDataReady) self.PHErr.Start() self.NonMaxGeometry=None self.DarunGrimEngine=DarunGrimEngine.DarunGrim(start_ida_listener=True) self.readSettings() # Menu self.createActions() self.createMenus() #Use dock? not yet if not self.UseDock: bottom_splitter=QSplitter() self.GraphSplitter=QSplitter() # Functions self.FunctionMatchTableView=QTableView() vheader=QHeaderView(Qt.Orientation.Vertical) vheader.setResizeMode(QHeaderView.ResizeToContents) self.FunctionMatchTableView.setVerticalHeader(vheader) self.FunctionMatchTableView.horizontalHeader().setResizeMode(QHeaderView.Stretch) self.FunctionMatchTableView.setSortingEnabled(True) self.FunctionMatchTableView.setSelectionBehavior(QAbstractItemView.SelectRows) if self.ShowBBMatchTableView: self.BBMatchTableView=QTableView() vheader=QHeaderView(Qt.Orientation.Vertical) vheader.setResizeMode(QHeaderView.ResizeToContents) self.BBMatchTableView.setVerticalHeader(vheader) self.BBMatchTableView.horizontalHeader().setResizeMode(QHeaderView.Stretch) self.BBMatchTableView.setSortingEnabled(True) self.BBMatchTableView.setSelectionBehavior(QAbstractItemView.SelectRows) if self.UseDock: dock=QDockWidget("Functions",self) dock.setObjectName("Functions") dock.setAllowedAreas(Qt.LeftDockWidgetArea|Qt.RightDockWidgetArea) dock.setWidget(self.FunctionMatchTableView) self.addDockWidget(Qt.BottomDockWidgetArea,dock) else: bottom_splitter.addWidget(self.FunctionMatchTableView) # Blocks self.BlockTableModel=BlockTable(self,database_name) self.BlockTableView=QTableView() vheader=QHeaderView(Qt.Orientation.Vertical) vheader.setResizeMode(QHeaderView.ResizeToContents) self.BlockTableView.setVerticalHeader(vheader) self.BlockTableView.horizontalHeader().setResizeMode(QHeaderView.Stretch) self.BlockTableView.setSortingEnabled(True) self.BlockTableView.setModel(self.BlockTableModel) self.BlockTableView.setSelectionBehavior(QAbstractItemView.SelectRows) if self.UseDock: dock=QDockWidget("Blocks",self) dock.setObjectName("Blocks") dock.setAllowedAreas(Qt.LeftDockWidgetArea|Qt.RightDockWidgetArea) dock.setWidget(self.BlockTableView) self.addDockWidget(Qt.BottomDockWidgetArea,dock) else: bottom_splitter.addWidget(self.BlockTableView) bottom_splitter.setStretchFactor(0,1) bottom_splitter.setStretchFactor(1,0) # Function Graph self.OrigFunctionGraph=MyGraphicsView() self.OrigFunctionGraph.setRenderHints(QPainter.Antialiasing) if self.UseDock: dock=QDockWidget("Orig",self) dock.setObjectName("Orig") dock.setAllowedAreas(Qt.LeftDockWidgetArea|Qt.RightDockWidgetArea) dock.setWidget(view) self.addDockWidget(Qt.TopDockWidgetArea,dock) else: self.GraphSplitter.addWidget(self.OrigFunctionGraph) # Function Graph self.PatchedFunctionGraph=MyGraphicsView() self.PatchedFunctionGraph.setRenderHints(QPainter.Antialiasing) if self.UseDock: dock=QDockWidget("Patched",self) dock.setObjectName("Patched") dock.setAllowedAreas(Qt.LeftDockWidgetArea|Qt.RightDockWidgetArea) dock.setWidget(view) self.addDockWidget(Qt.TopDockWidgetArea,dock) else: self.GraphSplitter.addWidget(self.PatchedFunctionGraph) self.RefreshGraphViews() if not self.UseDock: virt_splitter=QSplitter() virt_splitter.setOrientation(Qt.Vertical) virt_splitter.addWidget(self.GraphSplitter) if self.ShowBBMatchTableView: tab_widget=QTabWidget() tab_widget.addTab(bottom_splitter,"Functions..") tab_widget.addTab(self.BBMatchTableView,"Basic blocks...") virt_splitter.addWidget(tab_widget) else: virt_splitter.addWidget(bottom_splitter) virt_splitter.setStretchFactor(0,1) virt_splitter.setStretchFactor(1,0) main_widget=QWidget() vlayout=QVBoxLayout() vlayout.addWidget(virt_splitter) main_widget.setLayout(vlayout) self.setCentralWidget(main_widget) self.show() self.clearAreas() if database_name: self.OpenDatabase(database_name) self.restoreUI() def RefreshGraphViews(self): if self.ShowGraphs==True: self.OrigFunctionGraph.show() self.PatchedFunctionGraph.show() self.GraphSplitter.show() else: self.OrigFunctionGraph.hide() self.PatchedFunctionGraph.hide() self.GraphSplitter.hide() def clearAreas(self): self.OrigFunctionGraph.clear() self.PatchedFunctionGraph.clear() self.FunctionMatchTable=FunctionMatchTable(self) self.FunctionMatchTableView.setModel(self.FunctionMatchTable) if self.ShowBBMatchTableView: self.BBMatchTable=BBMatchTable(self) self.BBMatchTableView.setModel(self.BBMatchTable) self.BlockTableModel=BlockTable(self) self.BlockTableView.setModel(self.BlockTableModel) def manageFileStore(self): dialog=FileStoreBrowserDialog(database_name=self.FileStoreDatabase, darungrim_storage_dir=self.FileStoreDir) dialog.exec_() def newFromFileStore(self): dialog=NewDiffingFromFileStoreDialog(database_name=self.FileStoreDatabase, darungrim_storage_dir=self.FileStoreDir) if dialog.exec_(): result_filename='%s-%s.dgf' % (dialog.OrigFileSHA1, dialog.PatchedFileSHA1) log_filename='%s-%s.log' % (dialog.OrigFileSHA1, dialog.PatchedFileSHA1) self.StartPerformDiff(dialog.OrigFilename, dialog.PatchedFilename, os.path.join(self.DataFilesDir, result_filename), os.path.join(self.DataFilesDir, log_filename), debug=False ) file_store_database=FileStoreDatabase.Database(self.FileStoreDatabase) file_store_database.AddSession(dialog.name_line.text(), dialog.description_line.text(), dialog.OrigFileID, dialog.PatchedFileID, result_filename) def openFromFileStore(self): dialog=SessionsDialog(database_name=self.FileStoreDatabase) if dialog.exec_(): self.OpenDatabase(os.path.join(self.DataFilesDir, dialog.GetFilename())) self.setWindowTitle("DarunGrim 4 %s" % dialog.GetDescription()) def new(self): dialog=NewDiffingDialog() if dialog.exec_(): src_filename = str(dialog.Filenames['Orig']) target_filename = str(dialog.Filenames['Patched']) result_filename = str(dialog.Filenames['Result']) log_filename=result_filename+'.log' is_src_target_storage = False if src_filename.lower()[-4:]=='.dgf' and target_filename.lower()[-4:]=='.dgf': is_src_target_storage=True self.StartPerformDiff( src_filename, target_filename, result_filename, log_filename, is_src_target_storage=is_src_target_storage, ) def reanalyze(self): database = DarunGrimDatabase.Database(self.DatabaseName) [src_filename,target_filename] = database.GetDGFFileLocations() database.Close() del database result_filename='' if self.DatabaseName[-4:].lower()=='.dgf': prefix=self.DatabaseName[0:-4] else: prefix=self.DatabaseName i=0 while True: result_filename=prefix+'-%d.dgf' % i if not os.path.isfile(result_filename): break i+=1 log_filename=result_filename + '.log' self.StartPerformDiff(src_filename, target_filename, str(self.DatabaseName), log_filename=log_filename, is_src_target_storage=True, debug=False) def onTextBoxDataReady(self,data): if not self.LogDialog.isVisible(): self.LogDialog.show() self.LogDialog.addText(data) def onDiffLogReady(self,data): if not self.LogDialog.isVisible(): self.LogDialog.show() self.LogDialog.addText(data) def PerformDiffCancelled(self): if self.PerformDiffProcess!=None: self.PerformDiffProcess.terminate() self.PerformDiffProcessCancelled=True def StartPerformDiff(self,src_filename,target_filename,result_filename,log_filename='',is_src_target_storage=False, debug=False): print "Start Diffing Process: %s vs %s -> %s" % (src_filename,target_filename,result_filename) self.clearAreas() if os.path.isfile(log_filename): os.unlink(log_filename) try: os.makedirs(os.path.dirname(result_filename)) except: pass src_ida_log_filename=result_filename+'.src.log' target_ida_log_filename=result_filename+'.target.log' q=None debug=False if debug: self.PerformDiffProcess=None PerformDiffThread(src_filename,target_filename,result_filename,log_level=self.LogLevel,dbg_storage_dir=self.DataFilesDir,is_src_target_storage=is_src_target_storage,src_ida_log_filename = src_ida_log_filename, target_ida_log_filename = target_ida_log_filename, ida_path=self.IDAPath, ida64_path=self.IDA64Path, q=q) else: q=Queue() self.PerformDiffProcess=Process(target=PerformDiffThread,args=(src_filename,target_filename,result_filename,log_filename,self.LogLevel,self.DataFilesDir,is_src_target_storage,src_ida_log_filename,target_ida_log_filename,self.IDAPath,self.IDA64Path,q)) self.PerformDiffProcess.start() self.PerformDiffProcessCancelled=False if self.PerformDiffProcess!=None: qlog_thread=QueReadThread(q) self.LogDialog.SetCancelCallback(self.PerformDiffCancelled) self.LogDialog.DisableClose() self.LogDialog.show() qlog_thread.data_read.connect(self.onDiffLogReady) qlog_thread.start() log_threads=[] for filename in [log_filename,src_ida_log_filename,target_ida_log_filename]: log_thread=LogThread(filename) log_thread.data_read.connect(self.onDiffLogReady) log_thread.start() log_threads.append(log_thread) while True: time.sleep(0.01) if not self.PerformDiffProcess.is_alive(): break qApp.processEvents() for log_thread in log_threads: log_thread.end() qlog_thread.end() self.LogDialog.EnableClose() if not self.PerformDiffProcessCancelled: self.LogDialog.addText("Diffing process finished.") else: self.LogDialog.addText("Diffing process cancelled.") self.LogDialog.SetCancelCallback(None) self.PerformDiffProcess=None if not self.PerformDiffProcessCancelled: self.OpenDatabase(result_filename) def open(self): (filename,filter)=QFileDialog.getOpenFileName(self,"Open...") if filename: self.clearAreas() self.OpenDatabase(filename) def OpenFolder(self,folder): try: subprocess.check_call(['explorer', folder]) except: pass def openOriginalFilesLocation(self): database = DarunGrimDatabase.Database(self.DatabaseName) [src_filename,target_filename]=database.GetFilesLocation() self.OpenFolder(os.path.dirname(src_filename)) def openPatchedFilesLocation(self): database = DarunGrimDatabase.Database(self.DatabaseName) [src_filename,target_filename]=database.GetFilesLocation() self.OpenFolder(os.path.dirname(target_filename)) def OpenIDA(self,filename): ida_filename=filename if filename[-4:].lower()!='.idb' and filename[-4:].lower()!='.i64': for path in [filename[0:-4] + '.idb', filename[0:-4] + '.i64']: if os.path.isfile(path): ida_filename=path break self.DarunGrimEngine.OpenIDA(ida_filename) def synchronizeIDA(self): if self.DatabaseName: database = DarunGrimDatabase.Database(self.DatabaseName) [src_filename,target_filename]=database.GetFilesLocation() self.DarunGrimEngine.SetSourceIDASession(src_filename) self.DarunGrimEngine.SetTargetIDASession(target_filename) self.OpenIDA(src_filename) self.OpenIDA(target_filename) def captureWindow(self): (filename,filter)=QFileDialog.getSaveFileName(self,'Save file', filter="*.png") if filename: pixmap=QPixmap.grabWidget(super(QMainWindow,self)) pixmap.save(filename,"png") def saveOrigGraph(self): (filename,filter)=QFileDialog.getSaveFileName(self,'Save file', filter="*.png") if filename: self.OrigFunctionGraph.SaveImg(filename) def savePatchedGraph(self): (filename,filter)=QFileDialog.getSaveFileName(self,'Save file', filter="*.png") if filename: self.PatchedFunctionGraph.SaveImg(filename) def showLogs(self): self.LogDialog.show() def toggleShowGraphs(self): if self.ShowGraphs==True: self.ShowGraphs=False else: self.ShowGraphs=True self.RefreshGraphViews() def toggleSyncrhonizeIDAUponOpening(self): if self.SyncrhonizeIDAUponOpening==True: self.SyncrhonizeIDAUponOpening=False else: self.SyncrhonizeIDAUponOpening=True def showConfiguration(self): dialog=ConfigurationDialog( file_store_dir=self.FileStoreDir, data_files_dir=self.DataFilesDir, ida_path=self.IDAPath, ida64_path=self.IDA64Path, log_level=self.LogLevel ) if dialog.exec_(): self.FileStoreDir=dialog.file_store_dir_line.text() self.DataFilesDir=dialog.data_files_dir_line.text() self.FileStoreDatabase=os.path.join(self.DataFilesDir,'index.db') self.IDAPath=dialog.ida_path_line.text() self.IDA64Path=dialog.ida64_path_line.text() self.DarunGrimEngine.SetIDAPath(self.IDAPath) self.DarunGrimEngine.SetIDAPath(self.IDA64Path,True) self.LogLevel=int(dialog.log_level_line.text()) def serverInfo(self): dialog=ServerInfoDialog(port=self.DarunGrimEngine.ListeningPort) dialog.exec_() def toggleStaysOnTop(self): if self.StaysOnTop==True: self.StaysOnTop=False self.hide() self.setWindowFlags(self.windowFlags()& ~Qt.WindowStaysOnTopHint) self.show() else: self.StaysOnTop=True self.hide() self.setWindowFlags(self.windowFlags()|Qt.WindowStaysOnTopHint) self.show() def intallIDAPlugin(self): (ret1,message1)=self.DarunGrimEngine.InstallIDAPlugin('DarunGrimPlugin.plw') (ret2,message2)=self.DarunGrimEngine.InstallIDAPlugin('DarunGrimPlugin.p64') if not ret1 or not ret2: msg_box=QMessageBox() if message1!=message2: message1 += '\n' + message2 msg_box.setText('Try to run the program with an Administrator privilege\n' + message1) msg_box.exec_() return False else: msg_box=QMessageBox() msg_box.setText('Installation successful\n'+message1 + '\n' + message2) msg_box.exec_() return True def createActions(self): self.newAct = QAction("New Diffing...", self, shortcut=QKeySequence.New, statusTip="Create new diffing output", triggered=self.new ) self.openAct = QAction("Open...", self, shortcut=QKeySequence.Open, statusTip="Open a dgf database", triggered=self.open ) self.manageFileStoreAct = QAction("Manage FileStore...", self, statusTip="Manage FileStore", triggered=self.manageFileStore ) self.newFromFileStoreAct = QAction("New Diffing (FileStore)...", self, statusTip="Create new diffing output", triggered=self.newFromFileStore ) self.openFromFileStoreAct = QAction("Open Diffing (FileStore)...", self, statusTip="Open diffing output", triggered=self.openFromFileStore ) self.reanalyzeAct = QAction("Reanalyze...", self, statusTip="Reanalyze current files", triggered=self.reanalyze ) self.synchornizeIDAAct= QAction("Synchornize IDA", self, statusTip="Synchronize IDA", triggered=self.synchronizeIDA ) self.openOriginalFilesLocationAct = QAction("Open Orininal Files Location", self, statusTip="Open original file location", triggered=self.openOriginalFilesLocation ) self.openPatchedFilesLocationAct = QAction("Open Patched Files Location", self, statusTip="Open patched file location", triggered=self.openPatchedFilesLocation ) self.captureWindowAct = QAction("Capture...", self, statusTip="Save patched graph", triggered=self.captureWindow ) self.saveOrigGraphAct = QAction("Save orig graph...", self, statusTip="Save original graph", triggered=self.saveOrigGraph ) self.savePatchedGraphAct = QAction("Save patched graph...", self, statusTip="Save patched graph", triggered=self.savePatchedGraph ) self.showLogsAct = QAction("Show logs...", self, statusTip="Show logs", triggered=self.showLogs ) self.showGraphsAct = QAction("Show graphs...", self, statusTip="Show graphs", triggered=self.toggleShowGraphs, checkable=True ) self.showGraphsAct.setChecked(self.ShowGraphs) self.syncrhonizeIDAUponOpeningAct = QAction("Synchronize IDA upon opening...", self, statusTip="Synchronize IDA upon opening", triggered=self.toggleSyncrhonizeIDAUponOpening, checkable=True ) self.syncrhonizeIDAUponOpeningAct.setChecked(self.SyncrhonizeIDAUponOpening) self.configurationAct = QAction("Configuration...", self, statusTip="Configuration", triggered=self.showConfiguration ) self.serverInfoAct = QAction("Server...", self, statusTip="Server Info", triggered=self.serverInfo ) self.staysOnTopAct = QAction("Statys on top...", self, statusTip="Server Info", triggered=self.toggleStaysOnTop, checkable=True ) self.staysOnTopAct.setChecked(self.StaysOnTop) self.intallIDAPluginAct = QAction("Install IDA Plugin...", self, statusTip="Install IDA Plugin...", triggered=self.intallIDAPlugin ) def createMenus(self): self.fileMenu = self.menuBar().addMenu("&File") self.fileMenu.addAction(self.newAct) self.fileMenu.addAction(self.openAct) self.fileMenu.addAction(self.manageFileStoreAct) self.fileMenu.addAction(self.newFromFileStoreAct) self.fileMenu.addAction(self.openFromFileStoreAct) self.fileMenu.addAction(self.reanalyzeAct) self.analysisMenu = self.menuBar().addMenu("&Analysis") self.analysisMenu.addAction(self.synchornizeIDAAct) self.analysisMenu.addAction(self.openOriginalFilesLocationAct) self.analysisMenu.addAction(self.openPatchedFilesLocationAct) self.analysisMenu.addAction(self.captureWindowAct) self.analysisMenu.addAction(self.saveOrigGraphAct) self.analysisMenu.addAction(self.savePatchedGraphAct) self.analysisMenu.addAction(self.showLogsAct) self.optionsMenu = self.menuBar().addMenu("&Options") self.optionsMenu.addAction(self.showGraphsAct) self.optionsMenu.addAction(self.syncrhonizeIDAUponOpeningAct) self.optionsMenu.addAction(self.staysOnTopAct) self.optionsMenu.addAction(self.configurationAct) self.optionsMenu.addAction(self.serverInfoAct) self.optionsMenu.addAction(self.intallIDAPluginAct) def OpenDatabase(self,databasename): self.DatabaseName=databasename self.FunctionMatchTable=FunctionMatchTable(self,self.DatabaseName) self.FunctionMatchTableView.setModel(self.FunctionMatchTable) selection=self.FunctionMatchTableView.selectionModel() if selection!=None: selection.selectionChanged.connect(self.handleFunctionMatchTableChanged) if self.ShowBBMatchTableView: self.BBMatchTable=BBMatchTable(self,self.DatabaseName) self.BBMatchTableView.setModel(self.BBMatchTable) selection=self.BBMatchTableView.selectionModel() if selection!=None: selection.selectionChanged.connect(self.handleBBMatchTableChanged) database = DarunGrimDatabase.Database(self.DatabaseName) self.setWindowTitle("DarunGrim 4 - %s" % (database.GetDescription())) if self.SyncrhonizeIDAUponOpening: self.synchronizeIDA() def ColorController(self, type, disasms, match_info): for (address,[end_address,disasm]) in disasms.items(): if not match_info.has_key(address): #Red block self.DarunGrimEngine.ColorAddress(type, address, end_address+1, 0x0000FF) elif match_info[address][1]!=100: #Yellow block self.DarunGrimEngine.ColorAddress(type, address, end_address+1, 0x00FFFF) def handleFunctionMatchTableChanged(self,selected,dselected): for item in selected: for index in item.indexes(): [source_function_address, target_function_address] = self.FunctionMatchTable.GetFunctionAddresses(index.row()) self.BlockTableModel=BlockTable(self,self.DatabaseName,source_function_address, target_function_address) self.BlockTableView.setModel(self.BlockTableModel) selection=self.BlockTableView.selectionModel() if selection!=None: selection.selectionChanged.connect(self.handleBlockTableChanged) database=DarunGrimDatabase.Database(self.DatabaseName) (source_disasms, source_links) = database.GetFunctionDisasmLines("Source", source_function_address) (target_disasms, target_links) = database.GetFunctionDisasmLines("Target", target_function_address) source_match_info=self.BlockTableModel.GetSourceMatchInfo() target_match_info=self.BlockTableModel.GetTargetMatchInfo() #IDA Sync self.ColorController(0, source_disasms, source_match_info ) self.ColorController(1, target_disasms, target_match_info ) self.DarunGrimEngine.JumpToAddresses(source_function_address, target_function_address) if self.ShowGraphs: # Draw graphs self.OrigFunctionGraph.SetDatabaseName(self.DatabaseName) self.OrigFunctionGraph.DrawFunctionGraph("Source", source_function_address, source_disasms, source_links, source_match_info) self.OrigFunctionGraph.SetSelectBlockCallback(self.SelectedBlock) self.OrigFunctionGraph.HilightAddress(source_function_address) self.PatchedFunctionGraph.SetDatabaseName(self.DatabaseName) self.PatchedFunctionGraph.DrawFunctionGraph("Target", target_function_address, target_disasms, target_links, target_match_info) self.PatchedFunctionGraph.SetSelectBlockCallback(self.SelectedBlock) self.PatchedFunctionGraph.HilightAddress(target_function_address) break def handleBBMatchTableChanged(self,selected,dselected): pass def handleBlockTableChanged(self,selected,dselected): for item in selected: for index in item.indexes(): [orig_address,patched_address]=self.BlockTableModel.GetBlockAddresses(index.row()) if self.ShowGraphs: if orig_address!=0: self.OrigFunctionGraph.HilightAddress(orig_address) if patched_address!=0: self.PatchedFunctionGraph.HilightAddress(patched_address) self.DarunGrimEngine.JumpToAddresses(orig_address, patched_address) break def SelectedBlock(self,graph,address): if graph==self.OrigFunctionGraph: matched_address=self.BlockTableModel.GetMatchAddresses(0,address) if matched_address!=None: self.PatchedFunctionGraph.HilightAddress(matched_address) self.DarunGrimEngine.JumpToAddresses(0, matched_address) elif graph==self.PatchedFunctionGraph: matched_address=self.BlockTableModel.GetMatchAddresses(1,address) if matched_address!=None: self.OrigFunctionGraph.HilightAddress(matched_address) self.DarunGrimEngine.JumpToAddresses(matched_address, 0) def changeEvent(self,event): if event.type()==QEvent.WindowStateChange: if (self.windowState()&Qt.WindowMinimized)==0 and \ (self.windowState()&Qt.WindowMaximized)==0 and \ (self.windowState()&Qt.WindowFullScreen)==0 and \ (self.windowState()&Qt.WindowActive)==0: pass def resizeEvent(self,event): if not self.isMaximized(): self.NonMaxGeometry=self.saveGeometry() def restoreUI(self): settings=QSettings("DarunGrim LLC", "DarunGrim") if settings.contains("geometry/non_max"): self.NonMaxGeometry=settings.value("geometry/non_max") self.restoreGeometry(self.NonMaxGeometry) else: self.resize(800,600) self.NonMaxGeometry=self.saveGeometry() if settings.contains("isMaximized"): if settings.value("isMaximized")=="true": self.setWindowState(self.windowState()|Qt.WindowMaximized) self.restoreState(settings.value("windowState")) self.FirstConfigured=False if not settings.contains("General/FirstConfigured"): self.showConfiguration() if self.intallIDAPlugin(): self.FirstConfigured=True else: self.FirstConfigured=True def readSettings(self): settings=QSettings("DarunGrim LLC", "DarunGrim") self.ShowGraphs=True if settings.contains("General/ShowGraphs"): if settings.value("General/ShowGraphs")=='true': self.ShowGraphs=True else: self.ShowGraphs=False self.SyncrhonizeIDAUponOpening=False if settings.contains("General/SyncrhonizeIDAUponOpening"): if settings.value("General/SyncrhonizeIDAUponOpening")=='true': self.SyncrhonizeIDAUponOpening=True else: self.SyncrhonizeIDAUponOpening=False self.StaysOnTop=False if settings.contains("General/StaysOnTop"): if settings.value("General/StaysOnTop")=='true': self.StaysOnTop=True else: self.StaysOnTop=False if self.StaysOnTop==True: self.setWindowFlags(self.windowFlags()|Qt.WindowStaysOnTopHint) else: self.setWindowFlags(self.windowFlags()& ~Qt.WindowStaysOnTopHint) self.FileStoreDir = os.path.join(os.getcwd(), "DarunGrimStore") if settings.contains("General/FileStoreDir"): self.FileStoreDir=settings.value("General/FileStoreDir") if not os.path.isdir(self.FileStoreDir): try: os.makedirs(self.FileStoreDir) except: import traceback traceback.print_exc() self.FileStoreDatabase='index.db' if settings.contains("General/FileStoreDatabase"): self.FileStoreDatabase=settings.value("General/FileStoreDatabase") self.DataFilesDir=os.path.join(os.getcwd(), "DarunGrimData") if settings.contains("General/DataFilesDir"): self.DataFilesDir=settings.value("General/DataFilesDir") if not os.path.isdir(self.DataFilesDir): try: os.makedirs(self.DataFilesDir) except: import traceback traceback.print_exc() self.IDAPath='' if settings.contains("General/IDAPath"): self.IDAPath=settings.value("General/IDAPath") else: files=self.DarunGrimEngine.LocateIDAExecutables() if len(files)>0: self.IDAPath=files[0][0] self.DarunGrimEngine.SetIDAPath(self.IDAPath) if not self.DarunGrimEngine.CheckIDAPlugin(): #print 'DarunGrim plugin is missing' pass self.IDA64Path='' if settings.contains("General/IDA64Path"): self.IDAPath=settings.value("General/IDA64Path") else: files=self.DarunGrimEngine.LocateIDAExecutables(is_64=True) if len(files)>0: self.IDA64Path=files[0][0] self.DarunGrimEngine.SetIDAPath(self.IDA64Path,is_64=True) self.LogLevel=10 if settings.contains("General/LogLevel"): self.LogLevel=int(settings.value("General/LogLevel")) def saveSettings(self): settings = QSettings("DarunGrim LLC", "DarunGrim") settings.setValue("General/ShowGraphs", self.ShowGraphs) settings.setValue("General/SyncrhonizeIDAUponOpening", self.SyncrhonizeIDAUponOpening) settings.setValue("General/StaysOnTop", self.StaysOnTop) settings.setValue("General/FileStoreDir", self.FileStoreDir) settings.setValue("General/FileStoreDatabase", self.FileStoreDatabase) settings.setValue("General/DataFilesDir", self.DataFilesDir) settings.setValue("General/LogLevel", self.LogLevel) if self.FirstConfigured==True: settings.setValue("General/FirstConfigured", self.FirstConfigured) if self.NonMaxGeometry!=None: settings.setValue("geometry/non_max", self.NonMaxGeometry) settings.setValue("isMaximized", self.isMaximized()) settings.setValue("windowState", self.saveState()) def closeEvent(self, event): self.PerformDiffCancelled() self.saveSettings() QMainWindow.closeEvent(self, event) if __name__=='__main__': multiprocessing.freeze_support() import sys import time if len(sys.argv)>1: database_name=sys.argv[1] else: database_name='' app=QApplication(sys.argv) pixmap=QPixmap('DarunGrimSplash.png') splash=QSplashScreen(pixmap) splash.show() app.processEvents() time.sleep(0.5) window=MainWindow(database_name) window.show() splash.finish(window) sys.exit(app.exec_())
0
0
0
48,634
0
955
0
9
676
4fb3719d6c98f0ef30141c1f977dfa7d852da269
570
py
Python
test.py
FlyingKiwis/Esipraisal
47b19baab7f59fd6a0a0f84b85708d017e7ce011
[ "MIT" ]
1
2020-06-02T03:54:19.000Z
2020-06-02T03:54:19.000Z
test.py
FlyingKiwis/Esipraisal
47b19baab7f59fd6a0a0f84b85708d017e7ce011
[ "MIT" ]
null
null
null
test.py
FlyingKiwis/Esipraisal
47b19baab7f59fd6a0a0f84b85708d017e7ce011
[ "MIT" ]
null
null
null
import asyncio import logging from Esipraisal.Esipraisal import Esipraisal ep_log = logging.getLogger("Esipraisal") ep_log.setLevel(logging.INFO) ch = logging.StreamHandler() ch.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) ep_log.addHandler(ch) ep = Esipraisal() region_ids=[10000002, 10000043, 10000032, 10000016, 10000042, 10000030, 10000064, 10000033, 10000068, 10000020, 10000040, 10000013, 10000039, 10000058] app = asyncio.run(ep.appraise(29988, region_ids)) print(app)
31.666667
151
0.777193
import asyncio import logging from Esipraisal.Esipraisal import Esipraisal ep_log = logging.getLogger("Esipraisal") ep_log.setLevel(logging.INFO) ch = logging.StreamHandler() ch.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) ep_log.addHandler(ch) ep = Esipraisal() region_ids=[10000002, 10000043, 10000032, 10000016, 10000042, 10000030, 10000064, 10000033, 10000068, 10000020, 10000040, 10000013, 10000039, 10000058] app = asyncio.run(ep.appraise(29988, region_ids)) print(app)
0
0
0
0
0
0
0
0
0
69656441d9c0bf3b5e0c5066856ee54e3a84cc09
147
py
Python
reddit2telegram/channels/r_goodanimemes/app.py
mainyordle/reddit2telegram
1163e15aed3b6ff0fba65b222d3d9798f644c386
[ "MIT" ]
187
2016-09-20T09:15:54.000Z
2022-03-29T12:22:33.000Z
reddit2telegram/channels/r_goodanimemes/app.py
mainyordle/reddit2telegram
1163e15aed3b6ff0fba65b222d3d9798f644c386
[ "MIT" ]
84
2016-09-22T14:25:07.000Z
2022-03-19T01:26:17.000Z
reddit2telegram/channels/r_goodanimemes/app.py
mainyordle/reddit2telegram
1163e15aed3b6ff0fba65b222d3d9798f644c386
[ "MIT" ]
172
2016-09-21T15:39:39.000Z
2022-03-16T15:15:58.000Z
#encoding:utf-8 subreddit = 'goodanimemes' t_channel = '@r_goodanimemes'
16.333333
38
0.755102
#encoding:utf-8 subreddit = 'goodanimemes' t_channel = '@r_goodanimemes' def send_post(submission, r2t): return r2t.send_simple(submission)
0
0
0
0
0
49
0
0
23
ee9a6c5456efb857c26a2d7a258bbd6b0bf0d4f4
1,369
py
Python
pymoo/learning/part_1.py
ubeydtalha/bitirme-projesi
71601eb04a5e8a0aa93357ddf8b978d68eae6cdc
[ "MIT" ]
null
null
null
pymoo/learning/part_1.py
ubeydtalha/bitirme-projesi
71601eb04a5e8a0aa93357ddf8b978d68eae6cdc
[ "MIT" ]
null
null
null
pymoo/learning/part_1.py
ubeydtalha/bitirme-projesi
71601eb04a5e8a0aa93357ddf8b978d68eae6cdc
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt plt.rc('font', family='serif') X1 , X2 = np.meshgrid(np.linspace(-2,2,500),np.linspace(-2,2,500)) F1 = X1**2 + X2**2 F2 = (X1-1)**2+X2**2 G = X1**2 - X1 + 3/16 G1 = 2 * (X1[0] - 0.1) * (X1[0] - 0.9) G2 = 20 * (X1[0] - 0.4) * (X1[0] - 0.6) levels = [0.02, 0.1 , 0.25 , 0.5 , 0.8] plt.figure(figsize=(7,5)) CS = plt.contour(X1,X2,F1,levels,linestyles="dashed",color="black", alpha = 0.5) CS.collections[0].set_label("$f_1(x)$") CS = plt.contour(X1, X2, F2, levels, linestyles="dashed", colors='black', alpha=0.5) CS.collections[0].set_label("$f_2(x)$") plt.plot(X1[0], G1, linewidth=2.0, color="green", linestyle='dotted') plt.plot(X1[0][G1<0], G1[G1<0], label="$g_1(x)$", linewidth=2.0, color="green") plt.plot(X1[0], G2, linewidth=2.0, color="blue", linestyle='dotted') plt.plot(X1[0][X1[0]>0.6], G2[X1[0]>0.6], label="$g_2(x)$",linewidth=2.0, color="blue") plt.plot(X1[0][X1[0]<0.4], G2[X1[0]<0.4], linewidth=2.0, color="blue") plt.plot(np.linspace(0.1,0.4,100), np.zeros(100),linewidth=3.0, color="orange") plt.plot(np.linspace(0.6,0.9,100), np.zeros(100),linewidth=3.0, color="orange") plt.xlim(-0.5, 1.5) plt.ylim(-0.5, 1) plt.xlabel("$x_1$") plt.ylabel("$x_2$") plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.12), ncol=4, fancybox=True, shadow=False) plt.tight_layout() plt.show()
29.76087
87
0.620161
import numpy as np import matplotlib.pyplot as plt plt.rc('font', family='serif') X1 , X2 = np.meshgrid(np.linspace(-2,2,500),np.linspace(-2,2,500)) F1 = X1**2 + X2**2 F2 = (X1-1)**2+X2**2 G = X1**2 - X1 + 3/16 G1 = 2 * (X1[0] - 0.1) * (X1[0] - 0.9) G2 = 20 * (X1[0] - 0.4) * (X1[0] - 0.6) levels = [0.02, 0.1 , 0.25 , 0.5 , 0.8] plt.figure(figsize=(7,5)) CS = plt.contour(X1,X2,F1,levels,linestyles="dashed",color="black", alpha = 0.5) CS.collections[0].set_label("$f_1(x)$") CS = plt.contour(X1, X2, F2, levels, linestyles="dashed", colors='black', alpha=0.5) CS.collections[0].set_label("$f_2(x)$") plt.plot(X1[0], G1, linewidth=2.0, color="green", linestyle='dotted') plt.plot(X1[0][G1<0], G1[G1<0], label="$g_1(x)$", linewidth=2.0, color="green") plt.plot(X1[0], G2, linewidth=2.0, color="blue", linestyle='dotted') plt.plot(X1[0][X1[0]>0.6], G2[X1[0]>0.6], label="$g_2(x)$",linewidth=2.0, color="blue") plt.plot(X1[0][X1[0]<0.4], G2[X1[0]<0.4], linewidth=2.0, color="blue") plt.plot(np.linspace(0.1,0.4,100), np.zeros(100),linewidth=3.0, color="orange") plt.plot(np.linspace(0.6,0.9,100), np.zeros(100),linewidth=3.0, color="orange") plt.xlim(-0.5, 1.5) plt.ylim(-0.5, 1) plt.xlabel("$x_1$") plt.ylabel("$x_2$") plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.12), ncol=4, fancybox=True, shadow=False) plt.tight_layout() plt.show()
0
0
0
0
0
0
0
0
0
11e5788ea89ce816b5cc94614412f19c35457815
4,923
py
Python
tests/test_models.py
zbohm/aldryn-translation-tools
3e86f575fea12124a25a6c2d28e10324347d6c5e
[ "BSD-3-Clause" ]
null
null
null
tests/test_models.py
zbohm/aldryn-translation-tools
3e86f575fea12124a25a6c2d28e10324347d6c5e
[ "BSD-3-Clause" ]
null
null
null
tests/test_models.py
zbohm/aldryn-translation-tools
3e86f575fea12124a25a6c2d28e10324347d6c5e
[ "BSD-3-Clause" ]
1
2020-09-10T23:39:48.000Z
2020-09-10T23:39:48.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals
32.82
71
0.639651
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.test import TransactionTestCase from django.utils.translation import ugettext_lazy as _ from test_addon.models import Complex, Simple, Unconventional class TestTranslatableAutoSlugifyMixin(TransactionTestCase): def test_simple_slug(self): simple = Simple() simple.set_current_language('en') simple.name = 'Simple' simple.save() self.assertEquals(simple.slug, 'simple') def test_unconventional_slug(self): unconventional = Unconventional() unconventional.set_current_language('en') unconventional.title = 'Unconventional' unconventional.save() self.assertEquals('unconventional', unconventional.unique_slug) def test_complex_slug(self): complex1 = Complex() complex1.set_current_language('en') complex1.name = 'one' complex1.object_type = 'complex' complex1.save() self.assertEquals('complex-one', complex1.slug) def test_existing_object(self): simple = Simple() simple.set_current_language('en') simple.save() # slug is now the default simple.name = 'A new name' simple.slug = None simple.save() self.assertEquals('a-new-name', simple.slug) def test_limited_length(self): Simple.slug_max_length = 6 try: for r in range(0, 101): simple = Simple() simple.set_current_language('en') simple.name = 'Simple' simple.save() except Exception: self.fail() Simple.slug_max_length = None def test_slug_unique_global(self): Simple.slug_globally_unique = True simple_en = Simple() simple_en.set_current_language('en') simple_en.name = 'SimpleOne' simple_en.save() simple_fr = Simple() simple_fr.set_current_language('fr') simple_fr.name = 'SimpleOne' simple_fr.save() self.assertNotEquals(simple_en.slug, simple_fr.slug) Simple.slug_globally_unique = None # default is False simple_en = Simple() simple_en.set_current_language('en') simple_en.name = 'SimpleTwo' simple_en.save() simple_fr = Simple() simple_fr.set_current_language('fr') simple_fr.name = 'SimpleTwo' simple_fr.save() self.assertEquals(simple_en.slug, simple_fr.slug) def test_slug_unique_for_language(self): simple_en_1 = Simple() simple_en_1.set_current_language('en') simple_en_1.name = 'SimpleOne' simple_en_1.save() # make another instance with same name simple_en_2 = Simple() simple_en_2.set_current_language('en') simple_en_2.name = 'SimpleOne' simple_en_2.save() # slugs should not be same. self.assertNotEquals(simple_en_1.slug, simple_en_2.slug) def test_slug_unique_for_language_if_slug_is_the_same(self): simple_en_1 = Simple() simple_en_1.set_current_language('en') simple_en_1.name = 'SimpleOne' simple_en_1.slug = 'simpleone' simple_en_1.save() # make another instance with same name simple_en_2 = Simple() simple_en_2.set_current_language('en') simple_en_2.name = 'SimpleOne' simple_en_2.slug = 'simpleone' simple_en_2.save() # slugs should not be same. self.assertNotEquals(simple_en_1.slug, simple_en_2.slug) def test_simple_slug_default(self): # First test that the default works simple = Simple() simple.set_current_language('en') simple.save() self.assertEquals( 'simple-without-name', simple.get_slug_default()) # Also test without explicit language self.assertEquals( 'simple-without-name', simple.get_slug_default()) # Now test that a default would be used if available Simple.slug_default = _('unnamed-simple-object') simple = Simple() simple.set_current_language('en') simple.save() self.assertEquals( 'unnamed-simple-object', simple.get_slug_default()) # Also test without explicit language self.assertEquals( 'unnamed-simple-object', simple.get_slug_default()) def test_unconventional_slug_default(self): unconventional = Unconventional() unconventional.set_current_language('en') unconventional.save() self.assertEquals( 'unconventional-model-without-short-title', unconventional.get_slug_default() ) def test_complex_slug_default(self): complex1 = Complex() complex1.set_current_language('en') complex1.save() self.assertEquals('complex-without-name', complex1.slug)
0
0
0
4,670
0
0
0
96
91
6571d06b26e9d55f7b954eee07d36c375ace0e0f
1,527
py
Python
api/predict.py
xuhdev/MAX-Breast-Cancer-Mitosis-Detector
c7e777311da070994466f1bf45541451e18b8034
[ "Apache-2.0" ]
null
null
null
api/predict.py
xuhdev/MAX-Breast-Cancer-Mitosis-Detector
c7e777311da070994466f1bf45541451e18b8034
[ "Apache-2.0" ]
null
null
null
api/predict.py
xuhdev/MAX-Breast-Cancer-Mitosis-Detector
c7e777311da070994466f1bf45541451e18b8034
[ "Apache-2.0" ]
null
null
null
from flask_restplus import fields from werkzeug.datastructures import FileStorage from maxfw.core import MAX_API input_parser = MAX_API.parser() input_parser.add_argument('image', type=FileStorage, location='files', required=True, help='An image file encoded as PNG with the size 64*64') label_prediction = MAX_API.model('LabelPrediction', { 'probability': fields.Float(required=True, description='Probability of the image containing mitosis') }) predict_response = MAX_API.model('ModelPredictResponse', { 'status': fields.String(required=True, description='Response status message'), 'predictions': fields.List(fields.Nested(label_prediction), description='Predicted labels and probabilities') })
34.704545
113
0.683039
from core.model import ModelWrapper from flask_restplus import fields, abort from werkzeug.datastructures import FileStorage from maxfw.core import MAX_API, PredictAPI input_parser = MAX_API.parser() input_parser.add_argument('image', type=FileStorage, location='files', required=True, help='An image file encoded as PNG with the size 64*64') label_prediction = MAX_API.model('LabelPrediction', { 'probability': fields.Float(required=True, description='Probability of the image containing mitosis') }) predict_response = MAX_API.model('ModelPredictResponse', { 'status': fields.String(required=True, description='Response status message'), 'predictions': fields.List(fields.Nested(label_prediction), description='Predicted labels and probabilities') }) class ModelPredictAPI(PredictAPI): model_wrapper = ModelWrapper() @MAX_API.doc('predict') @MAX_API.expect(input_parser) @MAX_API.marshal_with(predict_response) def post(self): """Make a prediction given input data""" result = {'status': 'error'} args = input_parser.parse_args() try: image_data = args['image'].read() image = self.model_wrapper._read_image(image_data) preds = self.model_wrapper.predict(image) label_preds = [{'probability': float(preds)}] result['predictions'] = label_preds result['status'] = 'ok' except ValueError as e: abort(400, str(e)) return result
0
633
0
76
0
0
0
33
45
13a86095619b618630a1898ef9c8fa97e0d04df6
608
py
Python
examples/03-image/04-quad.py
mcjocobe/drawExploration
2c50526ef14dea5bc3802b7fda08871919d62ac4
[ "BSD-3-Clause" ]
76
2015-01-21T11:21:08.000Z
2022-02-04T13:33:19.000Z
examples/03-image/04-quad.py
mcjocobe/drawExploration
2c50526ef14dea5bc3802b7fda08871919d62ac4
[ "BSD-3-Clause" ]
8
2015-11-12T07:42:58.000Z
2020-06-09T10:01:15.000Z
examples/03-image/04-quad.py
mcjocobe/drawExploration
2c50526ef14dea5bc3802b7fda08871919d62ac4
[ "BSD-3-Clause" ]
23
2015-01-12T12:07:40.000Z
2020-04-13T16:32:15.000Z
# Add the upper directory (where the nodebox module is) to the search path. import os, sys; sys.path.insert(0, os.path.join("..","..")) img = Image("creature.png") # The image.quad property describes the four-sided polygon # on which an image texture is "mounted". # This is not necessarily a rectangle, the corners can be distorted: img.quad.dx1 = 200 img.quad.dy1 = 100 img.quad.dx2 = 100 img.quad.dy2 = -100 # This flushes the image cache, so it is a costly operation. canvas.size = 500, 500 canvas.run(draw)
26.434783
75
0.703947
# Add the upper directory (where the nodebox module is) to the search path. import os, sys; sys.path.insert(0, os.path.join("..","..")) from nodebox.graphics import * img = Image("creature.png") # The image.quad property describes the four-sided polygon # on which an image texture is "mounted". # This is not necessarily a rectangle, the corners can be distorted: img.quad.dx1 = 200 img.quad.dy1 = 100 img.quad.dx2 = 100 img.quad.dy2 = -100 # This flushes the image cache, so it is a costly operation. def draw(canvas): canvas.clear() image(img) canvas.size = 500, 500 canvas.run(draw)
0
0
0
0
0
30
0
9
46
0b20183397bcfd04f62df163fded2c064174a562
4,874
py
Python
src/five/grok/meta.py
zopefoundation/five.grok
d5fcbe2e081a4cec96d8ec658498f9fc33963bf9
[ "ZPL-2.1" ]
1
2016-10-26T16:45:57.000Z
2016-10-26T16:45:57.000Z
src/five/grok/meta.py
zopefoundation/five.grok
d5fcbe2e081a4cec96d8ec658498f9fc33963bf9
[ "ZPL-2.1" ]
2
2021-01-05T14:30:32.000Z
2021-03-25T18:38:06.000Z
src/five/grok/meta.py
zopefoundation/five.grok
d5fcbe2e081a4cec96d8ec658498f9fc33963bf9
[ "ZPL-2.1" ]
2
2015-04-03T04:41:12.000Z
2019-08-20T08:02:52.000Z
############################################################################# # # Copyright (c) 2008 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## from five.grok import interfaces import grokcore.component import grokcore.security import grokcore.view if interfaces.HAVE_FORMLIB: if interfaces.HAVE_LAYOUT:
34.567376
78
0.659007
############################################################################# # # Copyright (c) 2008 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## from five.grok import components, interfaces from grokcore.view.meta.directoryresource import _get_resource_path from zope import interface from zope.publisher.interfaces.browser import IDefaultBrowserLayer import five.grok import grokcore.component import grokcore.security import grokcore.view import martian from AccessControl.security import protectClass, protectName from App.class_init import InitializeClass as initializeClass if interfaces.HAVE_FORMLIB: from five.grok import formlib class FormGrokker(martian.ClassGrokker): martian.component(components.GrokForm) martian.directive(grokcore.component.context) martian.priority(800) # Must be run before real formlib grokker. def execute(self, factory, config, context, **kw): # Set up form_fields from context class if they haven't been # configured manually already using our version of get_auto_fields if getattr(factory, 'form_fields', None) is None: factory.form_fields = formlib.get_auto_fields(context) return True class ViewSecurityGrokker(martian.ClassGrokker): martian.component(five.grok.View) martian.directive(grokcore.security.require, name='permission') def execute(self, factory, config, permission, **kw): if permission is None: permission = 'zope.Public' config.action( discriminator = ('five:protectClass', factory), callable = protectClass, args = (factory, permission) ) # Protect the class config.action( discriminator = ('five:initialize:class', factory), callable = initializeClass, args = (factory,) ) return True if interfaces.HAVE_LAYOUT: import grokcore.layout class PageSecurityGrokker(ViewSecurityGrokker): martian.component(grokcore.layout.Page) def _register_resource(config, resource_path, name, layer): resource_factory = components.ZopeTwoDirectoryResourceFactory( name, resource_path) adapts = (layer,) provides = interface.Interface config.action( discriminator=('adapter', adapts, provides, name), callable=grokcore.component.util.provideAdapter, args=(resource_factory, adapts, provides, name), ) return True class DirectoryResourceGrokker(martian.ClassGrokker): martian.component(components.ZopeTwoDirectoryResource) martian.directive(grokcore.view.name, default=None) martian.directive(grokcore.view.path) martian.directive(grokcore.view.layer, default=IDefaultBrowserLayer) def grok(self, name, factory, module_info, **kw): # Need to store the module info object on the directory resource # class so that it can look up the actual directory. factory.module_info = module_info return super(DirectoryResourceGrokker, self).grok( name, factory, module_info, **kw) def execute(self, factory, config, name, path, layer, **kw): resource_path = _get_resource_path(factory.module_info, path) name = name or factory.module_info.dotted_name return _register_resource(config, resource_path, name, layer) class ViewletSecurityGrokker(martian.ClassGrokker): martian.component(five.grok.Viewlet) martian.directive(grokcore.security.require, name='permission') def execute(self, factory, config, permission, **kw): if permission is None: permission = 'zope.Public' attributes = ['update', 'render',] config.action( discriminator = ('five:protectClass', factory), callable = protectClass, args = (factory, permission) ) for attribute in attributes: config.action( discriminator = ('five:protectName', factory, attribute), callable = protectName, args = (factory, attribute, permission) ) # Protect the class config.action( discriminator = ('five:initialize:class', factory), callable = initializeClass, args = (factory,) ) return True
0
0
0
3,121
0
410
0
184
354
699b48ffb0f7def74fa65d53a33552fec5ab2029
283
py
Python
utils/jax_utils/jax_startup.py
Jakob-Unfried/msc-legacy
2c41f3f714936c25dd534bd66da802c26176fcfa
[ "MIT" ]
1
2021-03-22T14:16:43.000Z
2021-03-22T14:16:43.000Z
utils/jax_utils/jax_startup.py
Jakob-Unfried/msc-legacy
2c41f3f714936c25dd534bd66da802c26176fcfa
[ "MIT" ]
null
null
null
utils/jax_utils/jax_startup.py
Jakob-Unfried/msc-legacy
2c41f3f714936c25dd534bd66da802c26176fcfa
[ "MIT" ]
null
null
null
""" configure jax at startup """
17.6875
56
0.699647
""" configure jax at startup """ from jax.config import config def startup(): # Jax config (needs to be executed right at startup) config.update("jax_enable_x64", True) def debugging(): config.update("jax_enable_x64", True) config.update("jax_debug_nans", True)
0
0
0
0
0
171
0
8
69
2c5adae6fbb8596c949c80584ff15841235c705d
968
py
Python
renew/advancedclass/enumclass.py
ianzhengnan/learnpy
ed1736ac976d56253183399466a167fb9319f869
[ "Apache-2.0" ]
1
2017-06-12T03:12:29.000Z
2017-06-12T03:12:29.000Z
renew/advancedclass/enumclass.py
ianzhengnan/learnpy
ed1736ac976d56253183399466a167fb9319f869
[ "Apache-2.0" ]
null
null
null
renew/advancedclass/enumclass.py
ianzhengnan/learnpy
ed1736ac976d56253183399466a167fb9319f869
[ "Apache-2.0" ]
null
null
null
from enum import Enum Month = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec')) for name, member in Month.__members__.items(): print(name, '=>', member, ',', member.value) # Jan => Month.Jan , 1 # Feb => Month.Feb , 2 # Mar => Month.Mar , 3 # Apr => Month.Apr , 4 # May => Month.May , 5 # Jun => Month.Jun , 6 # Jul => Month.Jul , 7 # Aug => Month.Aug , 8 # Sep => Month.Sep , 9 # Oct => Month.Oct , 10 # Nov => Month.Nov , 11 # Dec => Month.Dec , 12 # day1 = Weekday.Mon print(day1) print(Weekday.Tue) print(Weekday['Tue']) print(Weekday.Tue.value) print(day1 == Weekday.Mon) for name, member in Weekday.__members__.items(): print(name, '=>', member) # Sun => Weekday.Sun # Mon => Weekday.Mon # Tue => Weekday.Tue # Wed => Weekday.Wed # Thu => Weekday.Thu # Fri => Weekday.Fri # Sat => Weekday.Sat
18.615385
107
0.594008
from enum import Enum, unique Month = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec')) for name, member in Month.__members__.items(): print(name, '=>', member, ',', member.value) # Jan => Month.Jan , 1 # Feb => Month.Feb , 2 # Mar => Month.Mar , 3 # Apr => Month.Apr , 4 # May => Month.May , 5 # Jun => Month.Jun , 6 # Jul => Month.Jul , 7 # Aug => Month.Aug , 8 # Sep => Month.Sep , 9 # Oct => Month.Oct , 10 # Nov => Month.Nov , 11 # Dec => Month.Dec , 12 # 自定义枚举类 @unique class Weekday(Enum): Sun = 0 Mon = 1 Tue = 2 Wed = 3 Thu = 4 Fri = 5 Sat = 6 day1 = Weekday.Mon print(day1) print(Weekday.Tue) print(Weekday['Tue']) print(Weekday.Tue.value) print(day1 == Weekday.Mon) for name, member in Weekday.__members__.items(): print(name, '=>', member) # Sun => Weekday.Sun # Mon => Weekday.Mon # Tue => Weekday.Tue # Wed => Weekday.Wed # Thu => Weekday.Thu # Fri => Weekday.Fri # Sat => Weekday.Sat
18
70
0
0
0
0
0
8
22
cab45f526ea303c3c63b0a5eb65fac294ce0e7d0
1,279
py
Python
force_wfmanager/tests/dummy_classes/dummy_wfmanager.py
force-h2020/force-wfmanager
bcd488cd37092cacd9d0c81b544ee8c1654d1d92
[ "BSD-2-Clause" ]
1
2019-08-19T16:02:20.000Z
2019-08-19T16:02:20.000Z
force_wfmanager/tests/dummy_classes/dummy_wfmanager.py
force-h2020/force-wfmanager
bcd488cd37092cacd9d0c81b544ee8c1654d1d92
[ "BSD-2-Clause" ]
396
2017-07-18T15:19:55.000Z
2021-05-03T06:23:06.000Z
force_wfmanager/tests/dummy_classes/dummy_wfmanager.py
force-h2020/force-wfmanager
bcd488cd37092cacd9d0c81b544ee8c1654d1d92
[ "BSD-2-Clause" ]
2
2019-03-05T16:23:10.000Z
2020-04-16T08:59:11.000Z
# (C) Copyright 2010-2020 Enthought, Inc., Austin, TX # All rights reserved.
25.078431
76
0.692729
# (C) Copyright 2010-2020 Enthought, Inc., Austin, TX # All rights reserved. from envisage.core_plugin import CorePlugin from envisage.ui.tasks.tasks_plugin import TasksPlugin from force_wfmanager.tests.dummy_classes.dummy_data_view import ( DummyExtensionPluginWithDataView ) from force_wfmanager.tests.dummy_classes.dummy_contributed_ui import ( DummyUIPlugin, DummyUIPluginOld ) from force_wfmanager.wfmanager import WfManager class DummyWfManager(WfManager): def __init__(self): plugins = [CorePlugin(), TasksPlugin()] super(DummyWfManager, self).__init__(plugins=plugins) def run(self): pass class DummyWfManagerWithPlugins(WfManager): def __init__(self): plugins = [ CorePlugin(), TasksPlugin(), DummyExtensionPluginWithDataView() ] super(DummyWfManagerWithPlugins, self).__init__(plugins=plugins) def run(self): pass class DummyUIWfManager(WfManager): """A workflow manager with a plugin contributing a UI""" def __init__(self): plugins = [ CorePlugin(), TasksPlugin(), DummyUIPlugin(), DummyUIPluginOld() ] super(DummyUIWfManager, self).__init__(plugins=plugins) def run(self): pass
0
0
0
765
0
0
0
251
181
ddff0c4a23bdd4d569ad29d522544468116098ff
446
py
Python
tests/py/test_currencies.py
Scrumplex/liberapay.com
2ef3477ceebc6e85b5db8c5a4a447195889cd4e9
[ "PostgreSQL", "CC0-1.0" ]
null
null
null
tests/py/test_currencies.py
Scrumplex/liberapay.com
2ef3477ceebc6e85b5db8c5a4a447195889cd4e9
[ "PostgreSQL", "CC0-1.0" ]
null
null
null
tests/py/test_currencies.py
Scrumplex/liberapay.com
2ef3477ceebc6e85b5db8c5a4a447195889cd4e9
[ "PostgreSQL", "CC0-1.0" ]
null
null
null
from __future__ import division, print_function, unicode_literals
29.733333
85
0.674888
from __future__ import division, print_function, unicode_literals from liberapay.testing import EUR, USD, Harness class TestCurrencies(Harness): def test_convert(self): original = EUR('1.00') expected = USD('1.20') actual = self.db.one("SELECT convert(%s, %s)", (original, expected.currency)) assert expected == actual actual = original.convert(expected.currency) assert expected == actual
0
0
0
307
0
0
0
26
46
303f1277d22a2f01641fe04d7dedfbc973da5b6d
2,565
py
Python
models/modelos.py
Patataman/StudentApi
42ff5651cdef2aeda8c012924db39554ab7762ce
[ "MIT" ]
1
2016-03-11T22:42:55.000Z
2016-03-11T22:42:55.000Z
models/modelos.py
Patataman/StudentApi
42ff5651cdef2aeda8c012924db39554ab7762ce
[ "MIT" ]
null
null
null
models/modelos.py
Patataman/StudentApi
42ff5651cdef2aeda8c012924db39554ab7762ce
[ "MIT" ]
null
null
null
from flask.ext.sqlalchemy import SQLAlchemy db = SQLAlchemy() #Column('user_id', Integer, ForeignKey("user.user_id"), nullable=False),
29.147727
185
0.728265
from flask.ext.sqlalchemy import SQLAlchemy from sqlalchemy import ForeignKey from sqlalchemy.sql import select from sqlalchemy.orm import relationship from sqlalchemy.dialects.postgresql import JSON, TEXT db = SQLAlchemy() #Column('user_id', Integer, ForeignKey("user.user_id"), nullable=False), class Persona(db.Model): __tablename__ = 'personas' id = db.Column(db.Integer, primary_key=True) nia = db.Column(db.Integer) nombre = db.Column(db.String(200)) apellido1 = db.Column(db.String(200)) apellido2 = db.Column(db.String(200)) curso = db.Column(db.Integer) id_titulacion = db.Column(db.Integer) id_centro = db.Column(db.Integer) def __init__(self, nia, nombre, apellido1, apellido2, curso, id_titulacion): self.nia = nia self.nombre = nombre self.apellido1 = apellido1 self.apellido2 = apellido2 self.curso = curso self.id_titulacion = id_titulacion def __repr__(self): return 'id: {}, NIA: {}, Nombre: {}, Apellidos: {} {}, Curso: {}, Titulacion {}'.format(self.id, self.nia, self.nombre, self.apellido1, self.apellido2, self.curso, self.id_titulacion) @classmethod def search(self, nia): return db.session.query(Persona).filter_by(nia = nia) @classmethod def getPermisos(self, app_id, id): return db.session.query(Permisos).filter_by(id = id, app_id = app_id) @classmethod def isDelegado(self, id): return db.session.query(DelCurso).filter_by(id = id) @classmethod def isDelegadoTitulacion(self, id): return db.session.query(DelTitulacion).filter_by(id = id) @classmethod def isDelegadoCentro(self, id): return db.session.query(DelCentro).filter_by(id = id) class Permisos(db.Model): __tablename__ = 'permisos' def __repr__(self): return 'id: {}, app_id: {}, rol: {}'.format(self.id, self.app_id, self.rol) id = db.Column(db.Integer, ForeignKey("Persona.id"), primary_key=True) app_id = db.Column(db.Integer, primary_key=True) rol = db.Column(db.Integer) class DelCurso(db.Model): __tablename__ = 'delegadoscurso' def __repr__(self): return 'id: {}'.format(self.id) id = db.Column(db.Integer, ForeignKey("Persona.id"), primary_key=True) class DelTitulacion(db.Model): __tablename__ = 'delegadostitulacion' def __repr__(self): return 'id: {}'.format(self.id) id = db.Column(db.Integer, ForeignKey("Persona.id"), primary_key=True) class DelCentro(db.Model): __tablename__ = 'delegadoscentro' def __repr__(self): return 'id: {}, cargo: {}'.format(self.id, self.cargo) id = db.Column(db.Integer, ForeignKey("Persona.id"), primary_key=True) cargo = db.Column(db.Integer)
0
411
0
1,740
0
0
0
74
203
c06efbae0b2f960ea1ad2726615abc68ecf719f4
637
py
Python
problema1.py
enzoyoshio/Problemas
1e2ce20d9931ef28e57aa54af3fe1708927ebab9
[ "MIT" ]
null
null
null
problema1.py
enzoyoshio/Problemas
1e2ce20d9931ef28e57aa54af3fe1708927ebab9
[ "MIT" ]
null
null
null
problema1.py
enzoyoshio/Problemas
1e2ce20d9931ef28e57aa54af3fe1708927ebab9
[ "MIT" ]
null
null
null
# lista de dicionario dado listDict = [ {1 : 1, 2 : "oi", "nome" : "obrigado"}, {"Bolo" : "Cenoura", "Camaro" : "Verde", "nome" : "Sagrado"}, {1 : 10, "nome" : "oi", "caracol" : "obrigado"}, {"nome":"obrigado"} ] # a chave que ser procurada nome = "nome" # inicializando a lista vazia lista = [] # verifico para cada nome se ele est ou no no dicionrio for dict1 in listDict: # se a chave nome estiver no dicionrio # e o valor dela no tiver sido adicionado a lista, s adicionar na lista if nome in dict1 and dict1[nome] not in lista: lista.append(dict1[nome]) # printa a lista print(lista)
27.695652
77
0.634223
# lista de dicionario dado listDict = [ {1 : 1, 2 : "oi", "nome" : "obrigado"}, {"Bolo" : "Cenoura", "Camarão" : "Verde", "nome" : "Sagrado"}, {1 : 10, "nome" : "oi", "caracol" : "obrigado"}, {"nome":"obrigado"} ] # a chave que será procurada nome = "nome" # inicializando a lista vazia lista = [] # verifico para cada nome se ele está ou não no dicionário for dict1 in listDict: # se a chave nome estiver no dicionário # e o valor dela não tiver sido adicionado a lista, só adicionar na lista if nome in dict1 and dict1[nome] not in lista: lista.append(dict1[nome]) # printa a lista print(lista)
16
0
0
0
0
0
0
0
0
7c97c1d349a7035b8c108e98916ffaaa384b38ef
12,469
py
Python
authors/apps/authentication/views.py
andela/ah-backend-realers
f4b0dbde16fed5e95ab3b1b60e365515e1fe6697
[ "BSD-3-Clause" ]
null
null
null
authors/apps/authentication/views.py
andela/ah-backend-realers
f4b0dbde16fed5e95ab3b1b60e365515e1fe6697
[ "BSD-3-Clause" ]
20
2019-05-27T13:05:44.000Z
2021-06-10T21:29:36.000Z
authors/apps/authentication/views.py
andela/ah-backend-realers
f4b0dbde16fed5e95ab3b1b60e365515e1fe6697
[ "BSD-3-Clause" ]
6
2019-06-29T11:49:01.000Z
2020-03-02T12:53:06.000Z
from rest_framework import exceptions from .social_auth import ValidateSocialUser check_user = ValidateSocialUser()
38.248466
121
0.678242
from rest_framework import status, exceptions from rest_framework.generics import RetrieveUpdateAPIView from rest_framework.permissions import AllowAny, IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView from django.conf import settings from .models import User from itsdangerous import URLSafeTimedSerializer, exc from django.core.mail import send_mail import os, re from rest_framework import exceptions from .renderers import UserJSONRenderer from .serializers import ( LoginSerializer, RegistrationSerializer, UserSerializer, ResetPasswordSerializer, SetNewPasswordSerializer, FacebookAndGoogleSerializer, TwitterSerializer ) import facebook import twitter from google.auth.transport import requests from google.oauth2 import id_token from drf_yasg.utils import swagger_auto_schema from .backends import ( AccountVerification ) from authors.apps.profiles.models import Profile from .social_auth import ValidateSocialUser check_user = ValidateSocialUser() class RegistrationAPIView(APIView): # Allow any user (authenticated or not) to hit this endpoint. permission_classes = (AllowAny,) renderer_classes = (UserJSONRenderer,) serializer_class = RegistrationSerializer @swagger_auto_schema( operation_description='Regester a new User.', operation_id='Sign up as a new user', request_body=serializer_class, responses={201: serializer_class(many=False), 400: 'BAD REQUEST'}, ) def post(self, request): user = request.data.get('user', {}) # The create serializer, validate serializer, save serializer pattern # below is common and you will see it a lot throughout this course and # your own work later on. Get familiar with it. serializer = self.serializer_class(data=user) serializer.is_valid(raise_exception=True) serializer.save() AccountVerification().send_verification_email(user.get('email'), request) return Response(serializer.data, status=status.HTTP_201_CREATED) class LoginAPIView(APIView): permission_classes = (AllowAny,) renderer_classes = (UserJSONRenderer,) serializer_class = LoginSerializer @swagger_auto_schema( operation_description='Login User.', operation_id='login as a user', request_body=serializer_class, responses={201: serializer_class(many=False), 400: 'BAD REQUEST'}, ) def post(self, request): user = request.data.get('user', {}) # Notice here that we do not call `serializer.save()` like we did for # the registration endpoint. This is because we don't actually have # anything to save. Instead, the `validate` method on our serializer # handles everything we need. serializer = self.serializer_class(data=user) serializer.is_valid(raise_exception=True) return Response(serializer.data, status=status.HTTP_200_OK) class UserRetrieveUpdateAPIView(RetrieveUpdateAPIView): """ retrieve: Get User Details Update: Update User Details """ permission_classes = (IsAuthenticated,) renderer_classes = (UserJSONRenderer,) serializer_class = UserSerializer @swagger_auto_schema( operation_id='Retrieve User Details', request_body=serializer_class, responses={201: serializer_class(many=False), 400: 'BAD REQUEST'}, ) def retrieve(self, request, *args, **kwargs): # There is nothing to validate or save here. Instead, we just want the # serializer to handle turning our `User` object into something that # can be JSONified and sent to the client. serializer = self.serializer_class(request.user) return Response(serializer.data, status=status.HTTP_200_OK) @swagger_auto_schema( operation_id='Update User Details', request_body=serializer_class, responses={201: serializer_class(many=False), 400: 'BAD REQUEST'}, ) def update(self, request, *args, **kwargs): serializer_data = request.data.get('user', {}) serializer = self.serializer_class( request.user, data=serializer_data, partial=True ) serializer.is_valid(raise_exception=True) serializer.save() return Response(serializer.data, status=status.HTTP_200_OK) class AccountActivation(APIView): def get(self, request, **kwargs): activation_key = kwargs.get('token') user = AccountVerification().verify_token(activation_key) response = AccountVerification.verify_user(user) return Response(response) class PasswordResetView(APIView): permission_classes = (AllowAny,) renderer_classes = (UserJSONRenderer,) serializer_class = ResetPasswordSerializer @classmethod def check_email(cls, email): not_email = not email invalid_email = not re.match(r"(^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$)", email) if not_email or invalid_email: msg = "The email field can not be blank" raise exceptions.ValidationError(msg) if not_email else \ exceptions.ValidationError("Provide a valid email address") return None def email_verification(self, email): user = User.objects.filter(email = email).first() \ if not PasswordResetView.check_email(email) else None if not user: raise exceptions.ValidationError("This Email Address is not attached to any account") @swagger_auto_schema( operation_description='Reset Password.', operation_id='reset password via email', request_body=serializer_class, responses={200: serializer_class(many=False), 400: 'BAD REQUEST'}, ) def post(self, request): if 'email' not in request.data: raise exceptions.ValidationError("Please provide an Email Address") email=request.data["email"] self.email_verification(email) serializer = URLSafeTimedSerializer(os.environ.get("SECRET_KEY")) token = serializer.dumps(email, salt=os.environ.get("SECURITY_PASSWORD_SALT")) reset_link = "https://authors-frontend-staging.herokuapp.com/change/{}".format(token) recipient = [email] sender = os.getenv('EMAIL_HOST_USER') subject = 'Author\'s Haven Password Reset' body = "You requested to change your account password.\n\ Click on the link below to complete changing your password.\n\n{}\n\n\ Ignore and Delete this email if you did not make this request.\n\n\t\ Author\'s Haven by The Realers.".format(reset_link) send_mail(subject, body, sender, recipient, fail_silently=True) data = { "message": "Please check your email inbox for the Password Reset link we've sent", "status": status.HTTP_200_OK } return Response(data, status=status.HTTP_200_OK) class CreateNewPasswordView(APIView): permission_classes = (AllowAny,) renderer_classes = (UserJSONRenderer,) serializer_class = SetNewPasswordSerializer def password_verification(self, password, confirm_password): if (not password) or (not confirm_password): raise exceptions.ValidationError("Provide both Password and Confirm_Password fields") if len(password) < 8: raise exceptions.ValidationError("Password length must be 8 or more characters") if password != confirm_password: raise exceptions.ValidationError("Password is not macthing with Confirm_password!") @swagger_auto_schema( operation_description='Set new Password.', operation_id='Set new password using link sent in email', request_body=serializer_class, responses={201: serializer_class(many=False), 400: 'BAD REQUEST'}, ) def patch(self, request, token): try: new_password = request.data.get("password") confirm_new_password = request.data.get("confirm_password") self.password_verification(new_password,confirm_new_password) serializer = URLSafeTimedSerializer(os.environ.get("SECRET_KEY")) email = serializer.loads(token, salt=os.environ.get("SECURITY_PASSWORD_SALT"), max_age=3600*12*365) user = User.objects.filter(email = email).first() user.set_password(new_password) user.save() return Response({ "message": "You have succesfully reset your password", "status": status.HTTP_201_CREATED }) except exc.BadSignature: raise exceptions.ValidationError("This is an invalidated link") class FacebookAPIView(APIView): permission_classes = (AllowAny,) renderer_classes = (UserJSONRenderer,) serializer_class = FacebookAndGoogleSerializer @swagger_auto_schema( operation_description='Social Auth with Facebook', operation_id='Login in a user using their Facebook credentials', request_body=serializer_class, responses={200: serializer_class(many=False), 400: 'BAD REQUEST'}, ) def post(self, request): user_data = request.data.get("user", {}) get_token = user_data.get("access_token") # get the token try: facebook_acct_user = facebook.GraphAPI(access_token=get_token) user_details = facebook_acct_user.get_object( id='me', fields='id, name, email') facebook_user = check_user.validate_system_user(user_details) return Response(facebook_user, status=status.HTTP_200_OK) except: return Response( {"error": "Facebook login failed. Token is expired or invalid"}, status=status.HTTP_400_BAD_REQUEST) class GoogleAPIView(APIView): permission_classes = (AllowAny,) renderer_classes = (UserJSONRenderer,) serializer_class = FacebookAndGoogleSerializer @swagger_auto_schema( operation_description='Social Auth with Google', operation_id='Login in a user using their google credentials', request_body=serializer_class, responses={200: serializer_class(many=False), 400: 'BAD REQUEST'}, ) def post(self, request): user_data = request.data.get("user", {}) googl_auth_token = user_data.get("access_token") # get the token try: user_cred = id_token.verify_oauth2_token( googl_auth_token, requests.Request()) verified_user = check_user.validate_system_user(user_cred) return Response(verified_user, status=status.HTTP_200_OK) except: return Response( {"error": "google login failed. Token is either invalid or expired"}, status=status.HTTP_400_BAD_REQUEST) class TwitterAPIView(APIView): permission_classes = (AllowAny,) renderer_classes = (UserJSONRenderer,) serializer_class = TwitterSerializer @swagger_auto_schema( operation_description='Social Auth with Twitter', operation_id='Authenticate user using Twitter', request_body=serializer_class, responses={200: serializer_class(many=False), 400: 'BAD REQUEST'}, ) def post(self, request): # pragma: no cover twitter_token = request.GET.get("access_token") twitter_token_secret = request.GET.get("access_token_secret") # get the token and related twitter stuff try: from_twitter_api = twitter.Api( consumer_key=os.getenv("TWITTER_CONSUMER_KEY", ""), consumer_secret=os.getenv("TWITTER_CONSUMER_SECRET", ""), access_token_key=twitter_token, access_token_secret=twitter_token_secret ) user_details = from_twitter_api.VerifyCredentials(include_email=True) # get user details as a dictionary/ json format user_details = user_details.__dict__ twitter_user_exist = check_user.validate_system_user(user_details) return Response(twitter_user_exist, status=status.HTTP_200_OK) except: return Response( {"error": "Twitter login failed. Token either expired or invalid"}, status=status.HTTP_400_BAD_REQUEST)
0
8,645
0
2,551
0
0
0
492
630
fc88e5944833ded64fa3cddeace07e5e0ee6b6f4
12,152
py
Python
visual_phenomics_py/calculate.py
SeBassTian23/Visual-Phenomics-Python
1ce9f2fff6bf47a7a4a2c9059eb534348b65b2b6
[ "MIT" ]
null
null
null
visual_phenomics_py/calculate.py
SeBassTian23/Visual-Phenomics-Python
1ce9f2fff6bf47a7a4a2c9059eb534348b65b2b6
[ "MIT" ]
null
null
null
visual_phenomics_py/calculate.py
SeBassTian23/Visual-Phenomics-Python
1ce9f2fff6bf47a7a4a2c9059eb534348b65b2b6
[ "MIT" ]
null
null
null
""" Calculate additional parameters or recalculate parameters. """ def calculate(df=None, param='', *, fm='fm', f0='f0', fmp='fmp', f0p='f0p', fs='fs', fmpp='fmpp', f0pp='f0pp', fmf0=4.88, alias=None): """Calculate photosynthetic parameters Calculate photosynthetic parameters from basic fluorescence parameters :param df: The DataFrame to add the calculated parameters to. :param param: Parameter to calculate ('Fvfm','NPQ', 'NPQt','Phi2','PhiNO','PhiNPQ','qE','qEsv','qEt','qI','qIt','qL','qP') :param fm: fm column name (default 'fm') :param f0: f0 column name (default 'f0') :param fmp: fmp column name (default 'fmp') :param f0p: f0p column name (default 'f0p') :param fs: fs column name (default 'fs') :param fmpp: fmpp column name (default 'fmpp') :param f0pp: f0pp column name (default 'f0pp') :param fmf0: Fm/F0 for t parameter (default 4.88) :param alias: rename the selected parameter (default None) :returns: a dataframe column for the calculated parameter """ # Parameter Names parameters = ['Fvfm', 'NPQ', 'NPQt', 'Phi2', 'PhiNO', 'PhiNOt', 'PhiNPQ', 'PhiNPQt', 'qE', 'qEsv', 'qEt', 'qI', 'qIt', 'qL', 'qP'] if df is None: raise Exception('No DataFrame selected.') if (param in parameters): alias_txt = "" if alias is not None: alias_txt = " as {0}".format(alias) print('Calculating {0}{1}'.format(param, alias_txt)) for row in df.sort_values(by=['sample', 'time'], ascending=True).fillna(method="ffill").itertuples(): if param == 'Fvfm': if {fm, f0}.issubset(df.columns): df.at[row.Index, alias or param] = fvfm( getattr(row, fm), getattr(row, f0)) else: raise Exception( 'Missing parameter(s). Define columns for fm and f0') elif param == 'NPQ': if {fm, fmp}.issubset(df.columns): df.at[row.Index, alias or param] = npq( getattr(row, fm), getattr(row, fmp)) else: raise Exception( 'Missing parameter(s). Define columns for fm and fmp') elif param == 'NPQt': if {fmp, f0p}.issubset(df.columns): df.at[row.Index, alias or param] = npqt( getattr(row, fmp), getattr(row, f0p), fmf0) else: raise Exception( 'Missing parameter(s). Define columns for fmp and f0p') elif param == 'Phi2': if {fmp, fs}.issubset(df.columns): df.at[row.Index, alias or param] = phi2( getattr(row, fmp), getattr(row, fs)) else: raise Exception( 'Missing parameter(s). Define columns for fmp and fs') elif param == 'PhiNO': if {fmp, fs, f0p, fm, f0}.issubset(df.columns): df.at[row.Index, alias or param] = phino(getattr(row, fmp), getattr( row, fs), getattr(row, f0p), getattr(row, fm), getattr(row, f0)) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, fm, and f0') elif param == 'PhiNOt': if {fmp, fs, f0p}.issubset(df.columns): df.at[row.Index, alias or param] = phinot( getattr(row, fmp), getattr(row, fs), getattr(row, f0p), fmf0) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, and f0p') elif param == 'PhiNPQ': if {fmp, fs, f0p, fm, f0}.issubset(df.columns): df.at[row.Index, alias or param] = phinpq(getattr(row, fmp), getattr( row, fs), getattr(row, f0p), getattr(row, fm), getattr(row, f0)) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, f0p, fm, and f0') elif param == 'PhiNPQt': if {fmp, fs, f0p}.issubset(df.columns): df.at[row.Index, alias or param] = phinpqt( getattr(row, fmp), getattr(row, fs), getattr(row, f0p), fmf0) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, and f0p') elif param == 'qE': if {fmpp, fmp}.issubset(df.columns): df.at[row.Index, alias or param] = qe( getattr(row, fmpp), getattr(row, fmp)) else: raise Exception( 'Missing parameter(s). Define columns for fmpp and fmp') elif param == 'qEsv': if {fm, fmp, fmpp}.issubset(df.columns): df.at[row.Index, alias or param] = qesv( getattr(row, fm), getattr(row, fmp), getattr(row, fmpp)) else: raise Exception( 'Missing parameter(s). Define columns for fm, fmp, and fmpp') elif param == 'qEt': if {fmp, f0p, fmpp, f0pp}.issubset(df.columns): df.at[row.Index, alias or param] = qet(getattr(row, fmp), getattr( row, f0p), getattr(row, fmpp), getattr(row, f0pp), fmf0) else: raise Exception( 'Missing parameter(s). Define columns for fmp, f0p, fmpp, and f0pp') elif param == 'qI': if {fm, fmpp}.issubset(df.columns): df.at[row.Index, alias or param] = qi( getattr(row, fm), getattr(row, fmpp)) else: raise Exception( 'Missing parameter(s). Define columns for fm and fmpp') elif param == 'qIt': if {fmpp, f0pp}.issubset(df.columns): df.at[row.Index, alias or param] = qit( getattr(row, fmpp), getattr(row, f0pp), fmf0) else: raise Exception( 'Missing parameter(s). Define columns for fmpp and f0pp') elif param == 'qL': if {fmp, fs, f0p}.issubset(df.columns): df.at[row.Index, alias or param] = ql( getattr(row, fmp), getattr(row, fs), getattr(row, f0p)) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, and f0p') elif param == 'qP': if {fmp, fs, f0p}.issubset(df.columns): df.at[row.Index, alias or param] = qp( getattr(row, fmp), getattr(row, fs), getattr(row, f0p)) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, and f0p') else: raise Exception("No matching parameter found.") else: raise Exception('Unknown parameter. Available parameters are: {0}'.format( ", ".join(parameters))) def calculate_additional(df=None, param='', *, v_phino='PhiNOt', v_phi2='Phi2', v_ql='qL', v_par='light_intensity', phinoopt=0.2, absorptivity=0.5, fmf0=4.88, alias=None): """Calculate additional Parameters Calculate additional photosynthetic parameters based on calculated standard parameters :param df: The DataFrame to add the calculated parameters to. :param param: Parameter to calculate ('LEF', 'Vx', 'SPhi2', 'SNPQ', 'deltaNPQ') :param v_phino: PhiNO column name (default 'PhiNOt') :param v_phi2: Phi2 column name (default 'Phi2') :param v_ql: qL column name (default 'qL') :param phinoopt: Optimal PhiNO (default 0.2) :param absorptivity: Absorptivity for Vx parameter (default 0.5) :param fmf0: Fm/F0 for t parameter (default 4.88) :param alias: rename the selected parameter (default None) :returns: a dataframe column for the calculated parameter """ # Parameter Names parameters = ['LEF', 'Vx', 'SPhi2', 'SNPQ', 'deltaNPQ'] if df is None: raise Exception('No DataFrame selected.') if (param in parameters): alias_txt = "" if alias is not None: alias_txt = " as {0}".format(alias) print('Calculating {0}{1}'.format(param, alias_txt)) for row in df.sort_values(by=['sample', 'time'], ascending=True).fillna(method="ffill").itertuples(): if param == 'LEF': if {v_phi2, v_par}.issubset(df.columns): df.at[row.Index, alias or param] = lef( getattr(row, v_phi2), getattr(row, v_par), absorptivity) else: raise Exception( 'Missing parameter(s). Define columns for v_phi2 and v_par') elif param == 'Vx': if {v_phino, v_phi2, v_par}.issubset(df.columns): df.at[row.Index, alias or param] = vx( getattr(row, v_phino), getattr(row, v_phi2), getattr(row, v_par), absorptivity) else: raise Exception( 'Missing parameter(s). Define columns for v_phino, v_phi2, and v_par') elif param == 'SPhi2': if {v_phino, v_phi2, v_ql}.issubset(df.columns): df.at[row.Index, alias or param] = sphi2( getattr(row, v_phi2), getattr(row, v_phino), getattr(row, v_ql), phinoopt, fmf0) else: raise Exception( 'Missing parameter(s). Define columns for v_phino, v_phi2, and v_ql') elif param == 'SNPQ': if {v_phino, v_phi2}.issubset(df.columns): df.at[row.Index, alias or param] = sphinpq( getattr(row, v_phi2), getattr(row, v_phino), getattr(row, v_ql), phinoopt, fmf0) else: raise Exception( 'Missing parameter(s). Define columns for v_phino, v_phi2, and v_ql') elif param == 'deltaNPQ': if {v_phino}.issubset(df.columns): df.at[row.Index, alias or param] = deltanpq( getattr(row, v_phino), phinoopt) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, and f0p') else: raise Exception("No matching parameter found.") else: raise Exception('Unknown parameter. Available parameters are: {0}'.format( ", ".join(parameters))) def calculate_custom(df=None, name='', fn=None, *, cols=[], params={}): """Calculate additional Parameters Use a custom function to calculate a custom parameter. :param df: The DataFrame to add the calculated parameters to. :param name: Parameter name :param fn: Function name for the calculation :param cols: Column names for parameters passed to function. (*args) :param params: Parameters passed on to the function (**kwargs) :returns: a dataframe column for the custom calculated parameter """ if df is None: raise Exception('No DataFrame selected.') if name == '' or name is None: raise Exception('No parameter name defined.') if (fn is None): raise Exception('No function defined.') if hasattr(fn, '__call__'): for row in df.sort_values(by=['sample', 'time'], ascending=True).fillna(method="ffill").itertuples(): df.at[row.Index, name] = fn( *[getattr(row, n) for n in cols], **params) else: raise Exception('No function defined.')
44.028986
171
0.526991
""" Calculate additional parameters or recalculate parameters. """ from visual_phenomics_py.parameters import * from visual_phenomics_py.parameters_additional import * def calculate(df=None, param='', *, fm='fm', f0='f0', fmp='fmp', f0p='f0p', fs='fs', fmpp='fmpp', f0pp='f0pp', fmf0=4.88, alias=None): """Calculate photosynthetic parameters Calculate photosynthetic parameters from basic fluorescence parameters :param df: The DataFrame to add the calculated parameters to. :param param: Parameter to calculate ('Fvfm','NPQ', 'NPQt','Phi2','PhiNO','PhiNPQ','qE','qEsv','qEt','qI','qIt','qL','qP') :param fm: fm column name (default 'fm') :param f0: f0 column name (default 'f0') :param fmp: fmp column name (default 'fmp') :param f0p: f0p column name (default 'f0p') :param fs: fs column name (default 'fs') :param fmpp: fmpp column name (default 'fmpp') :param f0pp: f0pp column name (default 'f0pp') :param fmf0: Fm/F0 for t parameter (default 4.88) :param alias: rename the selected parameter (default None) :returns: a dataframe column for the calculated parameter """ # Parameter Names parameters = ['Fvfm', 'NPQ', 'NPQt', 'Phi2', 'PhiNO', 'PhiNOt', 'PhiNPQ', 'PhiNPQt', 'qE', 'qEsv', 'qEt', 'qI', 'qIt', 'qL', 'qP'] if df is None: raise Exception('No DataFrame selected.') if (param in parameters): alias_txt = "" if alias is not None: alias_txt = " as {0}".format(alias) print('Calculating {0}{1}'.format(param, alias_txt)) for row in df.sort_values(by=['sample', 'time'], ascending=True).fillna(method="ffill").itertuples(): if param == 'Fvfm': if {fm, f0}.issubset(df.columns): df.at[row.Index, alias or param] = fvfm( getattr(row, fm), getattr(row, f0)) else: raise Exception( 'Missing parameter(s). Define columns for fm and f0') elif param == 'NPQ': if {fm, fmp}.issubset(df.columns): df.at[row.Index, alias or param] = npq( getattr(row, fm), getattr(row, fmp)) else: raise Exception( 'Missing parameter(s). Define columns for fm and fmp') elif param == 'NPQt': if {fmp, f0p}.issubset(df.columns): df.at[row.Index, alias or param] = npqt( getattr(row, fmp), getattr(row, f0p), fmf0) else: raise Exception( 'Missing parameter(s). Define columns for fmp and f0p') elif param == 'Phi2': if {fmp, fs}.issubset(df.columns): df.at[row.Index, alias or param] = phi2( getattr(row, fmp), getattr(row, fs)) else: raise Exception( 'Missing parameter(s). Define columns for fmp and fs') elif param == 'PhiNO': if {fmp, fs, f0p, fm, f0}.issubset(df.columns): df.at[row.Index, alias or param] = phino(getattr(row, fmp), getattr( row, fs), getattr(row, f0p), getattr(row, fm), getattr(row, f0)) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, fm, and f0') elif param == 'PhiNOt': if {fmp, fs, f0p}.issubset(df.columns): df.at[row.Index, alias or param] = phinot( getattr(row, fmp), getattr(row, fs), getattr(row, f0p), fmf0) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, and f0p') elif param == 'PhiNPQ': if {fmp, fs, f0p, fm, f0}.issubset(df.columns): df.at[row.Index, alias or param] = phinpq(getattr(row, fmp), getattr( row, fs), getattr(row, f0p), getattr(row, fm), getattr(row, f0)) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, f0p, fm, and f0') elif param == 'PhiNPQt': if {fmp, fs, f0p}.issubset(df.columns): df.at[row.Index, alias or param] = phinpqt( getattr(row, fmp), getattr(row, fs), getattr(row, f0p), fmf0) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, and f0p') elif param == 'qE': if {fmpp, fmp}.issubset(df.columns): df.at[row.Index, alias or param] = qe( getattr(row, fmpp), getattr(row, fmp)) else: raise Exception( 'Missing parameter(s). Define columns for fmpp and fmp') elif param == 'qEsv': if {fm, fmp, fmpp}.issubset(df.columns): df.at[row.Index, alias or param] = qesv( getattr(row, fm), getattr(row, fmp), getattr(row, fmpp)) else: raise Exception( 'Missing parameter(s). Define columns for fm, fmp, and fmpp') elif param == 'qEt': if {fmp, f0p, fmpp, f0pp}.issubset(df.columns): df.at[row.Index, alias or param] = qet(getattr(row, fmp), getattr( row, f0p), getattr(row, fmpp), getattr(row, f0pp), fmf0) else: raise Exception( 'Missing parameter(s). Define columns for fmp, f0p, fmpp, and f0pp') elif param == 'qI': if {fm, fmpp}.issubset(df.columns): df.at[row.Index, alias or param] = qi( getattr(row, fm), getattr(row, fmpp)) else: raise Exception( 'Missing parameter(s). Define columns for fm and fmpp') elif param == 'qIt': if {fmpp, f0pp}.issubset(df.columns): df.at[row.Index, alias or param] = qit( getattr(row, fmpp), getattr(row, f0pp), fmf0) else: raise Exception( 'Missing parameter(s). Define columns for fmpp and f0pp') elif param == 'qL': if {fmp, fs, f0p}.issubset(df.columns): df.at[row.Index, alias or param] = ql( getattr(row, fmp), getattr(row, fs), getattr(row, f0p)) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, and f0p') elif param == 'qP': if {fmp, fs, f0p}.issubset(df.columns): df.at[row.Index, alias or param] = qp( getattr(row, fmp), getattr(row, fs), getattr(row, f0p)) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, and f0p') else: raise Exception("No matching parameter found.") else: raise Exception('Unknown parameter. Available parameters are: {0}'.format( ", ".join(parameters))) def calculate_additional(df=None, param='', *, v_phino='PhiNOt', v_phi2='Phi2', v_ql='qL', v_par='light_intensity', phinoopt=0.2, absorptivity=0.5, fmf0=4.88, alias=None): """Calculate additional Parameters Calculate additional photosynthetic parameters based on calculated standard parameters :param df: The DataFrame to add the calculated parameters to. :param param: Parameter to calculate ('LEF', 'Vx', 'SPhi2', 'SNPQ', 'deltaNPQ') :param v_phino: PhiNO column name (default 'PhiNOt') :param v_phi2: Phi2 column name (default 'Phi2') :param v_ql: qL column name (default 'qL') :param phinoopt: Optimal PhiNO (default 0.2) :param absorptivity: Absorptivity for Vx parameter (default 0.5) :param fmf0: Fm/F0 for t parameter (default 4.88) :param alias: rename the selected parameter (default None) :returns: a dataframe column for the calculated parameter """ # Parameter Names parameters = ['LEF', 'Vx', 'SPhi2', 'SNPQ', 'deltaNPQ'] if df is None: raise Exception('No DataFrame selected.') if (param in parameters): alias_txt = "" if alias is not None: alias_txt = " as {0}".format(alias) print('Calculating {0}{1}'.format(param, alias_txt)) for row in df.sort_values(by=['sample', 'time'], ascending=True).fillna(method="ffill").itertuples(): if param == 'LEF': if {v_phi2, v_par}.issubset(df.columns): df.at[row.Index, alias or param] = lef( getattr(row, v_phi2), getattr(row, v_par), absorptivity) else: raise Exception( 'Missing parameter(s). Define columns for v_phi2 and v_par') elif param == 'Vx': if {v_phino, v_phi2, v_par}.issubset(df.columns): df.at[row.Index, alias or param] = vx( getattr(row, v_phino), getattr(row, v_phi2), getattr(row, v_par), absorptivity) else: raise Exception( 'Missing parameter(s). Define columns for v_phino, v_phi2, and v_par') elif param == 'SPhi2': if {v_phino, v_phi2, v_ql}.issubset(df.columns): df.at[row.Index, alias or param] = sphi2( getattr(row, v_phi2), getattr(row, v_phino), getattr(row, v_ql), phinoopt, fmf0) else: raise Exception( 'Missing parameter(s). Define columns for v_phino, v_phi2, and v_ql') elif param == 'SNPQ': if {v_phino, v_phi2}.issubset(df.columns): df.at[row.Index, alias or param] = sphinpq( getattr(row, v_phi2), getattr(row, v_phino), getattr(row, v_ql), phinoopt, fmf0) else: raise Exception( 'Missing parameter(s). Define columns for v_phino, v_phi2, and v_ql') elif param == 'deltaNPQ': if {v_phino}.issubset(df.columns): df.at[row.Index, alias or param] = deltanpq( getattr(row, v_phino), phinoopt) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, and f0p') else: raise Exception("No matching parameter found.") else: raise Exception('Unknown parameter. Available parameters are: {0}'.format( ", ".join(parameters))) def calculate_custom(df=None, name='', fn=None, *, cols=[], params={}): """Calculate additional Parameters Use a custom function to calculate a custom parameter. :param df: The DataFrame to add the calculated parameters to. :param name: Parameter name :param fn: Function name for the calculation :param cols: Column names for parameters passed to function. (*args) :param params: Parameters passed on to the function (**kwargs) :returns: a dataframe column for the custom calculated parameter """ if df is None: raise Exception('No DataFrame selected.') if name == '' or name is None: raise Exception('No parameter name defined.') if (fn is None): raise Exception('No function defined.') if hasattr(fn, '__call__'): for row in df.sort_values(by=['sample', 'time'], ascending=True).fillna(method="ffill").itertuples(): df.at[row.Index, name] = fn( *[getattr(row, n) for n in cols], **params) else: raise Exception('No function defined.')
0
0
0
0
0
0
0
57
45
8650240fd28ccf9c0925b49b1840e0cf02b48178
1,489
py
Python
examples/adjacency_list.py
enpaul/peewee
177f04cbce02851b0420e2002a72fa91ea9b309b
[ "MIT" ]
8,289
2015-01-01T17:10:34.000Z
2022-03-30T23:18:33.000Z
examples/adjacency_list.py
enpaul/peewee
177f04cbce02851b0420e2002a72fa91ea9b309b
[ "MIT" ]
2,015
2015-01-02T16:59:35.000Z
2022-03-31T02:41:24.000Z
examples/adjacency_list.py
enpaul/peewee
177f04cbce02851b0420e2002a72fa91ea9b309b
[ "MIT" ]
1,740
2015-01-04T09:48:38.000Z
2022-03-31T13:44:48.000Z
db = SqliteDatabase(':memory:') db.create_tables([Node]) tree = ('root', ( ('n1', ( ('c11', ()), ('c12', ()))), ('n2', ( ('c21', ()), ('c22', ( ('g221', ()), ('g222', ()))), ('c23', ()), ('c24', ( ('g241', ()), ('g242', ()), ('g243', ()))))))) stack = [(None, tree)] while stack: parent, (name, children) = stack.pop() node = Node.create(name=name, parent=parent) for child_tree in children: stack.insert(0, (node, child_tree)) # Now that we have created the stack, let's eagerly load 4 levels of children. # To show that it works, we'll turn on the query debugger so you can see which # queries are executed. import logging; logger = logging.getLogger('peewee') logger.addHandler(logging.StreamHandler()) logger.setLevel(logging.DEBUG) C = Node.alias('c') G = Node.alias('g') GG = Node.alias('gg') GGG = Node.alias('ggg') roots = Node.select().where(Node.parent.is_null()) pf = prefetch(roots, C, (G, C), (GG, G), (GGG, GG)) for root in pf: print(root.dump())
25.237288
78
0.552048
from peewee import * db = SqliteDatabase(':memory:') class Node(Model): name = TextField() parent = ForeignKeyField('self', backref='children', null=True) class Meta: database = db def __str__(self): return self.name def dump(self, _indent=0): return (' ' * _indent + self.name + '\n' + ''.join(child.dump(_indent + 1) for child in self.children)) db.create_tables([Node]) tree = ('root', ( ('n1', ( ('c11', ()), ('c12', ()))), ('n2', ( ('c21', ()), ('c22', ( ('g221', ()), ('g222', ()))), ('c23', ()), ('c24', ( ('g241', ()), ('g242', ()), ('g243', ()))))))) stack = [(None, tree)] while stack: parent, (name, children) = stack.pop() node = Node.create(name=name, parent=parent) for child_tree in children: stack.insert(0, (node, child_tree)) # Now that we have created the stack, let's eagerly load 4 levels of children. # To show that it works, we'll turn on the query debugger so you can see which # queries are executed. import logging; logger = logging.getLogger('peewee') logger.addHandler(logging.StreamHandler()) logger.setLevel(logging.DEBUG) C = Node.alias('c') G = Node.alias('g') GG = Node.alias('gg') GGG = Node.alias('ggg') roots = Node.select().where(Node.parent.is_null()) pf = prefetch(roots, C, (G, C), (GG, G), (GGG, GG)) for root in pf: print(root.dump())
0
0
0
337
0
0
0
-1
45
4567d33898daf9c73323f91f151e6d9eeb0b2e78
4,159
py
Python
ihna/kozhukhov/imageanalysis/gui/dataprocessing/spatialfilterdlg.py
serik1987/ihna_kozhuhov_image_analysis
ccfb3b48cbf6b351acb10f8b99315c65281f8ab8
[ "Unlicense" ]
null
null
null
ihna/kozhukhov/imageanalysis/gui/dataprocessing/spatialfilterdlg.py
serik1987/ihna_kozhuhov_image_analysis
ccfb3b48cbf6b351acb10f8b99315c65281f8ab8
[ "Unlicense" ]
null
null
null
ihna/kozhukhov/imageanalysis/gui/dataprocessing/spatialfilterdlg.py
serik1987/ihna_kozhuhov_image_analysis
ccfb3b48cbf6b351acb10f8b99315c65281f8ab8
[ "Unlicense" ]
null
null
null
# -*- coding: utf-8
38.509259
100
0.675884
# -*- coding: utf-8 import numpy as np import wx from ihna.kozhukhov.imageanalysis import ImagingMap from ihna.kozhukhov.imageanalysis.mapprocessing import spatial_filter from ihna.kozhukhov.imageanalysis.gui.complexmapviewerdlg import ComplexMapViewerDlg from .datatodataprocessor import DataToDataProcessor class SpatialFilterDlg(DataToDataProcessor): __radius_box = None __radius_big_box = None __radius_checkbox = None __radius_big_checkbox = None def _get_processor_title(self): return "Spatial filter" def _check_input_data(self): if not isinstance(self._input_data, ImagingMap): raise ValueError("The input shall be complex imaging map") if self._input_data.get_data().dtype != np.complex: raise ValueError("The input map shall be complex imaging map") def _get_default_minor_name(self): return "mapfilt" def _place_additional_options(self, parent): additional_options = wx.BoxSizer(wx.VERTICAL) radius_layout = wx.BoxSizer(wx.HORIZONTAL) radius_caption = wx.StaticText(parent, label="Inner radius, px") radius_layout.Add(radius_caption, 0, wx.ALIGN_CENTER_VERTICAL | wx.RIGHT, 5) self.__radius_box = wx.TextCtrl(parent) radius_layout.Add(self.__radius_box, 1, wx.EXPAND | wx.RIGHT, 5) self.__radius_checkbox = wx.CheckBox(parent, label="Off") self.__radius_checkbox.Bind(wx.EVT_CHECKBOX, lambda event: self.__switch_inner_radius()) radius_layout.Add(self.__radius_checkbox, 0, wx.ALIGN_CENTER_VERTICAL) additional_options.Add(radius_layout, 0, wx.EXPAND | wx.BOTTOM, 5) radius_big_layout = wx.BoxSizer(wx.HORIZONTAL) radius_big_caption = wx.StaticText(parent, label="Outer radius, px") radius_big_layout.Add(radius_big_caption, 0, wx.ALIGN_CENTER_VERTICAL | wx.RIGHT, 5) self.__radius_big_box = wx.TextCtrl(parent) radius_big_layout.Add(self.__radius_big_box, 1, wx.EXPAND | wx.RIGHT, 5) self.__radius_big_checkbox = wx.CheckBox(parent, label="Off") self.__radius_big_checkbox.Bind(wx.EVT_CHECKBOX, lambda event: self.__switch_outer_radius()) radius_big_layout.Add(self.__radius_big_checkbox, 0, wx.ALIGN_CENTER_VERTICAL) additional_options.Add(radius_big_layout, 0, wx.EXPAND) return additional_options def __switch_inner_radius(self): if not self.__radius_checkbox.IsChecked(): self.__radius_box.Enable(True) else: self.__radius_box.Enable(False) self.__radius_box.SetValue("") def __switch_outer_radius(self): if not self.__radius_big_checkbox.IsChecked(): self.__radius_big_box.Enable(True) else: self.__radius_big_box.Enable(False) self.__radius_big_box.SetValue("") def get_inner_radius(self): if self.__radius_checkbox.IsChecked(): radius = 0 else: try: radius = int(self.__radius_box.GetValue()) if radius <= 0: raise ValueError("The inner radius must be positive") except ValueError: raise ValueError("Please, enter a correct name of an inner radius") return radius def get_outer_radius(self): if self.__radius_big_checkbox.IsChecked(): radius_big = 0 else: try: radius_big = int(self.__radius_big_box.GetValue()) if radius_big <= 0: raise ValueError("The outer radius must be positive") except ValueError: raise ValueError("Please, enter a correct value of the outer radius") return radius_big def _process(self): radius = self.get_inner_radius() radius_big = self.get_outer_radius() if radius > 0 and 0 < radius_big <= radius: raise ValueError("The outer radius shall be greater than the inner radius") self._output_data = spatial_filter(self._input_data, radius, radius_big) def _get_result_viewer(self): return ComplexMapViewerDlg
0
0
0
3,825
0
0
0
157
156
0a0eccb3c3b514b534fa9214a71cc84c4df6c16c
6,017
py
Python
pyalgotrade/technical/ma.py
tibkiss/pyalgotrade
4979315281c362dcba2e6d53da27dc4a7377ebec
[ "Apache-2.0" ]
2
2015-04-03T10:29:14.000Z
2017-01-21T05:55:00.000Z
pyalgotrade/technical/ma.py
tibkiss/pyalgotrade
4979315281c362dcba2e6d53da27dc4a7377ebec
[ "Apache-2.0" ]
null
null
null
pyalgotrade/technical/ma.py
tibkiss/pyalgotrade
4979315281c362dcba2e6d53da27dc4a7377ebec
[ "Apache-2.0" ]
null
null
null
# PyAlgoTrade # # Copyright 2011 Gabriel Martin Becedillas Ruiz # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. moduleauthor:: Gabriel Martin Becedillas Ruiz <[email protected]> """ # This is the formula I'm using to calculate the averages based on previous ones. # 1 2 3 4 # x x x # x x x # # avg0 = (a + b + c) / 3 # avg1 = (b + c + d) / 3 # # avg0 = avg1 + x # (a + b + c) / 3 = (b + c + d) / 3 + x # a/3 + b/3 + c/3 = b/3 + c/3 + d/3 + x # a/3 = d/3 + x # x = a/3 - d/3 # avg1 = avg0 - x # avg1 = avg0 + d/3 - a/3
33.803371
116
0.651321
# PyAlgoTrade # # Copyright 2011 Gabriel Martin Becedillas Ruiz # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. moduleauthor:: Gabriel Martin Becedillas Ruiz <[email protected]> """ from pyalgotrade import technical def calculate_sma(filterDS, firstPos, lastPos): accum = 0 for i in xrange(firstPos, lastPos+1): value = filterDS.getValueAbsolute(i) if value is None: return None accum += value ret = accum / float(lastPos - firstPos + 1) return ret # This is the formula I'm using to calculate the averages based on previous ones. # 1 2 3 4 # x x x # x x x # # avg0 = (a + b + c) / 3 # avg1 = (b + c + d) / 3 # # avg0 = avg1 + x # (a + b + c) / 3 = (b + c + d) / 3 + x # a/3 + b/3 + c/3 = b/3 + c/3 + d/3 + x # a/3 = d/3 + x # x = a/3 - d/3 # avg1 = avg0 - x # avg1 = avg0 + d/3 - a/3 class SMA(technical.DataSeriesFilter): """Simple Moving Average filter. :param dataSeries: The DataSeries instance being filtered. :type dataSeries: :class:`pyalgotrade.dataseries.DataSeries`. :param period: The number of values to use to calculate the SMA. :type period: int. """ def __init__(self, dataSeries, period): technical.DataSeriesFilter.__init__(self, dataSeries, period) self.__prevAvg = None self.__prevAvgPos = None def __calculateFastSMA(self, firstPos, lastPos): assert(firstPos > 0) firstValue = self.getDataSeries().getValueAbsolute(firstPos-1) lastValue = self.getDataSeries().getValueAbsolute(lastPos) if lastValue is None: return None self.__prevAvg = self.__prevAvg + lastValue / float(self.getPeriod()) - firstValue / float(self.getPeriod()) self.__prevAvgPos = lastPos return self.__prevAvg def __calculateSMA(self, firstPos, lastPos): ret = calculate_sma(self.getDataSeries(), firstPos, lastPos) self.__prevAvg = ret self.__prevAvgPos = lastPos return ret def getPeriod(self): return self.getWindowSize() def calculateValue(self, firstPos, lastPos): if self.__prevAvgPos != None and self.__prevAvgPos == lastPos - 1: ret = self.__calculateFastSMA(firstPos, lastPos) else: ret = self.__calculateSMA(firstPos, lastPos) return ret class EMA(technical.DataSeriesFilter): """Exponential Moving Average filter. :param dataSeries: The DataSeries instance being filtered. :type dataSeries: :class:`pyalgotrade.dataseries.DataSeries`. :param period: The number of values to use to calculate the EMA. :type period: int. """ def __init__(self, dataSeries, period): technical.DataSeriesFilter.__init__(self, dataSeries, period) self.__multiplier = (2.0 / (self.getWindowSize() + 1)) self.__values = {} def getPeriod(self): return self.getWindowSize() # Finds the last available (value, position) starting from pos. def __findPrevValue(self, pos): ret = None while pos >= self.getFirstValidPos() and ret == None: ret = self.__values.get(pos) if ret == None: pos -= 1 return (ret, pos) def __calculateFirstValue(self): # Calculate the first value, which is a SMA of the first X values of the wrapped data series. smaEnd = self.getFirstValidPos() smaBegin = smaEnd - (self.getWindowSize() - 1) ret = calculate_sma(self.getDataSeries(), smaBegin, smaEnd) self.__values[self.getFirstValidPos()] = ret return ret def __calculateEMA(self, startingValue, fromPos, toPos): ret = startingValue while fromPos <= toPos: currValue = self.getDataSeries().getValueAbsolute(fromPos) ret = (currValue - ret) * self.__multiplier + ret self.__values[fromPos] = ret fromPos += 1 return ret def calculateValue(self, firstPos, lastPos): # Formula from http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:moving_averages lastValue, lastValuePos = self.__findPrevValue(lastPos-1) if lastValue == None: # If we don't have any previous value, we need to start from scratch. lastValue = self.__calculateFirstValue() lastValuePos = self.getFirstValidPos() # Calculate the EMA starting from the last one we have. return self.__calculateEMA(lastValue, lastValuePos+1, lastPos) class WMA(technical.DataSeriesFilter): """Weighted Moving Average filter. :param dataSeries: The DataSeries instance being filtered. :type dataSeries: :class:`pyalgotrade.dataseries.DataSeries`. :param weights: A list of int/float with the weights. :type weights: list. """ def __init__(self, dataSeries, weights): technical.DataSeriesFilter.__init__(self, dataSeries, len(weights)) self.__weights = weights def getPeriod(self): return self.getWindowSize() def getWeights(self): return self.__weights def calculateValue(self, firstPos, lastPos): accum = 0 weightSum = 0 for i in xrange(firstPos, lastPos+1): value = self.getDataSeries().getValueAbsolute(i) if value is None: return None weight = self.__weights[i - firstPos] accum += value * weight weightSum += weight return accum / float(weightSum)
0
0
0
4,589
0
264
0
12
115
8a5f497112103293d27e66f42bcc18eee1df1536
3,137
py
Python
src/nninst/backend/tensorflow/trace/resnet_18_cifar10_class_trace.py
uchuhimo/Ptolemy
5c8ae188af30ee49d38f27d54c67af2eab9489e7
[ "Apache-2.0" ]
15
2020-08-24T07:11:20.000Z
2021-09-13T08:03:42.000Z
src/nninst/backend/tensorflow/trace/resnet_18_cifar10_class_trace.py
uchuhimo/Ptolemy
5c8ae188af30ee49d38f27d54c67af2eab9489e7
[ "Apache-2.0" ]
5
2021-02-28T17:30:26.000Z
2021-06-15T09:33:00.000Z
src/nninst/backend/tensorflow/trace/resnet_18_cifar10_class_trace.py
uchuhimo/Ptolemy
5c8ae188af30ee49d38f27d54c67af2eab9489e7
[ "Apache-2.0" ]
3
2020-10-22T09:11:11.000Z
2021-01-16T14:49:34.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convolutional Neural Network Estimator for MNIST, built with tf.layers.""" from nninst import mode from nninst.backend.tensorflow.dataset.config import (CIFAR10_TRAIN) from nninst.backend.tensorflow.model.config import RESNET_18_CIFAR10 from nninst.backend.tensorflow.trace.common import (class_trace, class_trace_compact, class_trace_growth, full_trace, save_class_traces, save_class_traces_low_latency, save_full_trace_growth, self_similarity) from nninst.utils.ray import ray_init __all__ = ["resnet_18_cifar10_class_trace", "resnet_18_cifar10_self_similarity"] name = "resnet_18_cifar10" resnet_18_cifar10_class_trace = class_trace( name=name, model_config=RESNET_18_CIFAR10, data_config=CIFAR10_TRAIN ) resnet_18_cifar10_class_trace_growth = class_trace_growth( name=name, model_config=RESNET_18_CIFAR10, data_config=CIFAR10_TRAIN ) resnet_18_cifar10_class_trace_compact = class_trace_compact( resnet_18_cifar10_class_trace, name=name, model_config=RESNET_18_CIFAR10 ) save_resnet_18_cifar10_class_traces_low_latency = save_class_traces_low_latency( name=name, model_config=RESNET_18_CIFAR10, data_config=CIFAR10_TRAIN ) resnet_18_cifar10_trace = full_trace( name=name, class_trace_fn=resnet_18_cifar10_class_trace ) save_resnet_18_cifar10_trace_growth = save_full_trace_growth( name=name, class_trace_fn=resnet_18_cifar10_class_trace ) resnet_18_cifar10_self_similarity = self_similarity( name=name, trace_fn=resnet_18_cifar10_class_trace, class_ids=range(0, 10) ) if __name__ == "__main__": # mode.check(False) # mode.debug() # mode.local() mode.distributed() # ray_init("dell") # ray_init("gpu") ray_init() threshold = 0.5 # threshold = 1 # threshold = 0.8 label = None # label = "train_50" # label = "train_start" # label = "train_start_more" # save_class_traces(resnet_18_cifar10_class_trace, range(0, 10), threshold=threshold, label=label, # example_num=5000, example_upperbound=5000, # ) save_resnet_18_cifar10_class_traces_low_latency( range(0, 10), threshold=threshold, label=label, example_num=5000, batch_size=8 ) save_class_traces( resnet_18_cifar10_class_trace_compact, range(0, 10), threshold=threshold, label=label, ) resnet_18_cifar10_self_similarity(threshold=threshold, label=label).save()
31.059406
102
0.75263
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convolutional Neural Network Estimator for MNIST, built with tf.layers.""" from nninst import mode from nninst.backend.tensorflow.dataset.config import ( CIFAR10_TRAIN, IMAGENET_RAW_TRAIN, IMAGENET_TRAIN, ) from nninst.backend.tensorflow.model.config import RESNET_18_CIFAR10, RESNET_50 from nninst.backend.tensorflow.trace.common import ( class_trace, class_trace_compact, class_trace_growth, full_trace, save_class_traces, save_class_traces_low_latency, save_full_trace_growth, self_similarity, ) from nninst.utils.ray import ray_init __all__ = ["resnet_18_cifar10_class_trace", "resnet_18_cifar10_self_similarity"] name = "resnet_18_cifar10" resnet_18_cifar10_class_trace = class_trace( name=name, model_config=RESNET_18_CIFAR10, data_config=CIFAR10_TRAIN ) resnet_18_cifar10_class_trace_growth = class_trace_growth( name=name, model_config=RESNET_18_CIFAR10, data_config=CIFAR10_TRAIN ) resnet_18_cifar10_class_trace_compact = class_trace_compact( resnet_18_cifar10_class_trace, name=name, model_config=RESNET_18_CIFAR10 ) save_resnet_18_cifar10_class_traces_low_latency = save_class_traces_low_latency( name=name, model_config=RESNET_18_CIFAR10, data_config=CIFAR10_TRAIN ) resnet_18_cifar10_trace = full_trace( name=name, class_trace_fn=resnet_18_cifar10_class_trace ) save_resnet_18_cifar10_trace_growth = save_full_trace_growth( name=name, class_trace_fn=resnet_18_cifar10_class_trace ) resnet_18_cifar10_self_similarity = self_similarity( name=name, trace_fn=resnet_18_cifar10_class_trace, class_ids=range(0, 10) ) if __name__ == "__main__": # mode.check(False) # mode.debug() # mode.local() mode.distributed() # ray_init("dell") # ray_init("gpu") ray_init() threshold = 0.5 # threshold = 1 # threshold = 0.8 label = None # label = "train_50" # label = "train_start" # label = "train_start_more" # save_class_traces(resnet_18_cifar10_class_trace, range(0, 10), threshold=threshold, label=label, # example_num=5000, example_upperbound=5000, # ) save_resnet_18_cifar10_class_traces_low_latency( range(0, 10), threshold=threshold, label=label, example_num=5000, batch_size=8 ) save_class_traces( resnet_18_cifar10_class_trace_compact, range(0, 10), threshold=threshold, label=label, ) resnet_18_cifar10_self_similarity(threshold=threshold, label=label).save()
0
0
0
0
0
0
0
97
0
f77ea59bf822539953a84da90bca3bded5b1d71d
4,051
py
Python
spider/wenkubaidu/wenku.py
JackyYuanjie/python-scripts
490eb9668bda6db004ae87d204588fb6ffe56051
[ "Apache-2.0" ]
1
2021-07-08T05:09:38.000Z
2021-07-08T05:09:38.000Z
spider/wenkubaidu/wenku.py
JackyYuanjie/python-scripts
490eb9668bda6db004ae87d204588fb6ffe56051
[ "Apache-2.0" ]
null
null
null
spider/wenkubaidu/wenku.py
JackyYuanjie/python-scripts
490eb9668bda6db004ae87d204588fb6ffe56051
[ "Apache-2.0" ]
1
2020-01-09T07:29:17.000Z
2020-01-09T07:29:17.000Z
#!/usr/bin/env python # -*- coding:utf-8 -*- """ https://wenku.baidu.com/browse/getrequest?doc_id=a1eec6289b6648d7c1c7468f&pn=22&rn=1&type=ppt&callback=bd__cbs__s5lw72 https://wenku.baidu.com/browse/getrequest?doc_id=a1eec6289b6648d7c1c7468f&pn=23&rn=1&type=ppt&callback=bd__cbs__coo5j5 https://wenku.baidu.com/browse/getrequest?doc_id=a1eec6289b6648d7c1c7468f&pn=21&rn=1&type=ppt&callback=bd__cbs__2hc9ds https://wenku.baidu.com/browse/getrequest?doc_id=a1eec6289b6648d7c1c7468f&pn=5&rn=1&type=ppt&callback=bd__cbs__nh2gao """ linkfiles = "F:\\PythonProject\\python-scripts\\spider\\wenkubaidu\\odnimages\\" if __name__=="__main__": wk = WK() for pn in range(1,26): url = 'https://wenku.baidu.com/browse/getrequest?doc_id=a1eec6289b6648d7c1c7468f&pn={}&rn=1&type=ppt&callback=bd__cbs__nh2gao'.format(pn) print(url,"") wk.spyder(url) """ with open(linkfiles + "wenkulink.txt",'a+') as fw: # fw.write(url) # , # fw.write("\n") """ # wk.spyder(wk.baseUrl) """ ,\,. https:\/\/wkretype.bdimg.com\/retype\/zoom\/6a30bde2f8c75fbfc77db23c?pn=4&raww=1080&rawh=810&o=jpg_6&md5sum=f9ace759cd13bfd0f9ad186d77af05fa&sign=0756077547&png=41164-280359&jpg=227559-365825 """
44.032609
883
0.689459
#!/usr/bin/env python # -*- coding:utf-8 -*- import urllib import requests from bs4 import BeautifulSoup """ https://wenku.baidu.com/browse/getrequest?doc_id=a1eec6289b6648d7c1c7468f&pn=22&rn=1&type=ppt&callback=bd__cbs__s5lw72 https://wenku.baidu.com/browse/getrequest?doc_id=a1eec6289b6648d7c1c7468f&pn=23&rn=1&type=ppt&callback=bd__cbs__coo5j5 https://wenku.baidu.com/browse/getrequest?doc_id=a1eec6289b6648d7c1c7468f&pn=21&rn=1&type=ppt&callback=bd__cbs__2hc9ds https://wenku.baidu.com/browse/getrequest?doc_id=a1eec6289b6648d7c1c7468f&pn=5&rn=1&type=ppt&callback=bd__cbs__nh2gao """ linkfiles = "F:\\PythonProject\\python-scripts\\spider\\wenkubaidu\\odnimages\\" class WK(): ''' 百度文库 ''' def __init__(self): self.baseUrl = "https://wenku.baidu.com/view/564fc70a77a20029bd64783e0912a21615797ff7.html" self.header = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) \ AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'} def getResponse(self,url): try: req = urllib.request.Request(url,headers = self.header) response = urllib.request.urlopen(req,timeout = 10) except: print("页面请求失败") else: return response.read().decode('gb2312') def spyder(self,url): html = self.getResponse(url) # print(html) start_index = html.find("https:") # print(start_index) print('-'*30) end_index = html.find('","') # print(end_index) print(html[start_index:end_index]) """ with open(linkfiles + "wenkucontent.txt",'a+') as fa: fa.write(html) fa.write("\n") """ header = self.header header['Cookie'] = 'BAIDUID=2CC737B4D3E3D51EA7529F8065A8B708:FG=1; PSTM=1553749648; BIDUPSID=36D49C7DE8F84F920A6D6ADE0E719043; _click_param_pc_rec_doc_2017_testid=4; ZD_ENTRY=bing; cflag=13%3A3; session_name=cn.bing.com; isJiaoyuVip=1; wk_shifen_pop_window=7765_1_1567070315751; Hm_lvt_d8bfb560f8d03bbefc9bdecafc4a4bf6=1566318226,1566571568,1567070267,1567070708; session_id=1567070708094; BCLID=11327784929476180808; BDSFRCVID=aD0OJeC624LjSNrwjvtqhFVMiLK2tRQTH6055tzl7cu_UIsP_XwLEG0PDM8g0Ku-5SOpogKK0mOTHv-F_2uxOjjg8UtVJeC6EG0P3J; H_BDCLCKID_SF=JJ-qVCPbtDvbfP0kb-r_bPk0hNLHJK62aKDs3l-MBhcqEIL4jMv80UCX5U6q-no33HcuBlRcttbCVfbSj60hjJ0hhaJ2-lRPW67TMMn5Bp5nhMJeXj7JDMP0qHogWbOy523ion6vQpn-KqQ3DRoWXPIqbN7P-p5Z5mAqKl0MLIOkbRO4-TFaejOQDfK; userFirstTime=true; ___wk_scode_token=XdTTTDexiuWKJhoY9dcpx3hQOGs%2Bniyz9YrLayUnQsQ%3D; Hm_lpvt_d8bfb560f8d03bbefc9bdecafc4a4bf6=1567072063' # print(header) urlrep = html[start_index:end_index].replace('\\','') # print(urlrep) # req = requests.get('https://wkretype.bdimg.com//retype//zoom//6a30bde2f8c75fbfc77db23c?pn=4&raww=1080&rawh=810&o=jpg_6&md5sum=f9ace759cd13bfd0f9ad186d77af05fa&sign=0756077547&png=41164-280359&jpg=227559-365825') req = requests.get(urlrep,headers = header) """ with open(linkfiles + "b.png",'wb') as fb: fb.write(req.content) """ p_index = html.find('"page":') p_end = html.find('}]') pag = html[p_index+7:p_end] with open(linkfiles + pag + ".png",'wb') as fb: fb.write(req.content) if __name__=="__main__": wk = WK() for pn in range(1,26): url = 'https://wenku.baidu.com/browse/getrequest?doc_id=a1eec6289b6648d7c1c7468f&pn={}&rn=1&type=ppt&callback=bd__cbs__nh2gao'.format(pn) print(url,"下载完成") wk.spyder(url) """ with open(linkfiles + "wenkulink.txt",'a+') as fw: # fw.write(url) # 是统计的页数连接,可以从中获取到图片的链接 # fw.write("\n") """ # wk.spyder(wk.baseUrl) """ 注意该网址粘贴到浏览器上访问是可以的,但是在代码中若不替换\该字符,会导致报错. https:\/\/wkretype.bdimg.com\/retype\/zoom\/6a30bde2f8c75fbfc77db23c?pn=4&raww=1080&rawh=810&o=jpg_6&md5sum=f9ace759cd13bfd0f9ad186d77af05fa&sign=0756077547&png=41164-280359&jpg=227559-365825 """
210
0
0
2,636
0
0
0
-6
90
dc824dbc29f0b42ffaa3b7d3fe8147c1f7a32031
18,983
py
Python
source/xgm_mod_options.py
Omni-9/warband_mod_source
c9737d7793ccdb185d8d3caedda0da915104e405
[ "BSD-Source-Code" ]
14
2018-09-20T23:01:27.000Z
2021-05-25T11:05:09.000Z
source/xgm_mod_options.py
Omni-9/warband_mod_source
c9737d7793ccdb185d8d3caedda0da915104e405
[ "BSD-Source-Code" ]
44
2018-09-15T03:05:50.000Z
2022-03-22T02:46:24.000Z
source/xgm_mod_options.py
Omni-9/warband_mod_source
c9737d7793ccdb185d8d3caedda0da915104e405
[ "BSD-Source-Code" ]
13
2018-10-02T11:45:24.000Z
2021-08-22T18:41:44.000Z
#import string ############################################################################ ## 0) overlay id (not used atm, but can allow searches in future. just put something unique) ## 1) overlay type (defined in xgm_mod_options_header) ## 2) overlay type specific parameters (e.g. for number box, it can be lower/upper range, for cbobox, it would be the cbo items etc) ## a) xgm_ov_numberbox : lower_bound(inclusive), upper_bound(exclusive). e.g. [0,101] for range of values from 0-100 ## b) xgm_ov_combolabel/xgm_ov_combobutton : list of combo items. e.g. ["option1", "option2", "option3"] ## c) xgm_ov_slider : lower_bound(inclusive), upper_bound(exclusive). e.g. [0,101] for range of values from 0-100 ## d) xgm_ov_checkbox : not used fttb. just leave empty. e.g. [] ## 3) text label ## 4) reserved for text label flags ## 5) description (unused for now. may be used for stuff like tooltip in future) ## 6) reserved for description flags ## 7) initialization op block. Used for updating the overlay values from game values. Must assign the desired value to reg1. ## 8) update op block. Used for updating game values from overlay values. The overlay value is in reg1. ## 9) optional. reserved for option page id. unused for now. leave out for options using general page. ############################################################################ mod_options = [ ("camp_fuck_setting", xgm_ov_combolabel, ["Disabled", "Consensual Only", "All Enabled"], "Sexual Content:", 0, "Settings for sexual content in game.", 0, [(try_begin), (eq, "$g_sexual_content", 0), (assign, reg1, 0), (else_try), (eq, "$g_sexual_content", 1), (assign, reg1, 1), (else_try), (eq, "$g_sexual_content", 2), (assign, reg1, 2), (try_end),], [(try_begin), (eq, reg1, 0), (assign, "$g_sexual_content", 0), (else_try), (eq, reg1, 1), (assign, "$g_sexual_content", 1), (else_try), (eq, reg1, 2), (assign, "$g_sexual_content", 2), (try_end), ], ), ("dplmc_woman_prejudice", xgm_ov_combolabel, ["Historical", "Tolerant", "Utopian"], "Diplomacy - Prejudice:", 0, "Setting for Diplomacy's prejudice changes.", 0, [ (assign, reg1, "$g_disable_condescending_comments"), ], [ (assign, "$g_disable_condescending_comments", reg1), ], ), ("camp_polygamy", xgm_ov_checkbox, [], "Polygamy:", 0, "Toggles polygamy settings", 0, [(try_begin), (eq, "$g_polygamy", 0), (assign, reg1, 0), (else_try), (eq, "$g_polygamy", 1), (assign, reg1, 1), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_polygamy", 0), (else_try), (eq, reg1, 1), (assign, "$g_polygamy", 1), (try_end), ], ), ( "camp_nohomobro", xgm_ov_checkbox , [], "Disable Gay:", 0, "Disables gay scenes.", 0, [ # initialization block (set value in reg1) (assign, reg1, "$g_nohomo"), ], [ # update block (value is in reg1) (assign, "$g_nohomo", reg1), ], ), ( "camp_no_dancers", xgm_ov_checkbox , [], "Feast Dancers:", 0, "Toggles dancers during feasts.", 0, [ # initialization block (set value in reg1) (assign, reg1, "$g_feast_dancers"), ], [ # update block (value is in reg1) (assign, "$g_feast_dancers", reg1), ], ), ("camp_dark_hunters", xgm_ov_checkbox, [], "Black Khergits and Dark Hunters:", 0, "Settings for Dark Hunters and Black Khergits.", 0, [ (try_begin), (eq, "$g_dark_hunters_enabled", 0), (assign, reg1, 0), (else_try), (eq, "$g_dark_hunters_enabled", 1), (assign, reg1, 1), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_dark_hunters_enabled", 0), (assign, ":removed", 0), (try_for_parties, ":party_no"), (party_get_template_id, ":ptid", ":party_no"), (this_or_next|eq, ":ptid", "pt_dark_hunters"), (eq, ":ptid", "pt_black_khergit_raiders"), (remove_party, ":party_no"), (val_add, ":removed", 1), (try_end), (assign, reg0, ":removed"), (display_message, "@{reg0} parties removed from the map."), (else_try), (eq, reg1, 1), (assign, "$g_dark_hunters_enabled", 1), (try_end), ], ), ( "keep_companions", xgm_ov_checkbox , [], "Keep Companions:", 0, "Setting for keeping companions after defeat", 0, [ # initialization block (set value in reg1) (assign, reg1, "$g_keep_companions"), ], [ # update block (value is in reg1) (assign, "$g_keep_companions", reg1), ], ), ( "disable_complaints", xgm_ov_checkbox , [], "Disable Complaints:", 0, "Setting for disabling companion complaints", 0, [ # initialization block (set value in reg1) (assign, reg1, "$disable_npc_complaints"), ], [ # update block (value is in reg1) (assign, "$disable_npc_complaints", reg1), ], ), ( "disable_bodyguard", xgm_ov_checkbox , [], "Disable Bodyguards:", 0, "Setting for disabling companions as bodyguards", 0, [ # initialization block (set value in reg1) (assign, reg1, "$disable_bodyguards"), ], [ # update block (value is in reg1) (assign, "$disable_bodyguards", reg1), ], ), ("camp_realistic_wounding", xgm_ov_checkbox, [], "Realistic Casualties:", 0, "Toggles realistic wounding for other damage types", 0, [(try_begin), (eq, "$g_realistic_wounding", 0), (assign, reg1, 0), (else_try), (eq, "$g_realistic_wounding", 1), (assign, reg1, 1), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_realistic_wounding", 0), (else_try), (eq, reg1, 1), (assign, "$g_realistic_wounding", 1), (try_end), ], ), ("enable_shield_bash", xgm_ov_combolabel, ["Disabled", "Player Only", "All Combatants"], "Shield Bash:", 0, "Setting for Diplomacy's prejudice changes.", 0, [ (assign, reg1, "$g_enable_shield_bash"), ], [ (assign, "$g_enable_shield_bash", reg1), ], ), ("horizontal_divide", xgm_ov_line, [], "", 0,"", 0,[],[],), ( "dplmc_horsespeed", xgm_ov_checkbox , [], "Diplomacy - Horse Speed:", 0, "Setting for Diplomacy's horse speed changes", 0, [ # initialization block (set value in reg1) (store_sub,reg1,1,"$g_dplmc_horse_speed"), ], [ # update block (value is in reg1) (store_sub,"$g_dplmc_horse_speed",1,reg1), ], ), ( "dplmc_battlecontinue", xgm_ov_checkbox , [], "Diplomacy - Battle Continuation:", 0, "Setting for Diplomacy's battle continuation", 0, [ # initialization block (set value in reg1) (store_sub,reg1,1,"$g_dplmc_battle_continuation"), ], [ # update block (value is in reg1) (store_sub,"$g_dplmc_battle_continuation",1,reg1), ], ), ( "dplmc_disguise", xgm_ov_checkbox , [], "Diplomacy - Disguise System:", 0, "Setting for Diplomacy's disguise system", 0, [ # initialization block (set value in reg1) (assign, reg1, "$g_dplmc_player_disguise"), ], [ # update block (value is in reg1) (assign, "$g_dplmc_player_disguise", reg1), ], ), ( "dplmc_terrain_advantage", xgm_ov_checkbox , [], "Diplomacy - Autocalc Terrain Advantage:", 0, "Setting for Diplomacy's terrain advantage.", 0, [ # initialization block (set value in reg1) (try_begin), (eq, "$g_dplmc_terrain_advantage", DPLMC_TERRAIN_ADVANTAGE_DISABLE), (assign, reg1, 0), (else_try), (eq, "$g_dplmc_terrain_advantage", DPLMC_TERRAIN_ADVANTAGE_ENABLE), (assign, reg1, 1), (try_end), ], [ # update block (value is in reg1) (try_begin), (eq, reg1, 0), (assign, "$g_dplmc_terrain_advantage", DPLMC_TERRAIN_ADVANTAGE_DISABLE), (else_try), (eq, reg1, 1), (assign, "$g_dplmc_terrain_advantage", DPLMC_TERRAIN_ADVANTAGE_ENABLE), (try_end), ], ), ( "dplmc_lord_recycling", xgm_ov_checkbox , [], "Diplomacy - Returning From Exile:", 0, "Setting for Diplomacy's terrain advantage.", 0, [ # initialization block (set value in reg1) (try_begin), (eq, "$g_dplmc_lord_recycling", DPLMC_LORD_RECYCLING_DISABLE), (assign, reg1, 0), (else_try), (eq, "$g_dplmc_lord_recycling", DPLMC_LORD_RECYCLING_ENABLE), (assign, reg1, 1), (try_end), ], [ # update block (value is in reg1) (try_begin), (eq, reg1, 0), (assign, "$g_dplmc_lord_recycling", DPLMC_LORD_RECYCLING_DISABLE), (else_try), (eq, reg1, 1), (assign, "$g_dplmc_lord_recycling", DPLMC_LORD_RECYCLING_ENABLE), (try_end), ], ), ("dplmc_ai_changes_a", xgm_ov_combolabel, ["Disabled", "Low", "Medium", "High"], "Diplomacy - AI Changes:", 0, "Setting for Diplomacy's AI changes.", 0, [ (try_begin), (eq, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_DISABLE), (assign, reg1, 0), (else_try), (eq, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_LOW), (assign, reg1, 1), (else_try), (eq, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_MEDIUM), (assign, reg1, 2), (else_try), (eq, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_HIGH), (assign, reg1, 3), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_DISABLE), (else_try), (eq, reg1, 1), (assign, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_LOW), (else_try), (eq, reg1, 2), (assign, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_MEDIUM), (else_try), (eq, reg1, 3), (assign, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_HIGH), (try_end), ], ), ("dplmc_gold_changes", xgm_ov_combolabel, ["Disabled", "Low", "Medium", "High"], "Diplomacy - Economy Changes:", 0, "Setting for Diplomacy's economy changes.", 0, [ (try_begin), (eq, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_DISABLE), (assign, reg1, 0), (else_try), (eq, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_LOW), (assign, reg1, 1), (else_try), (eq, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_MEDIUM), (assign, reg1, 2), (else_try), (eq, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_HIGH), (assign, reg1, 3), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_DISABLE), (else_try), (eq, reg1, 1), (assign, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_LOW), (else_try), (eq, reg1, 2), (assign, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_MEDIUM), (else_try), (eq, reg1, 3), (assign, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_HIGH), (try_end), ], ), ("horizontal_divide", xgm_ov_line, [], "", 0,"", 0,[],[],), ("minimap_setting", xgm_ov_combolabel, ["Compass Style", "Small Minimap", "Medium Minimap", "Large Minimap", "Disabled"], "Battle Minimap Overlay:", 0, "Setting for the minimap.", 0, [ (try_begin), (eq, "$g_minimap_style", -1), (assign, reg1, 4), (else_try), (assign, reg1, "$g_minimap_style"), (try_end), ], [ (try_begin), (eq, reg1, 4), (assign, "$g_minimap_style", -1), (else_try), (assign, "$g_minimap_style", reg1), (try_end), ], ), ("minimap_setting", xgm_ov_combolabel, ["Disabled", "Only Allies", "Only Enemies", "All Troops"], "Troop HP Bars:", 0, "Setting for troop HP bars.", 0, [ (try_begin), # Ally (eq, "$g_hp_bar_enemy", 0), (eq, "$g_hp_bar_ally", 1), (assign, reg1, 1), (else_try), # Enemy (eq, "$g_hp_bar_enemy", 1), (eq, "$g_hp_bar_ally", 0), (assign, reg1, 2), (else_try), # Both (eq, "$g_hp_bar_enemy", 1), (eq, "$g_hp_bar_ally", 1), (assign, reg1, 3), (else_try), # None (assign, reg1, 0), (try_end), ], [ (try_begin), # Ally (eq, reg1, 1), (assign, "$g_hp_bar_enemy", 0), (assign, "$g_hp_bar_ally", 1), (else_try), # Enemy (eq, reg1, 2), (assign, "$g_hp_bar_enemy", 1), (assign, "$g_hp_bar_ally", 0), (else_try), # Both (eq, reg1, 3), (assign, "$g_hp_bar_enemy", 1), (assign, "$g_hp_bar_ally", 1), (else_try), # None (assign, "$g_hp_bar_enemy", 0), (assign, "$g_hp_bar_ally", 0), (try_end), ], ), ("minimap_setting", xgm_ov_numberbox, [3,81], "HP Bar Distance Limit:", 0, "Setting for the HP Bars.", 0, [ (assign, reg1, "$g_hp_bar_dis_limit"), ], [ (assign, "$g_hp_bar_dis_limit", reg1), ], ), ("camp_troop_ratio_bar", xgm_ov_checkbox, [], "Troop ratio bar:", 0, "Toggles troop ratio bar", 0, [(try_begin), (eq, "$g_troop_ratio_bar", 0), (assign, reg1, 0), (else_try), (eq, "$g_troop_ratio_bar", 1), (assign, reg1, 1), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_troop_ratio_bar", 0), (else_try), (eq, reg1, 1), (assign, "$g_troop_ratio_bar", 1), (try_end), ], ), ("camp_decapitation", xgm_ov_checkbox, [], "Decapitation:", 0, "Toggles Decapitation", 0, [(try_begin), (eq, "$g_decapitation_enabled", 0), (assign, reg1, 0), (else_try), (eq, "$g_decapitation_enabled", 1), (assign, reg1, 1), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_decapitation_enabled", 0), (else_try), (eq, reg1, 1), (assign, "$g_decapitation_enabled", 1), (try_end), ], ), ("horizontal_divide", xgm_ov_line, [], "", 0,"", 0,[],[],), ( "op_cheatmode", xgm_ov_checkbox , [], "Cheat mode:", 0, "This sets the in-game cheat mode", 0, [ # initialization block (set value in reg1) (assign, reg1, "$cheat_mode"), ], [ # update block (value is in reg1) (assign, "$cheat_mode", reg1), ], ), ] # mod_options # TODO: add option pages here # collation of all *_mod_options.py from active mods # import and merge related variables from all {active_mod}_mod_options.py for all active mods #try: # from modmerger_options import options, mods_active # from modmerger import mod_get_process_order, mod_is_active # from util_common import add_objects # modcomp_name = "mod_options" # var_list = ["mod_options",] #from modmerger import modmerge #modmerge(var_set) # mod_process_order = mod_get_process_order(modcomp_name) # vars_to_import= ["mod_options"] # for x in mod_process_order: # if(mod_is_active(x) and x <> "xgm_mod_options"): # must exclude this file since we are using this file as base # try: #mergefn_name = "modmerge_%s"%(modcomp_name) # target_module_name = "%s_%s"%(x,modcomp_name) # _temp = __import__( target_module_name , globals(), locals(), vars_to_import,-1) # logger.info("Merging objects for component \"%s\" from mod \"%s\"..."%(modcomp_name,x)) # # add_objects(mod_options, _temp.mod_options) # import from target module. # # # TODO: collect option pages # except ImportError: # errstring = "Failed importing for component \"%s\" for mod \"%s\"." % (modcomp_name, x) # logger.debug(errstring) # else: # errstring = "Mod \"%s\" not active for Component \"%s\"." % (x, modcomp_name) # logger.debug(errstring) #except: # raise # collation end # At this point, mod_options will contain the list of all mod_options specified. ## utility functions # helper wrapper to access mod_options ## class ModOptionWrapper # this function will compute the total height required for a list of mod_options. ## mod_options_get_total_height
30.716828
155
0.566928
from header_common import * from header_presentations import * from header_mission_templates import * from ID_meshes import * from header_operations import * from header_triggers import * from module_constants import * #import string from xgm_mod_options_header import * ############################################################################ ## 0) overlay id (not used atm, but can allow searches in future. just put something unique) ## 1) overlay type (defined in xgm_mod_options_header) ## 2) overlay type specific parameters (e.g. for number box, it can be lower/upper range, for cbobox, it would be the cbo items etc) ## a) xgm_ov_numberbox : lower_bound(inclusive), upper_bound(exclusive). e.g. [0,101] for range of values from 0-100 ## b) xgm_ov_combolabel/xgm_ov_combobutton : list of combo items. e.g. ["option1", "option2", "option3"] ## c) xgm_ov_slider : lower_bound(inclusive), upper_bound(exclusive). e.g. [0,101] for range of values from 0-100 ## d) xgm_ov_checkbox : not used fttb. just leave empty. e.g. [] ## 3) text label ## 4) reserved for text label flags ## 5) description (unused for now. may be used for stuff like tooltip in future) ## 6) reserved for description flags ## 7) initialization op block. Used for updating the overlay values from game values. Must assign the desired value to reg1. ## 8) update op block. Used for updating game values from overlay values. The overlay value is in reg1. ## 9) optional. reserved for option page id. unused for now. leave out for options using general page. ############################################################################ mod_options = [ ("camp_fuck_setting", xgm_ov_combolabel, ["Disabled", "Consensual Only", "All Enabled"], "Sexual Content:", 0, "Settings for sexual content in game.", 0, [(try_begin), (eq, "$g_sexual_content", 0), (assign, reg1, 0), (else_try), (eq, "$g_sexual_content", 1), (assign, reg1, 1), (else_try), (eq, "$g_sexual_content", 2), (assign, reg1, 2), (try_end),], [(try_begin), (eq, reg1, 0), (assign, "$g_sexual_content", 0), (else_try), (eq, reg1, 1), (assign, "$g_sexual_content", 1), (else_try), (eq, reg1, 2), (assign, "$g_sexual_content", 2), (try_end), ], ), ("dplmc_woman_prejudice", xgm_ov_combolabel, ["Historical", "Tolerant", "Utopian"], "Diplomacy - Prejudice:", 0, "Setting for Diplomacy's prejudice changes.", 0, [ (assign, reg1, "$g_disable_condescending_comments"), ], [ (assign, "$g_disable_condescending_comments", reg1), ], ), ("camp_polygamy", xgm_ov_checkbox, [], "Polygamy:", 0, "Toggles polygamy settings", 0, [(try_begin), (eq, "$g_polygamy", 0), (assign, reg1, 0), (else_try), (eq, "$g_polygamy", 1), (assign, reg1, 1), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_polygamy", 0), (else_try), (eq, reg1, 1), (assign, "$g_polygamy", 1), (try_end), ], ), ( "camp_nohomobro", xgm_ov_checkbox , [], "Disable Gay:", 0, "Disables gay scenes.", 0, [ # initialization block (set value in reg1) (assign, reg1, "$g_nohomo"), ], [ # update block (value is in reg1) (assign, "$g_nohomo", reg1), ], ), ( "camp_no_dancers", xgm_ov_checkbox , [], "Feast Dancers:", 0, "Toggles dancers during feasts.", 0, [ # initialization block (set value in reg1) (assign, reg1, "$g_feast_dancers"), ], [ # update block (value is in reg1) (assign, "$g_feast_dancers", reg1), ], ), ("camp_dark_hunters", xgm_ov_checkbox, [], "Black Khergits and Dark Hunters:", 0, "Settings for Dark Hunters and Black Khergits.", 0, [ (try_begin), (eq, "$g_dark_hunters_enabled", 0), (assign, reg1, 0), (else_try), (eq, "$g_dark_hunters_enabled", 1), (assign, reg1, 1), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_dark_hunters_enabled", 0), (assign, ":removed", 0), (try_for_parties, ":party_no"), (party_get_template_id, ":ptid", ":party_no"), (this_or_next|eq, ":ptid", "pt_dark_hunters"), (eq, ":ptid", "pt_black_khergit_raiders"), (remove_party, ":party_no"), (val_add, ":removed", 1), (try_end), (assign, reg0, ":removed"), (display_message, "@{reg0} parties removed from the map."), (else_try), (eq, reg1, 1), (assign, "$g_dark_hunters_enabled", 1), (try_end), ], ), ( "keep_companions", xgm_ov_checkbox , [], "Keep Companions:", 0, "Setting for keeping companions after defeat", 0, [ # initialization block (set value in reg1) (assign, reg1, "$g_keep_companions"), ], [ # update block (value is in reg1) (assign, "$g_keep_companions", reg1), ], ), ( "disable_complaints", xgm_ov_checkbox , [], "Disable Complaints:", 0, "Setting for disabling companion complaints", 0, [ # initialization block (set value in reg1) (assign, reg1, "$disable_npc_complaints"), ], [ # update block (value is in reg1) (assign, "$disable_npc_complaints", reg1), ], ), ( "disable_bodyguard", xgm_ov_checkbox , [], "Disable Bodyguards:", 0, "Setting for disabling companions as bodyguards", 0, [ # initialization block (set value in reg1) (assign, reg1, "$disable_bodyguards"), ], [ # update block (value is in reg1) (assign, "$disable_bodyguards", reg1), ], ), ("camp_realistic_wounding", xgm_ov_checkbox, [], "Realistic Casualties:", 0, "Toggles realistic wounding for other damage types", 0, [(try_begin), (eq, "$g_realistic_wounding", 0), (assign, reg1, 0), (else_try), (eq, "$g_realistic_wounding", 1), (assign, reg1, 1), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_realistic_wounding", 0), (else_try), (eq, reg1, 1), (assign, "$g_realistic_wounding", 1), (try_end), ], ), ("enable_shield_bash", xgm_ov_combolabel, ["Disabled", "Player Only", "All Combatants"], "Shield Bash:", 0, "Setting for Diplomacy's prejudice changes.", 0, [ (assign, reg1, "$g_enable_shield_bash"), ], [ (assign, "$g_enable_shield_bash", reg1), ], ), ("horizontal_divide", xgm_ov_line, [], "", 0,"", 0,[],[],), ( "dplmc_horsespeed", xgm_ov_checkbox , [], "Diplomacy - Horse Speed:", 0, "Setting for Diplomacy's horse speed changes", 0, [ # initialization block (set value in reg1) (store_sub,reg1,1,"$g_dplmc_horse_speed"), ], [ # update block (value is in reg1) (store_sub,"$g_dplmc_horse_speed",1,reg1), ], ), ( "dplmc_battlecontinue", xgm_ov_checkbox , [], "Diplomacy - Battle Continuation:", 0, "Setting for Diplomacy's battle continuation", 0, [ # initialization block (set value in reg1) (store_sub,reg1,1,"$g_dplmc_battle_continuation"), ], [ # update block (value is in reg1) (store_sub,"$g_dplmc_battle_continuation",1,reg1), ], ), ( "dplmc_disguise", xgm_ov_checkbox , [], "Diplomacy - Disguise System:", 0, "Setting for Diplomacy's disguise system", 0, [ # initialization block (set value in reg1) (assign, reg1, "$g_dplmc_player_disguise"), ], [ # update block (value is in reg1) (assign, "$g_dplmc_player_disguise", reg1), ], ), ( "dplmc_terrain_advantage", xgm_ov_checkbox , [], "Diplomacy - Autocalc Terrain Advantage:", 0, "Setting for Diplomacy's terrain advantage.", 0, [ # initialization block (set value in reg1) (try_begin), (eq, "$g_dplmc_terrain_advantage", DPLMC_TERRAIN_ADVANTAGE_DISABLE), (assign, reg1, 0), (else_try), (eq, "$g_dplmc_terrain_advantage", DPLMC_TERRAIN_ADVANTAGE_ENABLE), (assign, reg1, 1), (try_end), ], [ # update block (value is in reg1) (try_begin), (eq, reg1, 0), (assign, "$g_dplmc_terrain_advantage", DPLMC_TERRAIN_ADVANTAGE_DISABLE), (else_try), (eq, reg1, 1), (assign, "$g_dplmc_terrain_advantage", DPLMC_TERRAIN_ADVANTAGE_ENABLE), (try_end), ], ), ( "dplmc_lord_recycling", xgm_ov_checkbox , [], "Diplomacy - Returning From Exile:", 0, "Setting for Diplomacy's terrain advantage.", 0, [ # initialization block (set value in reg1) (try_begin), (eq, "$g_dplmc_lord_recycling", DPLMC_LORD_RECYCLING_DISABLE), (assign, reg1, 0), (else_try), (eq, "$g_dplmc_lord_recycling", DPLMC_LORD_RECYCLING_ENABLE), (assign, reg1, 1), (try_end), ], [ # update block (value is in reg1) (try_begin), (eq, reg1, 0), (assign, "$g_dplmc_lord_recycling", DPLMC_LORD_RECYCLING_DISABLE), (else_try), (eq, reg1, 1), (assign, "$g_dplmc_lord_recycling", DPLMC_LORD_RECYCLING_ENABLE), (try_end), ], ), ("dplmc_ai_changes_a", xgm_ov_combolabel, ["Disabled", "Low", "Medium", "High"], "Diplomacy - AI Changes:", 0, "Setting for Diplomacy's AI changes.", 0, [ (try_begin), (eq, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_DISABLE), (assign, reg1, 0), (else_try), (eq, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_LOW), (assign, reg1, 1), (else_try), (eq, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_MEDIUM), (assign, reg1, 2), (else_try), (eq, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_HIGH), (assign, reg1, 3), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_DISABLE), (else_try), (eq, reg1, 1), (assign, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_LOW), (else_try), (eq, reg1, 2), (assign, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_MEDIUM), (else_try), (eq, reg1, 3), (assign, "$g_dplmc_ai_changes", DPLMC_AI_CHANGES_HIGH), (try_end), ], ), ("dplmc_gold_changes", xgm_ov_combolabel, ["Disabled", "Low", "Medium", "High"], "Diplomacy - Economy Changes:", 0, "Setting for Diplomacy's economy changes.", 0, [ (try_begin), (eq, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_DISABLE), (assign, reg1, 0), (else_try), (eq, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_LOW), (assign, reg1, 1), (else_try), (eq, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_MEDIUM), (assign, reg1, 2), (else_try), (eq, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_HIGH), (assign, reg1, 3), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_DISABLE), (else_try), (eq, reg1, 1), (assign, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_LOW), (else_try), (eq, reg1, 2), (assign, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_MEDIUM), (else_try), (eq, reg1, 3), (assign, "$g_dplmc_gold_changes", DPLMC_GOLD_CHANGES_HIGH), (try_end), ], ), ("horizontal_divide", xgm_ov_line, [], "", 0,"", 0,[],[],), ("minimap_setting", xgm_ov_combolabel, ["Compass Style", "Small Minimap", "Medium Minimap", "Large Minimap", "Disabled"], "Battle Minimap Overlay:", 0, "Setting for the minimap.", 0, [ (try_begin), (eq, "$g_minimap_style", -1), (assign, reg1, 4), (else_try), (assign, reg1, "$g_minimap_style"), (try_end), ], [ (try_begin), (eq, reg1, 4), (assign, "$g_minimap_style", -1), (else_try), (assign, "$g_minimap_style", reg1), (try_end), ], ), ("minimap_setting", xgm_ov_combolabel, ["Disabled", "Only Allies", "Only Enemies", "All Troops"], "Troop HP Bars:", 0, "Setting for troop HP bars.", 0, [ (try_begin), # Ally (eq, "$g_hp_bar_enemy", 0), (eq, "$g_hp_bar_ally", 1), (assign, reg1, 1), (else_try), # Enemy (eq, "$g_hp_bar_enemy", 1), (eq, "$g_hp_bar_ally", 0), (assign, reg1, 2), (else_try), # Both (eq, "$g_hp_bar_enemy", 1), (eq, "$g_hp_bar_ally", 1), (assign, reg1, 3), (else_try), # None (assign, reg1, 0), (try_end), ], [ (try_begin), # Ally (eq, reg1, 1), (assign, "$g_hp_bar_enemy", 0), (assign, "$g_hp_bar_ally", 1), (else_try), # Enemy (eq, reg1, 2), (assign, "$g_hp_bar_enemy", 1), (assign, "$g_hp_bar_ally", 0), (else_try), # Both (eq, reg1, 3), (assign, "$g_hp_bar_enemy", 1), (assign, "$g_hp_bar_ally", 1), (else_try), # None (assign, "$g_hp_bar_enemy", 0), (assign, "$g_hp_bar_ally", 0), (try_end), ], ), ("minimap_setting", xgm_ov_numberbox, [3,81], "HP Bar Distance Limit:", 0, "Setting for the HP Bars.", 0, [ (assign, reg1, "$g_hp_bar_dis_limit"), ], [ (assign, "$g_hp_bar_dis_limit", reg1), ], ), ("camp_troop_ratio_bar", xgm_ov_checkbox, [], "Troop ratio bar:", 0, "Toggles troop ratio bar", 0, [(try_begin), (eq, "$g_troop_ratio_bar", 0), (assign, reg1, 0), (else_try), (eq, "$g_troop_ratio_bar", 1), (assign, reg1, 1), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_troop_ratio_bar", 0), (else_try), (eq, reg1, 1), (assign, "$g_troop_ratio_bar", 1), (try_end), ], ), ("camp_decapitation", xgm_ov_checkbox, [], "Decapitation:", 0, "Toggles Decapitation", 0, [(try_begin), (eq, "$g_decapitation_enabled", 0), (assign, reg1, 0), (else_try), (eq, "$g_decapitation_enabled", 1), (assign, reg1, 1), (try_end), ], [ (try_begin), (eq, reg1, 0), (assign, "$g_decapitation_enabled", 0), (else_try), (eq, reg1, 1), (assign, "$g_decapitation_enabled", 1), (try_end), ], ), ("horizontal_divide", xgm_ov_line, [], "", 0,"", 0,[],[],), ( "op_cheatmode", xgm_ov_checkbox , [], "Cheat mode:", 0, "This sets the in-game cheat mode", 0, [ # initialization block (set value in reg1) (assign, reg1, "$cheat_mode"), ], [ # update block (value is in reg1) (assign, "$cheat_mode", reg1), ], ), ] # mod_options # TODO: add option pages here # collation of all *_mod_options.py from active mods # import and merge related variables from all {active_mod}_mod_options.py for all active mods #try: # from modmerger_options import options, mods_active # from modmerger import mod_get_process_order, mod_is_active # from util_common import add_objects # modcomp_name = "mod_options" # var_list = ["mod_options",] #from modmerger import modmerge #modmerge(var_set) # mod_process_order = mod_get_process_order(modcomp_name) # vars_to_import= ["mod_options"] # for x in mod_process_order: # if(mod_is_active(x) and x <> "xgm_mod_options"): # must exclude this file since we are using this file as base # try: #mergefn_name = "modmerge_%s"%(modcomp_name) # target_module_name = "%s_%s"%(x,modcomp_name) # _temp = __import__( target_module_name , globals(), locals(), vars_to_import,-1) # logger.info("Merging objects for component \"%s\" from mod \"%s\"..."%(modcomp_name,x)) # # add_objects(mod_options, _temp.mod_options) # import from target module. # # # TODO: collect option pages # except ImportError: # errstring = "Failed importing for component \"%s\" for mod \"%s\"." % (modcomp_name, x) # logger.debug(errstring) # else: # errstring = "Mod \"%s\" not active for Component \"%s\"." % (x, modcomp_name) # logger.debug(errstring) #except: # raise # collation end # At this point, mod_options will contain the list of all mod_options specified. ## utility functions from util_wrappers import * # helper wrapper to access mod_options class ModOptionWrapper(BaseWrapper): def __init__(self, _data): # verify _data if( not isinstance(_data,TupleType) or (len(_data)<2)): raise ValueError("ItemSetWrapper: Wrapped must be a tuple.") BaseWrapper.__init__(self,_data) def GetId(self): return self.data[0] def GetType(self): return self.data[1] def GetParameters(self): if len(self.data) >2: return self.data[2] return None def GetParameter(self, i): if len(self.data) >2: return self.data[2][i] return None def GetTextLabel(self): if len(self.data) >3: return self.data[3] return None def GetTextLabelFlags(self): if len(self.data) >4: return self.data[4] return None def GetDescription(self): if len(self.data) >5: return self.data[5] return None def GetDescriptionFlags(self): if len(self.data) >6: return self.data[6] return None def GetInitializeBlock(self): if len(self.data) >7: return OpBlockWrapper(self.data[7]) return None def GetUpdateBlock(self): if len(self.data) >8: return OpBlockWrapper(self.data[8]) return None def GetHeight(self): if self.GetType() == xgm_ov_line: return xgm_mod_options_line_height elif self.GetType() in [xgm_ov_checkbox, xgm_ov_numberbox, xgm_ov_combolabel]: return xgm_mod_options_property_height return 0 # no other types supported ## class ModOptionWrapper # this function will compute the total height required for a list of mod_options. def mod_options_get_total_height(_mod_options = mod_options): height = 0 for x in _mod_options: aModOption = ModOptionWrapper(x) height += aModOption.GetHeight() # for x in _mod_options: return height; ## mod_options_get_total_height
0
0
0
1,597
0
212
0
86
244
8abd70df157d14db679e659f636c0cd688861cb3
6,182
py
Python
examples/pde/utilities3.py
mkhodak/relax
f6b5a318d74fc1209ba67ec95d2118698194f9c5
[ "MIT" ]
11
2021-10-01T17:23:18.000Z
2022-03-31T22:10:36.000Z
examples/pde/utilities3.py
mkhodak/relax
f6b5a318d74fc1209ba67ec95d2118698194f9c5
[ "MIT" ]
null
null
null
examples/pde/utilities3.py
mkhodak/relax
f6b5a318d74fc1209ba67ec95d2118698194f9c5
[ "MIT" ]
null
null
null
import torch import torch.nn as nn ################################################# # # Utilities # ################################################# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # reading data # normalization, pointwise gaussian # normalization, Gaussian # normalization, scaling by range #loss function with rel/abs Lp loss # A simple feedforward neural network
26.761905
113
0.550793
import torch import numpy as np import scipy.io import h5py import torch.nn as nn ################################################# # # Utilities # ################################################# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # reading data class MatReader(object): def __init__(self, file_path, to_torch=True, to_cuda=False, to_float=True): super(MatReader, self).__init__() self.to_torch = to_torch self.to_cuda = to_cuda self.to_float = to_float self.file_path = file_path self.data = None self.old_mat = None self._load_file() def _load_file(self): try: self.data = scipy.io.loadmat(self.file_path) self.old_mat = True except ValueError: self.data = h5py.File(self.file_path) self.old_mat = False def load_file(self, file_path): self.file_path = file_path self._load_file() def read_field(self, field): x = self.data[field] if not self.old_mat: x = x[()] x = np.transpose(x, axes=range(len(x.shape) - 1, -1, -1)) if self.to_float: x = x.astype(np.float32) if self.to_torch: x = torch.from_numpy(x) if self.to_cuda: x = x.cuda() return x def set_cuda(self, to_cuda): self.to_cuda = to_cuda def set_torch(self, to_torch): self.to_torch = to_torch def set_float(self, to_float): self.to_float = to_float # normalization, pointwise gaussian class UnitGaussianNormalizer(object): def __init__(self, x, eps=0.00001): super(UnitGaussianNormalizer, self).__init__() # x could be in shape of ntrain*n or ntrain*T*n or ntrain*n*T self.mean = torch.mean(x, 0) self.std = torch.std(x, 0) self.eps = eps def encode(self, x): x = (x - self.mean) / (self.std + self.eps) return x def decode(self, x, sample_idx=None): if sample_idx is None: std = self.std + self.eps # n mean = self.mean else: if len(self.mean.shape) == len(sample_idx[0].shape): std = self.std[sample_idx] + self.eps # batch*n mean = self.mean[sample_idx] if len(self.mean.shape) > len(sample_idx[0].shape): std = self.std[:,sample_idx]+ self.eps # T*batch*n mean = self.mean[:,sample_idx] # x is in shape of batch*n or T*batch*n x = (x * std) + mean return x def cuda(self): self.mean = self.mean.cuda() self.std = self.std.cuda() def cpu(self): self.mean = self.mean.cpu() self.std = self.std.cpu() # normalization, Gaussian class GaussianNormalizer(object): def __init__(self, x, eps=0.00001): super(GaussianNormalizer, self).__init__() self.mean = torch.mean(x) self.std = torch.std(x) self.eps = eps def encode(self, x): x = (x - self.mean) / (self.std + self.eps) return x def decode(self, x, sample_idx=None): x = (x * (self.std + self.eps)) + self.mean return x def cuda(self): self.mean = self.mean.cuda() self.std = self.std.cuda() def cpu(self): self.mean = self.mean.cpu() self.std = self.std.cpu() # normalization, scaling by range class RangeNormalizer(object): def __init__(self, x, low=0.0, high=1.0): super(RangeNormalizer, self).__init__() mymin = torch.min(x, 0)[0].view(-1) mymax = torch.max(x, 0)[0].view(-1) self.a = (high - low)/(mymax - mymin) self.b = -self.a*mymax + high def encode(self, x): s = x.size() x = x.view(s[0], -1) x = self.a*x + self.b x = x.view(s) return x def decode(self, x): s = x.size() x = x.view(s[0], -1) x = (x - self.b)/self.a x = x.view(s) return x #loss function with rel/abs Lp loss class LpLoss(object): def __init__(self, d=2, p=2, size_average=True, reduction=True): super(LpLoss, self).__init__() #Dimension and Lp-norm type are postive assert d > 0 and p > 0 self.d = d self.p = p self.reduction = reduction self.size_average = size_average def abs(self, x, y): num_examples = x.size()[0] #Assume uniform mesh h = 1.0 / (x.size()[1] - 1.0) all_norms = (h**(self.d/self.p))*torch.norm(x.view(num_examples,-1) - y.view(num_examples,-1), self.p, 1) if self.reduction: if self.size_average: return torch.mean(all_norms) else: return torch.sum(all_norms) return all_norms def rel(self, x, y): num_examples = x.size()[0] diff_norms = torch.norm(x.reshape(num_examples,-1) - y.reshape(num_examples,-1), self.p, 1) y_norms = torch.norm(y.reshape(num_examples,-1), self.p, 1) if self.reduction: if self.size_average: return torch.mean(diff_norms/y_norms) else: return torch.sum(diff_norms/y_norms) return diff_norms/y_norms def __call__(self, x, y): return self.rel(x, y) # A simple feedforward neural network class DenseNet(torch.nn.Module): def __init__(self, layers, nonlinearity, out_nonlinearity=None, normalize=False): super(DenseNet, self).__init__() self.n_layers = len(layers) - 1 assert self.n_layers >= 1 self.layers = nn.ModuleList() for j in range(self.n_layers): self.layers.append(nn.Linear(layers[j], layers[j+1])) if j != self.n_layers - 1: if normalize: self.layers.append(nn.BatchNorm1d(layers[j+1])) self.layers.append(nonlinearity()) if out_nonlinearity is not None: self.layers.append(out_nonlinearity()) def forward(self, x): for _, l in enumerate(self.layers): x = l(x) return x
0
0
0
5,588
0
0
0
-19
198
15b531407df3e093f666b046edd03aed1f14e76a
4,874
py
Python
book_search/models.py
drogers141/book-search
0745eb3b25023a44da4c6e7fc4d96de086549f04
[ "MIT" ]
null
null
null
book_search/models.py
drogers141/book-search
0745eb3b25023a44da4c6e7fc4d96de086549f04
[ "MIT" ]
null
null
null
book_search/models.py
drogers141/book-search
0745eb3b25023a44da4c6e7fc4d96de086549f04
[ "MIT" ]
null
null
null
import logging logger = logging.getLogger(__name__) def extract_author_and_title(metadata: dict) -> (str, str): """Try to get the author and title from the metadata. Return empty strings if not found.""" author, title = '', '' for key in ('Author', 'author', 'dc:creator', 'creator', 'meta:author'): if key in metadata: author = metadata[key] break for key in ('Title', 'title', 'dc:title', 'meta:title'): if key in metadata: title = metadata[key] break return author, title
38.078125
115
0.649569
from io import StringIO import re from pathlib import Path import logging from django.db import models from django.conf import settings from bs4 import BeautifulSoup from tika import parser logger = logging.getLogger(__name__) class TikaParseError(RuntimeError): """Raised when the conversion of a document into html by Tika fails.""" def extract_author_and_title(metadata: dict) -> (str, str): """Try to get the author and title from the metadata. Return empty strings if not found.""" author, title = '', '' for key in ('Author', 'author', 'dc:creator', 'creator', 'meta:author'): if key in metadata: author = metadata[key] break for key in ('Title', 'title', 'dc:title', 'meta:title'): if key in metadata: title = metadata[key] break return author, title class ParentDocument(models.Model): """Each book/file is represented here. """ # source document's full path filepath = models.CharField(unique=True, max_length=1024) # try to get the author and title from the document metadata # but it's not always there author = models.CharField(max_length=512, blank=True, default='') title = models.CharField(max_length=512, blank=True, default='') def __str__(self): return f"id: {self.id} {Path(self.filepath).name}" def convert_to_html_child_pages(self, clean=True): """Convert book/file at filepath to html pages. This constructs a ChildPage object for each page of the document. Pages are determined by Tika's parsing. Populates author and title if available in the metadata. :param clean - if True clean non-ascii whitespace """ try_count, successful_parse = 0, False while try_count < settings.TIKA_PARSE_MAX_RETRY: if settings.TIKA_CONFIG_FILE: data = parser.from_file(str(self.filepath), xmlContent=True, config_path=settings.TIKA_CONFIG_FILE) else: data = parser.from_file(str(self.filepath), xmlContent=True) if data['status'] == 200: successful_parse = True break if not successful_parse: logger.error('Failed to parse file: %s', self.filepath) author, title = extract_author_and_title(data['metadata']) self.author, self.title = author, title self.save() soup = BeautifulSoup(data['content'], features='lxml') # convert all pages successfully before creating children pages = [] for i, content in enumerate(soup.find_all('div', attrs={'class': 'page'})): _buffer = StringIO() _buffer.write(str(content)) parsed_content = parser.from_buffer(_buffer.getvalue(), xmlContent=True) text = parsed_content['content'].strip() if clean: text = re.sub(r' +\n', '\n', parsed_content['content'].strip().replace('\xa0', ' ')) # remove the html head from the doc so it doesn't cause any garbage in ES highlights page_soup = BeautifulSoup(text, features='lxml') page_soup.head.extract() pages.append(page_soup.prettify()) for i, html in enumerate(pages): child = ChildPage(parent=self, page_number=i+1, html_content=html, author=self.author, title=self.title, parent_doc_id=self.id) if i == len(pages) - 1: child.is_last_page = True child.save() class ChildPage(models.Model): """Each page of a book/file is represented by a ChildPage. With the initial implementation, this model will also have the html_content field filled with the full text of the page. This is very inefficient space-wise as you are storing the full text in the database as well as in Elasticsearch. But it allows reading the text online and being able to navigate directly from the search to the location in the text. The reason that it is mandatory now is due to using django-elasticsearch-dsl. In the future, we can get rid of django-es-dsl and then allow an option to not store the full text to save space. """ parent = models.ForeignKey(ParentDocument, on_delete=models.CASCADE) page_number = models.IntegerField() html_content = models.TextField() is_last_page = models.BooleanField(default=False) # need to duplicate keys from parent so django-elasticsearch-dsl can access them author = models.CharField(max_length=512) title = models.CharField(max_length=512) parent_doc_id = models.IntegerField() def url(self): return f"/{self.parent_doc_id}/{self.page_number}/" def __str__(self): return (f"{self.author} - {self.title} - page {self.page_number}")
0
0
0
4,060
0
0
0
21
224
7b9c55eaa5d05bc09b14fe1a2ce8e97213b9c0ef
2,284
py
Python
bminf/core/context.py
AdamBear/BMInf
8e650dc30e3ed9d7d628153b0a4dbd76d97ea948
[ "Apache-2.0" ]
206
2021-09-23T08:55:29.000Z
2022-03-26T13:15:41.000Z
bminf/core/context.py
AdamBear/BMInf
8e650dc30e3ed9d7d628153b0a4dbd76d97ea948
[ "Apache-2.0" ]
24
2021-09-24T05:54:39.000Z
2022-03-25T01:44:49.000Z
bminf/core/context.py
AdamBear/BMInf
8e650dc30e3ed9d7d628153b0a4dbd76d97ea948
[ "Apache-2.0" ]
34
2021-09-26T02:17:29.000Z
2022-03-28T07:01:54.000Z
import logging logger = logging.getLogger(__name__)
30.453333
91
0.612522
from typing import List, Tuple, Type from .tensor import Tensor from .device import Device from .allocator import Allocator from cpm_kernels.library import cudart import numpy as np import logging logger = logging.getLogger(__name__) class Context: def __init__(self, device_idx : List[int], allocators : List[Allocator] ) -> None: assert len(device_idx) > 0, "device_idx must be a non-empty list" assert len(device_idx) == len(allocators) self.__devices = [ Device(idx) for idx in device_idx ] self.__calc_streams = {} for d in self.__devices: with d: self.__calc_streams[d.idx] = cudart.cudaStreamCreate().value self.__allocators = { device_idx : allocator for device_idx, allocator in zip(device_idx, allocators) } def allocate(self, shape : int, dtype : np.dtype) -> Tensor: device = Device(cudart.cudaGetDevice()) allocator = self.__allocators[device.idx] dtype = np.dtype(dtype) itemsize = dtype.itemsize nbytes = int(np.prod(shape) * itemsize) mem = allocator.allocate(nbytes, self.__calc_streams[device.idx]) return Tensor(mem, shape, dtype) def free(self, tensor : Tensor): allocator = self.__allocators[tensor.device_id] tensor._released = True allocator.free(tensor._memory) def device(self, device_idx : int) -> Device: return self.__devices[device_idx] @property def current_stream(self): device_idx = cudart.cudaGetDevice() return self.__calc_streams[device_idx] def memory_stats(self): ret = {} for device_idx, allocator in self.__allocators.items(): ret[device_idx] = allocator.memory_stats() return ret def free_all(self): for _, allocator in self.__allocators.items(): allocator.free_all() def __del__(self): try: self.free_all() for stream in self.__calc_streams.values(): cudart.cudaStreamDestroy(stream) except Exception: # logger.exception("Exception in Context.__del__") pass
0
109
0
1,919
0
0
0
50
155
d79f6521598d0b35ad0abac23c970dfac3a65db6
3,999
py
Python
code/python_scripts/dlinked_list.py
lukaschoebel/LUMOS
5d084e487d937957896a58ef3ab719f86074fa9a
[ "MIT" ]
null
null
null
code/python_scripts/dlinked_list.py
lukaschoebel/LUMOS
5d084e487d937957896a58ef3ab719f86074fa9a
[ "MIT" ]
null
null
null
code/python_scripts/dlinked_list.py
lukaschoebel/LUMOS
5d084e487d937957896a58ef3ab719f86074fa9a
[ "MIT" ]
null
null
null
if __name__ == "__main__": dlinkedList = DoublyLinkedList(10) dlinkedList.append(20) dlinkedList.append(30) dlinkedList.prepend(-5) dlinkedList.prepend(-8) dlinkedList.insert(value=12, index=2) dlinkedList.print_list() dlinkedList.remove(index=5) dlinkedList.insert(value=30, index=4) dlinkedList.append(55) dlinkedList.print_list() dlinkedList.print_head() dlinkedList.print_tail()
26.483444
85
0.523631
class Node: def __init__(self, value): self.value = value self.prev = None self.next = None class DoublyLinkedList: def __init__(self, value): self.head = Node(value) self.tail = self.head self.length = 1 def append(self, value): ''' Adds a value to the end of a doubly linked list type: value ''' self.length += 1 postNode = Node(value) # Wire the postNode self.tail.next = postNode postNode.prev = self.tail # Sets new tail node self.tail = postNode def prepend(self, value): ''' Adds a value to the beginning of a doubly linked list type: value ''' self.length += 1 preNode = Node(value) # Wire the preNode preNode.next = self.head self.head.prev = preNode # Sets new head node self.head = preNode def insert(self, value, index): ''' Inserts a value in the DLL at a provided index position type: value type: index: str ''' if not index in range(self.length): print("ERROR! This index does not exist!") return elif index == 0: self.prepend(value) else: self.length += 1 insertNode = Node(value) currentNode = self.head for position in range(self.length - 1): if position == index - 1: insertNode.next = currentNode.next currentNode.next.prev = insertNode insertNode.prev = currentNode currentNode.next = insertNode break currentNode = currentNode.next def remove(self, index): ''' Removes a node from a given index type: index: int ''' if not index in range(self.length + 1): print("ERROR! This index does not exist!") return if index == 0: # Remove head of the DLL self.head = self.head.next self.head.prev = None elif index == self.length - 1: # Remove tail of the DLL self.tail = self.tail.prev self.tail.next = None else: # Introduce a temporary node for # traversing through the list currentNode = self.head for position in range(self.length - 1): if position == index: currentNode.prev.next = currentNode.next currentNode.next.prev = currentNode.prev break currentNode = currentNode.next # Decrease length of the list self.length -= 1 def print_list(self): ''' Print the linked list ''' currentNode = self.head print(f"<<<<<<< {self.length} >>>>>>>") for index in range(self.length): nextValue = currentNode.next.value if currentNode.next else 'None' print(f"{index}: {currentNode.value} <-> {nextValue}") currentNode = currentNode.next print(f"<<<<<<<<.>>>>>>>>") def print_head(self): print(f">> head: {self.head.value}") if self.head else print(">> head: None") def print_tail(self): print(f">> tail: {self.tail.value}") if self.tail else print(">> tail: None") if __name__ == "__main__": dlinkedList = DoublyLinkedList(10) dlinkedList.append(20) dlinkedList.append(30) dlinkedList.prepend(-5) dlinkedList.prepend(-8) dlinkedList.insert(value=12, index=2) dlinkedList.print_list() dlinkedList.remove(index=5) dlinkedList.insert(value=30, index=4) dlinkedList.append(55) dlinkedList.print_list() dlinkedList.print_head() dlinkedList.print_tail()
0
0
0
3,502
0
0
0
0
45
7893b475e4bb1bb6f28c83e8b1af171635285c0f
843
py
Python
setup.py
BOLD-lab/abbreviator
aca379362f04033c7cd1c62ca50b68280f3799c7
[ "MIT" ]
null
null
null
setup.py
BOLD-lab/abbreviator
aca379362f04033c7cd1c62ca50b68280f3799c7
[ "MIT" ]
null
null
null
setup.py
BOLD-lab/abbreviator
aca379362f04033c7cd1c62ca50b68280f3799c7
[ "MIT" ]
null
null
null
import setuptools import os with open("README.md", "r") as fh: long_description = fh.read() if os.environ.get('CI_COMMIT_TAG'): version = os.environ['CI_COMMIT_TAG'] else: version = "0.0.4" setuptools.setup( name="abbreviator", version=version, author="Stephanie Wagenaar", author_email="[email protected]", description="Abbreviate Long Sentences/Names based on hyphenation", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/BOLD-lab/abbreviator", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', install_requires=['pyphen>=0.11.0'] )
28.1
71
0.679715
import setuptools import os with open("README.md", "r") as fh: long_description = fh.read() if os.environ.get('CI_COMMIT_TAG'): version = os.environ['CI_COMMIT_TAG'] else: version = "0.0.4" setuptools.setup( name="abbreviator", version=version, author="Stephanie Wagenaar", author_email="[email protected]", description="Abbreviate Long Sentences/Names based on hyphenation", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/BOLD-lab/abbreviator", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', install_requires=['pyphen>=0.11.0'] )
0
0
0
0
0
0
0
0
0
9c86682e5fb8a773190f40daabb31d80b79ab5ec
750
py
Python
week3/array_partition1.py
ravichalla/wallbreaker
0d587f12c60df5e4bca47f9183484a69d284d1f5
[ "MIT" ]
null
null
null
week3/array_partition1.py
ravichalla/wallbreaker
0d587f12c60df5e4bca47f9183484a69d284d1f5
[ "MIT" ]
null
null
null
week3/array_partition1.py
ravichalla/wallbreaker
0d587f12c60df5e4bca47f9183484a69d284d1f5
[ "MIT" ]
null
null
null
''' QUESTION: 561. Array Partition I Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1, b1), (a2, b2), ..., (an, bn) which makes sum of min(ai, bi) for all i from 1 to n as large as possible. Example 1: Input: [1,4,3,2] Output: 4 Explanation: n is 2, and the maximum sum of pairs is 4 = min(1, 2) + min(3, 4). Note: n is a positive integer, which is in the range of [1, 10000]. All the integers in the array will be in the range of [-10000, 10000]. ''' ''' Ideas/thoughts: sort and return even nums '''
25.862069
205
0.64
''' QUESTION: 561. Array Partition I Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1, b1), (a2, b2), ..., (an, bn) which makes sum of min(ai, bi) for all i from 1 to n as large as possible. Example 1: Input: [1,4,3,2] Output: 4 Explanation: n is 2, and the maximum sum of pairs is 4 = min(1, 2) + min(3, 4). Note: n is a positive integer, which is in the range of [1, 10000]. All the integers in the array will be in the range of [-10000, 10000]. ''' class Solution(object): def arrayPairSum(self, nums): total=0 nums= sorted(nums) for i in range (0,len(nums),2): total+= nums[i] return total ''' Ideas/thoughts: sort and return even nums '''
0
0
0
169
0
0
0
0
23
96c66bbd32ce6b5cd183eb7717b9022db143812a
4,881
py
Python
cisco_dnac_mac_lookup_runner.py
sarar0sa/Cisco_Mac_Lookup
b657b9ed0ecc60df008e02b6e008b09914cf07bf
[ "Apache-2.0" ]
null
null
null
cisco_dnac_mac_lookup_runner.py
sarar0sa/Cisco_Mac_Lookup
b657b9ed0ecc60df008e02b6e008b09914cf07bf
[ "Apache-2.0" ]
null
null
null
cisco_dnac_mac_lookup_runner.py
sarar0sa/Cisco_Mac_Lookup
b657b9ed0ecc60df008e02b6e008b09914cf07bf
[ "Apache-2.0" ]
null
null
null
if __name__ == "__main__": # Cool banner ofc print(""" MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMWMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMWKKNMMMMMMMMMMMMMMMMMMMMWWWMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMXl,co0NWMMMMMMMMMMMMMMXxc:xWMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMNd''',;cdkKNNNNNNWNKko,...oWMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMO;''.....';ccllc:,. ...'kMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMWXOxdllllldxOXWMMMMMMMWNd'........ .... ..lNMMMMMMMMMMMMMMMMMMM MMMMMMMMMN0o:,;;:clllc:;,';oONMMMMMWd'',,,'. ..... .dWMMMMMMMMMMMMMMMMMMM MMMMMWWWO:,cdOO0K0O0K0K0klc:';dXMMMXl,'',;;. .'''''.lXMMMMMMMMMMMMMMMMMMM MMMMMMXo;oKWM0dkkdddoo0xddkW0o',kWM0c...,lol;. . .ccoc..;cdXMMMMMMMMMMMMMMMMMMM MMMMMXo:0MMMMWK0KXXKKKKX00NMMWK:'dWO,....';;' .. .;::,'',,lKMMMMMMMMMMMMMMMMMMM MMMMWxc0MMMMWW0kOxxkKkk0OXWWWMMNl'kO:'........,:'........,,cKMMMMMMMMMMMMMMMMMMM MMMMNdxWMMMMMWOxkdddxxdxkKNWWWWMK;cXd'........,,'''.....',,:kXMMMMMMMMMMMMMMMMMM MMMMXokMMMMMMMNXXXNNXNX0KXWWWWWWNlcXXd,.'......'..'.','.'',;:oKWMMMMMMMMMMMMMMMM MMMMXoxWMMMMMMM0olxkoxxkXWMMMMMMNloNWNd... ..................:0WMMMMMMMMMMMMMMM MMMMNxcOWMMMMMMKkkkOOkOOXWMMMMMMO:kMMNl.. .. .l0WMMMMMMMMMMMMMM MMMMM0:;kNWXXNKO0K0000KKXK0OONWKlcOWNd' .,oKWMMMMMMMMMMMMM MMMMMWO;'lOxxOddooddlcdxxxlox0Oolo0W0,. .,;oKMMMMMMMMMMMMM MMMMMMWKc..';dkOKX0KXXXK00Oxdl:;,,oOo. .'',oKWMMMMMMMMMMM MMMMMMMMWOl,..';coddxxdol:,..,;:;..':;.. .. ..''';dKWWMMMMMMMM MMMMMMMMMMMN0dl:;''.'',:cokO0KNWW0l..''. ... ..,,'':xXWMMMMMMM MMMMMMMMMMMMMMMWWNXKKXXWMMMMMMMMMMNl... . ..,'',,:xNWMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM0;.. .. .,;::,'cKMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMWx' .,;'. ....... ..','.lXMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMK:. . .',. .. .. ....dWMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMk. .. ...cXMMM """) print("Starting script..") CiscoDnacMacLookupRunner().main()
59.52439
110
0.562795
from time import sleep import csv from datetime import datetime import mac_vendor_lookup import cisco_service class CiscoDnacMacLookupRunner(): headers = {'Content-Type': 'application/json'} def __init__(self): self.cisco = cisco_service.CiscoService() self.mac_lookup = mac_vendor_lookup.MacLookup() self.today = datetime.now() self.filename = "mac_address_lookup_{}T{}Z.csv".format(str(self.today.date()), str(self.today.time())) def main(self): print("Obtaining token..") token = self.cisco.get_dnac_jwt_token() self.headers["X-Auth-Token"] = token print("Fetching network devices..") devices = self.cisco.get_network_devices(self.headers) with open(self.filename, 'w') as csvfile: print("MAC lookup as begun. This may take a while..") print("Estimated run time: {} min".format(int(363/5))) csvwriter = csv.writer(csvfile) counter_rate_limit = 0 for item in devices: if(counter_rate_limit == 5): sleep(60) counter_rate_limit = 0 details = self.cisco.get_device_enrichment_details(self.headers, item['macAddress']) counter_rate_limit += 1 if 'links' in details['deviceDetails']['neighborTopology'][0]: for detail in details['deviceDetails']['neighborTopology'][0]['links']: if 'interfaceDetails' in detail and detail['id'] == "CLIENTS": for client in detail['interfaceDetails']: mac_address = client['clientMacAddress'] manufacturer = self.mac_lookup.lookup_mac_vendor(mac_address) csvwriter.writerow([mac_address,manufacturer]) print("Ending script..") print("See the result in {}".format(self.filename)) if __name__ == "__main__": # Cool banner ofc print(""" ╔═╗╦╔═╗╔═╗╔═╗ ╔╦╗╔╗╔╔═╗╔═╗ ╔╦╗╔═╗╔═╗ ╦ ╔═╗╔═╗╦╔═╦ ╦╔═╗ ║ ║╚═╗║ ║ ║ ║║║║║╠═╣║ ║║║╠═╣║ ║ ║ ║║ ║╠╩╗║ ║╠═╝ ╚═╝╩╚═╝╚═╝╚═╝ ═╩╝╝╚╝╩ ╩╚═╝ ╩ ╩╩ ╩╚═╝ ╩═╝╚═╝╚═╝╩ ╩╚═╝╩ MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMWMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMWKKNMMMMMMMMMMMMMMMMMMMMWWWMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMXl,co0NWMMMMMMMMMMMMMMXxc:xWMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMNd''',;cdkKNNNNNNWNKko,...oWMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMO;''.....';ccllc:,. ...'kMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMWXOxdllllldxOXWMMMMMMMWNd'........ .... ..lNMMMMMMMMMMMMMMMMMMM MMMMMMMMMN0o:,;;:clllc:;,';oONMMMMMWd'',,,'. ..... .dWMMMMMMMMMMMMMMMMMMM MMMMMWWWO:,cdOO0K0O0K0K0klc:';dXMMMXl,'',;;. .'''''.lXMMMMMMMMMMMMMMMMMMM MMMMMMXo;oKWM0dkkdddoo0xddkW0o',kWM0c...,lol;. . .ccoc..;cdXMMMMMMMMMMMMMMMMMMM MMMMMXo:0MMMMWK0KXXKKKKX00NMMWK:'dWO,....';;' .. .;::,'',,lKMMMMMMMMMMMMMMMMMMM MMMMWxc0MMMMWW0kOxxkKkk0OXWWWMMNl'kO:'........,:'........,,cKMMMMMMMMMMMMMMMMMMM MMMMNdxWMMMMMWOxkdddxxdxkKNWWWWMK;cXd'........,,'''.....',,:kXMMMMMMMMMMMMMMMMMM MMMMXokMMMMMMMNXXXNNXNX0KXWWWWWWNlcXXd,.'......'..'.','.'',;:oKWMMMMMMMMMMMMMMMM MMMMXoxWMMMMMMM0olxkoxxkXWMMMMMMNloNWNd... ..................:0WMMMMMMMMMMMMMMM MMMMNxcOWMMMMMMKkkkOOkOOXWMMMMMMO:kMMNl.. .. .l0WMMMMMMMMMMMMMM MMMMM0:;kNWXXNKO0K0000KKXK0OONWKlcOWNd' .,oKWMMMMMMMMMMMMM MMMMMWO;'lOxxOddooddlcdxxxlox0Oolo0W0,. .,;oKMMMMMMMMMMMMM MMMMMMWKc..';dkOKX0KXXXK00Oxdl:;,,oOo. .'',oKWMMMMMMMMMMM MMMMMMMMWOl,..';coddxxdol:,..,;:;..':;.. .. ..''';dKWWMMMMMMMM MMMMMMMMMMMN0dl:;''.'',:cokO0KNWW0l..''. ... ..,,'':xXWMMMMMMM MMMMMMMMMMMMMMMWWNXKKXXWMMMMMMMMMMNl... . ..,'',,:xNWMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM0;.. .. .,;::,'cKMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMWx' .,;'. ....... ..','.lXMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMK:. . .',. .. .. ....dWMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMk. .. ...cXMMM """) print("Starting script..") CiscoDnacMacLookupRunner().main()
396
0
0
1,837
0
0
0
0
133
5c0946952b71037bb1f97ce65af023f47196a25c
35,474
py
Python
files/runs_small/cores_2/ocean.cont/power.py
ST4NSB/sniper-simulator-predictions
1f0fe2a10fda55fceea053464ea202bfe2effafc
[ "MIT" ]
1
2021-03-08T03:39:23.000Z
2021-03-08T03:39:23.000Z
files/runs_small/cores_2/ocean.cont/power.py
ST4NSB/sniper-simulator-predictions
1f0fe2a10fda55fceea053464ea202bfe2effafc
[ "MIT" ]
null
null
null
files/runs_small/cores_2/ocean.cont/power.py
ST4NSB/sniper-simulator-predictions
1f0fe2a10fda55fceea053464ea202bfe2effafc
[ "MIT" ]
null
null
null
power = {'BUSES': {'Area': 1.08752, 'Bus/Area': 1.08752, 'Bus/Gate Leakage': 0.00541455, 'Bus/Peak Dynamic': 0.0, 'Bus/Runtime Dynamic': 0.0, 'Bus/Subthreshold Leakage': 0.0564625, 'Bus/Subthreshold Leakage with power gating': 0.0211734, 'Gate Leakage': 0.00541455, 'Peak Dynamic': 0.0, 'Runtime Dynamic': 0.0, 'Subthreshold Leakage': 0.0564625, 'Subthreshold Leakage with power gating': 0.0211734}, 'Core': [{'Area': 32.6082, 'Execution Unit/Area': 8.2042, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.0955308, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.277723, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.852868, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.679223, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.122718, 'Execution Unit/Instruction Scheduler/Area': 2.17927, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.328073, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.00115349, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.20978, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.337297, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.017004, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00962066, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00730101, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 1.00996, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00529112, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 2.07911, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.584077, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0800117, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0455351, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 4.84781, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.841232, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.000856399, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.55892, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.377493, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.0178624, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00897339, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 1.29887, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.114878, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.0641291, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.202647, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.319665, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 6.59121, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.161125, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.0122273, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.110483, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0904283, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.271608, 'Execution Unit/Register Files/Runtime Dynamic': 0.102656, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0442632, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00607074, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.293143, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.835198, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.0920413, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0345155, 'Execution Unit/Runtime Dynamic': 3.51333, 'Execution Unit/Subthreshold Leakage': 1.83518, 'Execution Unit/Subthreshold Leakage with power gating': 0.709678, 'Gate Leakage': 0.372997, 'Instruction Fetch Unit/Area': 5.86007, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.000781008, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.000781008, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.000675581, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000258971, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.00129901, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00353661, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.0076553, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0590479, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0869311, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 5.52956, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.213019, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.295257, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 8.02054, 'Instruction Fetch Unit/Runtime Dynamic': 0.606399, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932587, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.408542, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.152811, 'L2/Runtime Dynamic': 0.0364529, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80969, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 3.72689, 'Load Store Unit/Data Cache/Runtime Dynamic': 1.24846, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0351387, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.08055, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0805499, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 4.10881, 'Load Store Unit/Runtime Dynamic': 1.72626, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.198623, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.397245, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591622, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283406, 'Memory Management Unit/Area': 0.434579, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0704918, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0727723, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00813591, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.343808, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0347031, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.624173, 'Memory Management Unit/Runtime Dynamic': 0.107475, 'Memory Management Unit/Subthreshold Leakage': 0.0769113, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0399462, 'Peak Dynamic': 24.0592, 'Renaming Unit/Area': 0.369768, 'Renaming Unit/FP Front End RAT/Area': 0.168486, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00489731, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 3.33511, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.562129, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0437281, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.024925, 'Renaming Unit/Free List/Area': 0.0414755, 'Renaming Unit/Free List/Gate Leakage': 4.15911e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0401324, 'Renaming Unit/Free List/Runtime Dynamic': 0.0240118, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000670426, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000377987, 'Renaming Unit/Gate Leakage': 0.00863632, 'Renaming Unit/Int Front End RAT/Area': 0.114751, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.00038343, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.86945, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.163866, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00611897, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00348781, 'Renaming Unit/Peak Dynamic': 4.56169, 'Renaming Unit/Runtime Dynamic': 0.750006, 'Renaming Unit/Subthreshold Leakage': 0.070483, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0362779, 'Runtime Dynamic': 6.73993, 'Subthreshold Leakage': 6.21877, 'Subthreshold Leakage with power gating': 2.58311}, {'Area': 32.6082, 'Execution Unit/Area': 8.2042, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.0955837, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.277764, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.853885, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.679669, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.122718, 'Execution Unit/Instruction Scheduler/Area': 2.17927, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.328073, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.00115349, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.20978, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.337724, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.017004, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00962066, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00730101, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 1.00996, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00529112, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 2.07911, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.584816, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0800117, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0455351, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 4.84781, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.841232, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.000856399, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.55892, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.377927, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.0178624, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00897339, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 1.30047, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.114878, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.0641291, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.202914, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.319906, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 6.59314, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.161317, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.0122428, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.110585, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0905428, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.271902, 'Execution Unit/Register Files/Runtime Dynamic': 0.102786, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0442632, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00607074, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.293405, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.836102, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.0920413, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0345155, 'Execution Unit/Runtime Dynamic': 3.5167, 'Execution Unit/Subthreshold Leakage': 1.83518, 'Execution Unit/Subthreshold Leakage with power gating': 0.709678, 'Gate Leakage': 0.372997, 'Instruction Fetch Unit/Area': 5.86007, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.000782126, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.000782126, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.000676533, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000259327, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.00130065, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00354144, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.0076668, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0590479, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0870411, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 5.53656, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.212864, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.295631, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 8.02789, 'Instruction Fetch Unit/Runtime Dynamic': 0.606744, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932587, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.408542, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.152816, 'L2/Runtime Dynamic': 0.036542, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80969, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 3.73104, 'Load Store Unit/Data Cache/Runtime Dynamic': 1.25059, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0351387, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0806842, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0806842, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 4.1136, 'Load Store Unit/Runtime Dynamic': 1.72918, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.198953, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.397907, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591622, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283406, 'Memory Management Unit/Area': 0.434579, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0706092, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0728902, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00813591, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.344243, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0346814, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.624811, 'Memory Management Unit/Runtime Dynamic': 0.107572, 'Memory Management Unit/Subthreshold Leakage': 0.0769113, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0399462, 'Peak Dynamic': 24.0739, 'Renaming Unit/Area': 0.369768, 'Renaming Unit/FP Front End RAT/Area': 0.168486, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00489731, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 3.33511, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.562798, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0437281, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.024925, 'Renaming Unit/Free List/Area': 0.0414755, 'Renaming Unit/Free List/Gate Leakage': 4.15911e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0401324, 'Renaming Unit/Free List/Runtime Dynamic': 0.0240417, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000670426, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000377987, 'Renaming Unit/Gate Leakage': 0.00863632, 'Renaming Unit/Int Front End RAT/Area': 0.114751, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.00038343, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.86945, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.164074, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00611897, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00348781, 'Renaming Unit/Peak Dynamic': 4.56169, 'Renaming Unit/Runtime Dynamic': 0.750914, 'Renaming Unit/Subthreshold Leakage': 0.070483, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0362779, 'Runtime Dynamic': 6.74765, 'Subthreshold Leakage': 6.21877, 'Subthreshold Leakage with power gating': 2.58311}], 'DRAM': {'Area': 0, 'Gate Leakage': 0, 'Peak Dynamic': 3.72117540729286, 'Runtime Dynamic': 3.72117540729286, 'Subthreshold Leakage': 4.252, 'Subthreshold Leakage with power gating': 4.252}, 'L3': [{'Area': 61.9075, 'Gate Leakage': 0.0484137, 'Peak Dynamic': 0.569896, 'Runtime Dynamic': 0.377251, 'Subthreshold Leakage': 6.80085, 'Subthreshold Leakage with power gating': 3.32364}], 'Processor': {'Area': 128.211, 'Gate Leakage': 0.799822, 'Peak Dynamic': 48.7031, 'Peak Power': 68.7978, 'Runtime Dynamic': 13.8648, 'Subthreshold Leakage': 19.2949, 'Subthreshold Leakage with power gating': 8.76959, 'Total Cores/Area': 65.2164, 'Total Cores/Gate Leakage': 0.745993, 'Total Cores/Peak Dynamic': 48.1332, 'Total Cores/Runtime Dynamic': 13.4876, 'Total Cores/Subthreshold Leakage': 12.4375, 'Total Cores/Subthreshold Leakage with power gating': 5.16621, 'Total L3s/Area': 61.9075, 'Total L3s/Gate Leakage': 0.0484137, 'Total L3s/Peak Dynamic': 0.569896, 'Total L3s/Runtime Dynamic': 0.377251, 'Total L3s/Subthreshold Leakage': 6.80085, 'Total L3s/Subthreshold Leakage with power gating': 3.32364, 'Total Leakage': 20.0947, 'Total NoCs/Area': 1.08752, 'Total NoCs/Gate Leakage': 0.00541455, 'Total NoCs/Peak Dynamic': 0.0, 'Total NoCs/Runtime Dynamic': 0.0, 'Total NoCs/Subthreshold Leakage': 0.0564625, 'Total NoCs/Subthreshold Leakage with power gating': 0.0211734}}
73.59751
124
0.677398
power = {'BUSES': {'Area': 1.08752, 'Bus/Area': 1.08752, 'Bus/Gate Leakage': 0.00541455, 'Bus/Peak Dynamic': 0.0, 'Bus/Runtime Dynamic': 0.0, 'Bus/Subthreshold Leakage': 0.0564625, 'Bus/Subthreshold Leakage with power gating': 0.0211734, 'Gate Leakage': 0.00541455, 'Peak Dynamic': 0.0, 'Runtime Dynamic': 0.0, 'Subthreshold Leakage': 0.0564625, 'Subthreshold Leakage with power gating': 0.0211734}, 'Core': [{'Area': 32.6082, 'Execution Unit/Area': 8.2042, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.0955308, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.277723, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.852868, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.679223, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.122718, 'Execution Unit/Instruction Scheduler/Area': 2.17927, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.328073, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.00115349, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.20978, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.337297, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.017004, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00962066, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00730101, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 1.00996, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00529112, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 2.07911, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.584077, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0800117, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0455351, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 4.84781, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.841232, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.000856399, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.55892, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.377493, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.0178624, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00897339, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 1.29887, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.114878, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.0641291, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.202647, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.319665, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 6.59121, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.161125, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.0122273, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.110483, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0904283, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.271608, 'Execution Unit/Register Files/Runtime Dynamic': 0.102656, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0442632, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00607074, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.293143, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.835198, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.0920413, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0345155, 'Execution Unit/Runtime Dynamic': 3.51333, 'Execution Unit/Subthreshold Leakage': 1.83518, 'Execution Unit/Subthreshold Leakage with power gating': 0.709678, 'Gate Leakage': 0.372997, 'Instruction Fetch Unit/Area': 5.86007, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.000781008, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.000781008, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.000675581, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000258971, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.00129901, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00353661, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.0076553, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0590479, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0869311, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 5.52956, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.213019, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.295257, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 8.02054, 'Instruction Fetch Unit/Runtime Dynamic': 0.606399, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932587, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.408542, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.152811, 'L2/Runtime Dynamic': 0.0364529, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80969, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 3.72689, 'Load Store Unit/Data Cache/Runtime Dynamic': 1.24846, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0351387, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.08055, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0805499, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 4.10881, 'Load Store Unit/Runtime Dynamic': 1.72626, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.198623, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.397245, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591622, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283406, 'Memory Management Unit/Area': 0.434579, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0704918, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0727723, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00813591, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.343808, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0347031, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.624173, 'Memory Management Unit/Runtime Dynamic': 0.107475, 'Memory Management Unit/Subthreshold Leakage': 0.0769113, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0399462, 'Peak Dynamic': 24.0592, 'Renaming Unit/Area': 0.369768, 'Renaming Unit/FP Front End RAT/Area': 0.168486, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00489731, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 3.33511, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.562129, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0437281, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.024925, 'Renaming Unit/Free List/Area': 0.0414755, 'Renaming Unit/Free List/Gate Leakage': 4.15911e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0401324, 'Renaming Unit/Free List/Runtime Dynamic': 0.0240118, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000670426, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000377987, 'Renaming Unit/Gate Leakage': 0.00863632, 'Renaming Unit/Int Front End RAT/Area': 0.114751, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.00038343, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.86945, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.163866, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00611897, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00348781, 'Renaming Unit/Peak Dynamic': 4.56169, 'Renaming Unit/Runtime Dynamic': 0.750006, 'Renaming Unit/Subthreshold Leakage': 0.070483, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0362779, 'Runtime Dynamic': 6.73993, 'Subthreshold Leakage': 6.21877, 'Subthreshold Leakage with power gating': 2.58311}, {'Area': 32.6082, 'Execution Unit/Area': 8.2042, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.0955837, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.277764, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.853885, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.679669, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.122718, 'Execution Unit/Instruction Scheduler/Area': 2.17927, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.328073, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.00115349, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.20978, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.337724, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.017004, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00962066, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00730101, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 1.00996, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00529112, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 2.07911, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.584816, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0800117, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0455351, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 4.84781, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.841232, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.000856399, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.55892, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.377927, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.0178624, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00897339, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 1.30047, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.114878, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.0641291, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.202914, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.319906, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 6.59314, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.161317, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.0122428, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.110585, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0905428, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.271902, 'Execution Unit/Register Files/Runtime Dynamic': 0.102786, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0442632, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00607074, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.293405, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.836102, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.0920413, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0345155, 'Execution Unit/Runtime Dynamic': 3.5167, 'Execution Unit/Subthreshold Leakage': 1.83518, 'Execution Unit/Subthreshold Leakage with power gating': 0.709678, 'Gate Leakage': 0.372997, 'Instruction Fetch Unit/Area': 5.86007, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.000782126, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.000782126, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.000676533, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000259327, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.00130065, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00354144, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.0076668, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0590479, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0870411, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 5.53656, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.212864, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.295631, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 8.02789, 'Instruction Fetch Unit/Runtime Dynamic': 0.606744, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932587, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.408542, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.152816, 'L2/Runtime Dynamic': 0.036542, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80969, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 3.73104, 'Load Store Unit/Data Cache/Runtime Dynamic': 1.25059, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0351387, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0806842, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0806842, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 4.1136, 'Load Store Unit/Runtime Dynamic': 1.72918, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.198953, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.397907, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591622, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283406, 'Memory Management Unit/Area': 0.434579, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0706092, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0728902, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00813591, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.344243, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0346814, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.624811, 'Memory Management Unit/Runtime Dynamic': 0.107572, 'Memory Management Unit/Subthreshold Leakage': 0.0769113, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0399462, 'Peak Dynamic': 24.0739, 'Renaming Unit/Area': 0.369768, 'Renaming Unit/FP Front End RAT/Area': 0.168486, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00489731, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 3.33511, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.562798, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0437281, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.024925, 'Renaming Unit/Free List/Area': 0.0414755, 'Renaming Unit/Free List/Gate Leakage': 4.15911e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0401324, 'Renaming Unit/Free List/Runtime Dynamic': 0.0240417, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000670426, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000377987, 'Renaming Unit/Gate Leakage': 0.00863632, 'Renaming Unit/Int Front End RAT/Area': 0.114751, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.00038343, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.86945, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.164074, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00611897, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00348781, 'Renaming Unit/Peak Dynamic': 4.56169, 'Renaming Unit/Runtime Dynamic': 0.750914, 'Renaming Unit/Subthreshold Leakage': 0.070483, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0362779, 'Runtime Dynamic': 6.74765, 'Subthreshold Leakage': 6.21877, 'Subthreshold Leakage with power gating': 2.58311}], 'DRAM': {'Area': 0, 'Gate Leakage': 0, 'Peak Dynamic': 3.72117540729286, 'Runtime Dynamic': 3.72117540729286, 'Subthreshold Leakage': 4.252, 'Subthreshold Leakage with power gating': 4.252}, 'L3': [{'Area': 61.9075, 'Gate Leakage': 0.0484137, 'Peak Dynamic': 0.569896, 'Runtime Dynamic': 0.377251, 'Subthreshold Leakage': 6.80085, 'Subthreshold Leakage with power gating': 3.32364}], 'Processor': {'Area': 128.211, 'Gate Leakage': 0.799822, 'Peak Dynamic': 48.7031, 'Peak Power': 68.7978, 'Runtime Dynamic': 13.8648, 'Subthreshold Leakage': 19.2949, 'Subthreshold Leakage with power gating': 8.76959, 'Total Cores/Area': 65.2164, 'Total Cores/Gate Leakage': 0.745993, 'Total Cores/Peak Dynamic': 48.1332, 'Total Cores/Runtime Dynamic': 13.4876, 'Total Cores/Subthreshold Leakage': 12.4375, 'Total Cores/Subthreshold Leakage with power gating': 5.16621, 'Total L3s/Area': 61.9075, 'Total L3s/Gate Leakage': 0.0484137, 'Total L3s/Peak Dynamic': 0.569896, 'Total L3s/Runtime Dynamic': 0.377251, 'Total L3s/Subthreshold Leakage': 6.80085, 'Total L3s/Subthreshold Leakage with power gating': 3.32364, 'Total Leakage': 20.0947, 'Total NoCs/Area': 1.08752, 'Total NoCs/Gate Leakage': 0.00541455, 'Total NoCs/Peak Dynamic': 0.0, 'Total NoCs/Runtime Dynamic': 0.0, 'Total NoCs/Subthreshold Leakage': 0.0564625, 'Total NoCs/Subthreshold Leakage with power gating': 0.0211734}}
0
0
0
0
0
0
0
0
0
e9a2f6e36e21d2f812a566f6b88b2d9f4025924d
1,890
py
Python
app/main.py
alf1e/CHUM-Package-manager
814290e344c82a8e0fb48435a745b15ae178eefb
[ "MIT" ]
null
null
null
app/main.py
alf1e/CHUM-Package-manager
814290e344c82a8e0fb48435a745b15ae178eefb
[ "MIT" ]
null
null
null
app/main.py
alf1e/CHUM-Package-manager
814290e344c82a8e0fb48435a745b15ae178eefb
[ "MIT" ]
null
null
null
#!/usr/bin/env python ######### #LICENSE# ######### ''' MIT License Copyright (c) 2021 ItsMeAlfie0 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' ######### #IMPORTS# ######### import os import sys import urllib.request import json ###### #CODE# ###### arg = sys.argv if arg[1] == "--add-host": with open("conf/hosts.json", "r") as f: data = json.load(f) data[arg[2]] = arg[3] with open("conf/hosts.json", "w") as e: json.dump(e) print(f"Added host '{arg[2]}' '{arg[3]}'") elif arg[1] == "install": with open("conf/hosts.json", "r") as f: data = json.load(f) host = data[arg[2]] setup_sh = urllib.request.urlopen(f"{host}?repo={arg[3]}").read() os.system(f"mkdir /etc/chum/{arg[3]}") with open(f"/etc/chum/{arg[3]}/setup.sh", "w")as f: f.write(setup_sh) f.close() os.system(f"sh /etc/chumj/{arg[3]}/setup.sh") print("Package installed!")
29.076923
78
0.691534
#!/usr/bin/env python ######### #LICENSE# ######### ''' MIT License Copyright (c) 2021 ItsMeAlfie0 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' ######### #IMPORTS# ######### import os import sys import urllib.request import json ###### #CODE# ###### arg = sys.argv if arg[1] == "--add-host": with open("conf/hosts.json", "r") as f: data = json.load(f) data[arg[2]] = arg[3] with open("conf/hosts.json", "w") as e: json.dump(e) print(f"Added host '{arg[2]}' '{arg[3]}'") elif arg[1] == "install": with open("conf/hosts.json", "r") as f: data = json.load(f) host = data[arg[2]] setup_sh = urllib.request.urlopen(f"{host}?repo={arg[3]}").read() os.system(f"mkdir /etc/chum/{arg[3]}") with open(f"/etc/chum/{arg[3]}/setup.sh", "w")as f: f.write(setup_sh) f.close() os.system(f"sh /etc/chumj/{arg[3]}/setup.sh") print("Package installed!")
0
0
0
0
0
0
0
0
0
10235f4c22917028f59e78a277404007dacc9d74
1,058
py
Python
pin ponge.py
glebyad/ping-pong
2fabfa00b51f5c50686f8c6de10864722f3d3968
[ "CC0-1.0" ]
null
null
null
pin ponge.py
glebyad/ping-pong
2fabfa00b51f5c50686f8c6de10864722f3d3968
[ "CC0-1.0" ]
null
null
null
pin ponge.py
glebyad/ping-pong
2fabfa00b51f5c50686f8c6de10864722f3d3968
[ "CC0-1.0" ]
null
null
null
# window = display.set_mode((1000, 700)) display.set_caption('') # background = transform.scale(image.load('ping.jpg'), (1000, 700)) # 2 x1 = 0 y1 = 300 x2 = 900 y2 = 300 sprite1 = transform.scale(image.load('raketka1.png'), (100, 100) ) sprite2 = transform.scale(image.load('raketka2.jpg'), (100, 100) ) run = True clock = time.Clock() FPS = 60 while run: window.blit(background,(0, 0)) window.blit(sprite1, (x1, y1)) window.blit(sprite2, (x2, y2)) for e in event.get(): if e.type == QUIT: run = False speed = 4 keys_pressed = key.get_pressed() if keys_pressed[K_w] and y1 > 5: y1 -= speed if keys_pressed[K_s] and y1 < 600: y1 += speed if keys_pressed[K_UP] and y2 > 5: y2 -= speed if keys_pressed[K_DOWN] and y2 < 600: y2 += speed display.update() clock.tick(FPS)
19.592593
66
0.571834
from pygame import * #создай окно игры window = display.set_mode((1000, 700)) display.set_caption('догонялки') #задай фон сцены background = transform.scale(image.load('ping.jpg'), (1000, 700)) #создай 2 спрайта и размести их на сцене x1 = 0 y1 = 300 x2 = 900 y2 = 300 sprite1 = transform.scale(image.load('raketka1.png'), (100, 100) ) sprite2 = transform.scale(image.load('raketka2.jpg'), (100, 100) ) run = True clock = time.Clock() FPS = 60 while run: window.blit(background,(0, 0)) window.blit(sprite1, (x1, y1)) window.blit(sprite2, (x2, y2)) for e in event.get(): if e.type == QUIT: run = False speed = 4 keys_pressed = key.get_pressed() if keys_pressed[K_w] and y1 > 5: y1 -= speed if keys_pressed[K_s] and y1 < 600: y1 += speed if keys_pressed[K_UP] and y2 > 5: y2 -= speed if keys_pressed[K_DOWN] and y2 < 600: y2 += speed display.update() clock.tick(FPS)
134
0
0
0
0
0
0
-1
23
4095a34c413d03e43c4c7d0136819b20e9686d8b
3,010
py
Python
containerchaos/measure_response_time.py
containerchaos/containerchaos
3e44c9587542678d6563b3f07299fb33c88a1f3e
[ "MIT" ]
null
null
null
containerchaos/measure_response_time.py
containerchaos/containerchaos
3e44c9587542678d6563b3f07299fb33c88a1f3e
[ "MIT" ]
9
2019-02-15T16:59:39.000Z
2019-02-26T22:42:10.000Z
containerchaos/measure_response_time.py
containerchaos/containerchaos
3e44c9587542678d6563b3f07299fb33c88a1f3e
[ "MIT" ]
1
2019-07-31T13:38:51.000Z
2019-07-31T13:38:51.000Z
import csv import datetime import matplotlib.pyplot as plt import pandas as pd import requests import seaborn as sns def measure_response_time(url, criteria, write=True): ''' Measures and saves an API request's response time to a CSV file :param url: The URL for API request :param criteria: The criteria in effect :return: Path to a CSV file with response time in seconds with its timestamp as columns ''' response = requests.get(url) response_time = response.elapsed.total_seconds() date_time = datetime.datetime.now() fieldnames = ['timestamp', 'responseTime', 'criteria'] # Headers of the CSV file out_path = 'Response-Times.csv' if write: with open(out_path, 'a') as csvFile: writer = csv.DictWriter(csvFile, fieldnames=fieldnames) if csvFile.tell() == 0: writer.writeheader() writer.writerow({'timestamp': date_time, 'responseTime': response_time, 'criteria': criteria}) csvFile.close() return out_path def generate_histogram(path, title): ''' Saves a histogram with average response time per number of requests :param path: Path to a csv file ''' response_times = pd.read_csv(path) criteria_dict = response_times.groupby("criteria")["responseTime"].apply(list).to_dict() critera_keys = list(criteria_dict.keys()) criteria_values = list(criteria_dict.values()) plt.title(title) plt.style.use("seaborn-deep") plt.hist(x=criteria_values, bins=30, label=critera_keys) plt.legend(loc="upper right") plt.xlabel("Response Time in Seconds") plt.ylabel("Number of Requests") plt.savefig(title + " Histogram") plt.show() def generate_density_plot(path, title): ''' Saves a density plot with density of requests per second :param path: Path to a csv file ''' response_times = pd.read_csv(path) criteria_dict = response_times.groupby("criteria")["responseTime"].apply(list).to_dict() critera_keys = list(criteria_dict.keys()) # criteria_values = list(criteria_dict.values()) for criteria in critera_keys: subset = response_times[response_times["criteria"] == criteria] sns.distplot(subset["responseTime"], hist=False, kde=True, kde_kws={"linewidth": 3}, label=criteria) plt.title(title) plt.legend(loc="upper right") plt.xlabel("Response Time in Seconds") plt.ylabel("Density") plt.savefig(title + " Density Plot") plt.show() local_simple_csv = "output/local/simple/Response-Times.csv" local_complex_csv = "output/local/complex/Response-Times.csv" cloud_simple_csv = "output/gcloud/simple/Response-Times.csv" cloud_complex_csv = "output/gcloud/complex/Response-Times.csv" generate_histogram(local_simple_csv, "Local Machine Simple Task") generate_density_plot(local_complex_csv, "Local Machine Complex Task") generate_density_plot(cloud_simple_csv, "Cloud Simple Task") generate_histogram(cloud_complex_csv, "Cloud Complex Task")
32.021277
108
0.707641
import csv import datetime import matplotlib.pyplot as plt import pandas as pd import requests import seaborn as sns def measure_response_time(url, criteria, write=True): ''' Measures and saves an API request's response time to a CSV file :param url: The URL for API request :param criteria: The criteria in effect :return: Path to a CSV file with response time in seconds with its timestamp as columns ''' response = requests.get(url) response_time = response.elapsed.total_seconds() date_time = datetime.datetime.now() fieldnames = ['timestamp', 'responseTime', 'criteria'] # Headers of the CSV file out_path = 'Response-Times.csv' if write: with open(out_path, 'a') as csvFile: writer = csv.DictWriter(csvFile, fieldnames=fieldnames) if csvFile.tell() == 0: writer.writeheader() writer.writerow({'timestamp': date_time, 'responseTime': response_time, 'criteria': criteria}) csvFile.close() return out_path def generate_histogram(path, title): ''' Saves a histogram with average response time per number of requests :param path: Path to a csv file ''' response_times = pd.read_csv(path) criteria_dict = response_times.groupby("criteria")["responseTime"].apply(list).to_dict() critera_keys = list(criteria_dict.keys()) criteria_values = list(criteria_dict.values()) plt.title(title) plt.style.use("seaborn-deep") plt.hist(x=criteria_values, bins=30, label=critera_keys) plt.legend(loc="upper right") plt.xlabel("Response Time in Seconds") plt.ylabel("Number of Requests") plt.savefig(title + " Histogram") plt.show() def generate_density_plot(path, title): ''' Saves a density plot with density of requests per second :param path: Path to a csv file ''' response_times = pd.read_csv(path) criteria_dict = response_times.groupby("criteria")["responseTime"].apply(list).to_dict() critera_keys = list(criteria_dict.keys()) # criteria_values = list(criteria_dict.values()) for criteria in critera_keys: subset = response_times[response_times["criteria"] == criteria] sns.distplot(subset["responseTime"], hist=False, kde=True, kde_kws={"linewidth": 3}, label=criteria) plt.title(title) plt.legend(loc="upper right") plt.xlabel("Response Time in Seconds") plt.ylabel("Density") plt.savefig(title + " Density Plot") plt.show() local_simple_csv = "output/local/simple/Response-Times.csv" local_complex_csv = "output/local/complex/Response-Times.csv" cloud_simple_csv = "output/gcloud/simple/Response-Times.csv" cloud_complex_csv = "output/gcloud/complex/Response-Times.csv" generate_histogram(local_simple_csv, "Local Machine Simple Task") generate_density_plot(local_complex_csv, "Local Machine Complex Task") generate_density_plot(cloud_simple_csv, "Cloud Simple Task") generate_histogram(cloud_complex_csv, "Cloud Complex Task")
0
0
0
0
0
0
0
0
0
821041c230e611989e036de3de8d4f9ba908a39e
1,620
py
Python
tracking/main.py
chan-w/vaccine-text-signup
f926aa76724ffd5fe1d473fd6cdb70ed50ee982d
[ "MIT" ]
null
null
null
tracking/main.py
chan-w/vaccine-text-signup
f926aa76724ffd5fe1d473fd6cdb70ed50ee982d
[ "MIT" ]
null
null
null
tracking/main.py
chan-w/vaccine-text-signup
f926aa76724ffd5fe1d473fd6cdb70ed50ee982d
[ "MIT" ]
null
null
null
api_key = "AIzaSyAedPSTmyoW1ejPtwG_cSu7fEjLxOOUrXg" # Uses the Geocode API import requests from urllib.parse import urlencode #Input address here! lat, lng = extract_lat_lng("1600 Amphitheatre Parkway, Mountain View, CA") places_endpoint_2 = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" params_2 = { "key": api_key, "location": f"{lat},{lng}", "radius": "1500", "keyword": "pharmacy" } params_2_encoded = urlencode(params_2) places_url=f"{places_endpoint_2}?{params_2_encoded}" r2 = requests.get(places_url) # Returns the first 3 closest locations and stores it in variables within a 1500 meter radius try: nameVicinity0 = r2.json()['results'][0] name0 = nameVicinity0.get('name') vicinity0 = nameVicinity0.get('vicinity') except: pass try: nameVicinity1 = r2.json()['results'][1] name1 = nameVicinity1.get('name') vicinity1 = nameVicinity1.get('vicinity') except: pass try: nameVicinity2 = r2.json()['results'][2] name2 = nameVicinity2.get('name') vicinity2 = nameVicinity2.get('vicinity') except: pass
27.931034
93
0.683951
api_key = "AIzaSyAedPSTmyoW1ejPtwG_cSu7fEjLxOOUrXg" # Uses the Geocode API import requests from urllib.parse import urlencode def extract_lat_lng(address_or_postalcode, data_type = 'json'): endpoint = f"https://maps.googleapis.com/maps/api/geocode/{data_type}" params = {"address": address_or_postalcode, "key": api_key} url_params = urlencode(params) url = f"{endpoint}?{url_params}" r = requests.get(url) if r.status_code not in range(200, 299): return {} latlng = {} try: latlng = r.json()['results'][0]['geometry']['location'] except: pass return latlng.get("lat"), latlng.get("lng") #Input address here! lat, lng = extract_lat_lng("1600 Amphitheatre Parkway, Mountain View, CA") places_endpoint_2 = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" params_2 = { "key": api_key, "location": f"{lat},{lng}", "radius": "1500", "keyword": "pharmacy" } params_2_encoded = urlencode(params_2) places_url=f"{places_endpoint_2}?{params_2_encoded}" r2 = requests.get(places_url) # Returns the first 3 closest locations and stores it in variables within a 1500 meter radius try: nameVicinity0 = r2.json()['results'][0] name0 = nameVicinity0.get('name') vicinity0 = nameVicinity0.get('vicinity') except: pass try: nameVicinity1 = r2.json()['results'][1] name1 = nameVicinity1.get('name') vicinity1 = nameVicinity1.get('vicinity') except: pass try: nameVicinity2 = r2.json()['results'][2] name2 = nameVicinity2.get('name') vicinity2 = nameVicinity2.get('vicinity') except: pass
0
0
0
0
0
504
0
0
23
f74c328b4e8be5db4ab0478db22db83a43dfc36e
38,645
py
Python
petitions/migrations/01000_add_counties_subcounties_courts_prisons_offences.py
DavidWaichari/pomac
79273c34dc54a301ed9fd802b0c2c487b2ac5d92
[ "MIT" ]
null
null
null
petitions/migrations/01000_add_counties_subcounties_courts_prisons_offences.py
DavidWaichari/pomac
79273c34dc54a301ed9fd802b0c2c487b2ac5d92
[ "MIT" ]
null
null
null
petitions/migrations/01000_add_counties_subcounties_courts_prisons_offences.py
DavidWaichari/pomac
79273c34dc54a301ed9fd802b0c2c487b2ac5d92
[ "MIT" ]
null
null
null
# Generated by Django 2.0.1 on 2018-01-28 19:30
56.25182
112
0.73712
# Generated by Django 2.0.1 on 2018-01-28 19:30 from django.db import migrations def add_initial_data(apps, schema_editor): County = apps.get_model('petitions', 'County') Court = apps.get_model('petitions', 'Court') SubCounty = apps.get_model('petitions', 'SubCounty') Prison = apps.get_model('petitions', 'Prison') Offence = apps.get_model('petitions', 'Offence') baringo = County.objects.create(name='BARINGO') SubCounty.objects.create(name='BARINGO EAST', county=baringo) SubCounty.objects.create(name='BARINGO WEST', county=baringo) SubCounty.objects.create(name='BARINGO CENTRAL', county=baringo) SubCounty.objects.create(name='MOCHONGOI', county=baringo) SubCounty.objects.create(name='MOGOTIO', county=baringo) SubCounty.objects.create(name='ELDAMA RAVINE', county=baringo) bomet = County.objects.create(name='BOMET') SubCounty.objects.create(name='SOTIK', county=bomet) SubCounty.objects.create(name='CHEPALUNGU', county=bomet) SubCounty.objects.create(name='BOMET EAST', county=bomet) SubCounty.objects.create(name='BOMET CENTRAL', county=bomet) SubCounty.objects.create(name='KONOIN', county=bomet) bungoma = County.objects.create(name='BUNGOMA') SubCounty.objects.create(name='MT ELGON', county=bungoma) SubCounty.objects.create(name='SIRISIA', county=bungoma) SubCounty.objects.create(name='KABUCHIA', county=bungoma) SubCounty.objects.create(name='BUMULA', county=bungoma) SubCounty.objects.create(name='KANDUNYI', county=bungoma) SubCounty.objects.create(name='WEBUYE', county=bungoma) SubCounty.objects.create(name='BOKOLI', county=bungoma) SubCounty.objects.create(name='KIMILILI', county=bungoma) SubCounty.objects.create(name='TONGAREN', county=bungoma) busia = County.objects.create(name='BUSIA') SubCounty.objects.create(name='TESO NORTH', county=busia) SubCounty.objects.create(name='TESO SOUTH', county=busia) SubCounty.objects.create(name='NAMBALE', county=busia) SubCounty.objects.create(name='MATAYOS', county=busia) SubCounty.objects.create(name='BUTULA', county=busia) SubCounty.objects.create(name='FUNYULA', county=busia) SubCounty.objects.create(name='BUDALANGI', county=busia) elgeiyomarakwet = County.objects.create(name='ELGEYO MARAKWET') SubCounty.objects.create(name='MARAKWET EAST', county=elgeiyomarakwet) SubCounty.objects.create(name='MARAKWET WEST', county=elgeiyomarakwet) SubCounty.objects.create(name='KEIYO EAST', county=elgeiyomarakwet) SubCounty.objects.create(name='KEIYO SOUTH', county=elgeiyomarakwet) embu = County.objects.create(name='EMBU') SubCounty.objects.create(name='MANYATTA', county=embu) SubCounty.objects.create(name='RUNYENJES', county=embu) SubCounty.objects.create(name='GACHOKA', county=embu) SubCounty.objects.create(name='SIAKAGO', county=embu) garissa = County.objects.create(name='GARISSA') SubCounty.objects.create(name='TAVEDUJIS', county=garissa) SubCounty.objects.create(name='BALAMBALA', county=garissa) SubCounty.objects.create(name='LAGDERA', county=garissa) SubCounty.objects.create(name='DADAAB', county=garissa) SubCounty.objects.create(name='FAFI', county=garissa) SubCounty.objects.create(name='IJARA', county=garissa) homabay = County.objects.create(name='HOMA BAY') SubCounty.objects.create(name='KASIPUL', county=homabay) SubCounty.objects.create(name='KABONDO', county=homabay) SubCounty.objects.create(name='KARACHUONYO', county=homabay) SubCounty.objects.create(name='RANGWE', county=homabay) SubCounty.objects.create(name='HOMABAY TOWN', county=homabay) SubCounty.objects.create(name='NDHIWA', county=homabay) SubCounty.objects.create(name='MBITA', county=homabay) SubCounty.objects.create(name='GWASSI', county=homabay) isiolo = County.objects.create(name='ISIOLO') SubCounty.objects.create(name='ISIOLO NORTH', county=isiolo) SubCounty.objects.create(name='ISIOLO SOUTH', county=isiolo) kajiado = County.objects.create(name='KAJIADO') SubCounty.objects.create(name='KAJIADO CENTRAL', county=kajiado) SubCounty.objects.create(name='KAJIADO NORTH', county=kajiado) SubCounty.objects.create(name='KAJIADO SOUTH', county=kajiado) kakamega = County.objects.create(name='KAKAMEGA') SubCounty.objects.create(name='LUGARI', county=kakamega) SubCounty.objects.create(name='LIKUYANI', county=kakamega) SubCounty.objects.create(name='MALAVA', county=kakamega) SubCounty.objects.create(name='LURAMBI', county=kakamega) SubCounty.objects.create(name='MAKHOLO', county=kakamega) SubCounty.objects.create(name='MUMIAS', county=kakamega) SubCounty.objects.create(name='MUMIAS EAST', county=kakamega) SubCounty.objects.create(name='MATUNGU', county=kakamega) SubCounty.objects.create(name='BUTERE', county=kakamega) SubCounty.objects.create(name='KHWISERO', county=kakamega) SubCounty.objects.create(name='SHINYALU', county=kakamega) SubCounty.objects.create(name='IKOLOMANI', county=kakamega) kericho = County.objects.create(name='KERICHO') SubCounty.objects.create(name='AINAMOI', county=kericho) SubCounty.objects.create(name='BELGUT', county=kericho) SubCounty.objects.create(name='KIPKELION', county=kericho) kiambu = County.objects.create(name='KIAMBU') SubCounty.objects.create(name='GATUNDU SOUTH', county=kiambu) SubCounty.objects.create(name='GATUNDU NORTH', county=kiambu) SubCounty.objects.create(name='JUJA', county=kiambu) SubCounty.objects.create(name='THIKA TOWN', county=kiambu) SubCounty.objects.create(name='RUIRU GITHUNGURI', county=kiambu) SubCounty.objects.create(name='KIAMBU', county=kiambu) SubCounty.objects.create(name='KIAMBAA', county=kiambu) SubCounty.objects.create(name='KABETE', county=kiambu) SubCounty.objects.create(name='KIKUYU', county=kiambu) SubCounty.objects.create(name='LIMURU', county=kiambu) SubCounty.objects.create(name='LARI', county=kiambu) kilifi = County.objects.create(name='KILIFI') SubCounty.objects.create(name='KILIFI NORTH', county=kilifi) SubCounty.objects.create(name='KILIFI SOUTH', county=kilifi) SubCounty.objects.create(name='KALOLENI', county=kilifi) SubCounty.objects.create(name='RABAI', county=kilifi) SubCounty.objects.create(name='GANZE', county=kilifi) SubCounty.objects.create(name='MALINDI', county=kilifi) SubCounty.objects.create(name='MAGARINI', county=kilifi) kirinyaga = County.objects.create(name='KIRINYAGA') SubCounty.objects.create(name='MWEA', county=kirinyaga) SubCounty.objects.create(name='GICHUGU', county=kirinyaga) SubCounty.objects.create(name='NDIA', county=kirinyaga) SubCounty.objects.create(name='KIRINYAGA CENTRAL', county=kirinyaga) kisii = County.objects.create(name='KISII') SubCounty.objects.create(name='BONCHARI', county=kisii) SubCounty.objects.create(name='SOUTH MUGIRANGO', county=kisii) SubCounty.objects.create(name='BOMACHOGE', county=kisii) SubCounty.objects.create(name='BOBASI', county=kisii) SubCounty.objects.create(name='GUCHA', county=kisii) SubCounty.objects.create(name='NYARIBARI MASABA', county=kisii) SubCounty.objects.create(name='NYARIBARI CHACHE', county=kisii) SubCounty.objects.create(name='MATRANI', county=kisii) SubCounty.objects.create(name='MOSOCHO', county=kisii) kisumu = County.objects.create(name='KISUMU') SubCounty.objects.create(name='KISUMU EAST', county=kisumu) SubCounty.objects.create(name='KISUMU WEST', county=kisumu) SubCounty.objects.create(name='KISUMU CENTRAL', county=kisumu) SubCounty.objects.create(name='SEME', county=kisumu) SubCounty.objects.create(name='NYANDO', county=kisumu) SubCounty.objects.create(name='MUHORONI', county=kisumu) SubCounty.objects.create(name='NYAKACH', county=kisumu) kitui = County.objects.create(name='KITUI') SubCounty.objects.create(name='MWINGI NORTH', county=kitui) SubCounty.objects.create(name='MWINGI CENTRAL', county=kitui) SubCounty.objects.create(name='MWINGI SOUTH', county=kitui) SubCounty.objects.create(name='KITUI WEST', county=kitui) SubCounty.objects.create(name='KITUI RURAL', county=kitui) SubCounty.objects.create(name='KITUI TOWN', county=kitui) SubCounty.objects.create(name='MUTITU', county=kitui) SubCounty.objects.create(name='KITUI SOUTH', county=kitui) kwale = County.objects.create(name='KWALE') SubCounty.objects.create(name='MSAMBWENI', county=kwale) SubCounty.objects.create(name='LUNGA LUNGA', county=kwale) SubCounty.objects.create(name='MATUGA', county=kwale) SubCounty.objects.create(name='KINANGO', county=kwale) laikipia = County.objects.create(name='LAIKIPIA') SubCounty.objects.create(name='LAIKIPIA WEST', county=laikipia) SubCounty.objects.create(name='LAIKIPIA EAST', county=laikipia) SubCounty.objects.create(name='LAIKIPIA NORTH', county=laikipia) lamu = County.objects.create(name='LAMU') SubCounty.objects.create(name='LAMU EAST', county=lamu) SubCounty.objects.create(name='LAMU WEST', county=lamu) machakos = County.objects.create(name='MACHAKOS') SubCounty.objects.create(name='MASINGA', county=machakos) SubCounty.objects.create(name='YATTA', county=machakos) SubCounty.objects.create(name='KANGUNDO', county=machakos) SubCounty.objects.create(name='MATUNGULU', county=machakos) SubCounty.objects.create(name='KATHIANI', county=machakos) SubCounty.objects.create(name='MAVOKO', county=machakos) SubCounty.objects.create(name='MACHAKOS TOWN', county=machakos) SubCounty.objects.create(name='MWALA', county=machakos) makueni = County.objects.create(name='MAKUENI') SubCounty.objects.create(name='MBOONI', county=makueni) SubCounty.objects.create(name='KILOME', county=makueni) SubCounty.objects.create(name='KAITI', county=makueni) SubCounty.objects.create(name='MAKUENI', county=makueni) SubCounty.objects.create(name='KIBWEZI WEST', county=makueni) SubCounty.objects.create(name='KIBWEZI EAST', county=makueni) mandera = County.objects.create(name='MANDERA') SubCounty.objects.create(name='MANDERA WEST', county=mandera) SubCounty.objects.create(name='BANISA', county=mandera) SubCounty.objects.create(name='MANDERA NORTH', county=mandera) SubCounty.objects.create(name='MANDERA EAST', county=mandera) SubCounty.objects.create(name='LAFEY', county=mandera) marsabit = County.objects.create(name='MARSABIT') SubCounty.objects.create(name='MOYALE', county=marsabit) SubCounty.objects.create(name='NORTH HORR', county=marsabit) SubCounty.objects.create(name='SAKU', county=marsabit) SubCounty.objects.create(name='LAISAMIS', county=marsabit) meru = County.objects.create(name='MERU') SubCounty.objects.create(name='IGEMBE SOUTH', county=meru) SubCounty.objects.create(name='IGEMBE CENTRAL', county=meru) SubCounty.objects.create(name='IGEMBE NORTH', county=meru) SubCounty.objects.create(name='TIGANIA WEST', county=meru) SubCounty.objects.create(name='TIGANIA EAST', county=meru) SubCounty.objects.create(name='NORTH IMENTI', county=meru) SubCounty.objects.create(name='BUURI', county=meru) SubCounty.objects.create(name='CENTRAL IMENTI', county=meru) SubCounty.objects.create(name='SOUTH IMENTI', county=meru) migori = County.objects.create(name='MIGORI') SubCounty.objects.create(name='RONGO', county=migori) SubCounty.objects.create(name='AWENDO', county=migori) SubCounty.objects.create(name='MIGORI EAST', county=migori) SubCounty.objects.create(name='MIGORI WEST', county=migori) SubCounty.objects.create(name='URIRI', county=migori) SubCounty.objects.create(name='NYATIKE', county=migori) SubCounty.objects.create(name='KURIA EAST', county=migori) SubCounty.objects.create(name='KURIA WEST', county=migori) mombasa = County.objects.create(name='MOMBASA') SubCounty.objects.create(name='CHANGAMWE', county=mombasa) SubCounty.objects.create(name='JOMVU', county=mombasa) SubCounty.objects.create(name='KISAUNI', county=mombasa) SubCounty.objects.create(name='NYALI', county=mombasa) SubCounty.objects.create(name='LIKONI', county=mombasa) SubCounty.objects.create(name='MVITA', county=mombasa) muranga = County.objects.create(name='MURANGA') SubCounty.objects.create(name='KANGEMA', county=muranga) SubCounty.objects.create(name='MATHIOYA', county=muranga) SubCounty.objects.create(name='KIHARU', county=muranga) SubCounty.objects.create(name='KIGUMO', county=muranga) SubCounty.objects.create(name='MARAGWA', county=muranga) SubCounty.objects.create(name='KANDARA', county=muranga) SubCounty.objects.create(name='GATANGA', county=muranga) nairobi = County.objects.create(name='NAIROBI') SubCounty.objects.create(name='WESTLANDS', county=nairobi) SubCounty.objects.create(name='PARKLANDS', county=nairobi) SubCounty.objects.create(name='DAGORETTI', county=nairobi) SubCounty.objects.create(name='KAREN / LANGATA', county=nairobi) SubCounty.objects.create(name='KIBIRA', county=nairobi) SubCounty.objects.create(name='ROYSAMBU', county=nairobi) SubCounty.objects.create(name='KASARANI', county=nairobi) SubCounty.objects.create(name='RUARAKA', county=nairobi) SubCounty.objects.create(name='KARIOBANGI', county=nairobi) SubCounty.objects.create(name='KAYOLE', county=nairobi) SubCounty.objects.create(name='EMBAKASI', county=nairobi) SubCounty.objects.create(name='MIHANG’O', county=nairobi) SubCounty.objects.create(name='NAIROBI WEST', county=nairobi) SubCounty.objects.create(name='MAKADARA', county=nairobi) SubCounty.objects.create(name='KAMUKUNJI', county=nairobi) SubCounty.objects.create(name='STAREHE', county=nairobi) SubCounty.objects.create(name='MATHARE', county=nairobi) nakuru = County.objects.create(name='NAKURU') SubCounty.objects.create(name='MOLO', county=nakuru) SubCounty.objects.create(name='NJORO', county=nakuru) SubCounty.objects.create(name='NAIVASHA', county=nakuru) SubCounty.objects.create(name='GILGIL', county=nakuru) SubCounty.objects.create(name='KURESOI SOUTH', county=nakuru) SubCounty.objects.create(name='KURESOI NORTH', county=nakuru) SubCounty.objects.create(name='SUBUKIA', county=nakuru) SubCounty.objects.create(name='RONGAI', county=nakuru) SubCounty.objects.create(name='BAHATI', county=nakuru) SubCounty.objects.create(name='NAKURU TOWN WEST', county=nakuru) SubCounty.objects.create(name='NAKURU TOWN EAST', county=nakuru) nandi = County.objects.create(name='NANDI') SubCounty.objects.create(name='TINDERET', county=nandi) SubCounty.objects.create(name='ALDAI', county=nandi) SubCounty.objects.create(name='NANDI HILLS', county=nandi) SubCounty.objects.create(name='EMGWEN NORTH', county=nandi) SubCounty.objects.create(name='EMGWEN SOUTH', county=nandi) SubCounty.objects.create(name='MOSOP', county=nandi) narok = County.objects.create(name='NAROK') SubCounty.objects.create(name='KILGORIS', county=narok) SubCounty.objects.create(name='EMURUA DIKIRR', county=narok) SubCounty.objects.create(name='NAROK NORTH', county=narok) SubCounty.objects.create(name='KAJIADO EAST', county=narok) SubCounty.objects.create(name='KAJIADO WEST', county=narok) nyamira = County.objects.create(name='NYAMIRA') SubCounty.objects.create(name='KITUTU MASABA', county=nyamira) SubCounty.objects.create(name='NORTH MUGIRANGO', county=nyamira) SubCounty.objects.create(name='WEST MUGIRANGO', county=nyamira) nyandarua = County.objects.create(name='NYANDARUA') SubCounty.objects.create(name='KINANGOP', county=nyandarua) SubCounty.objects.create(name='KIPIPIRI', county=nyandarua) SubCounty.objects.create(name='OL-KALOU', county=nyandarua) SubCounty.objects.create(name='OL-JOROK', county=nyandarua) SubCounty.objects.create(name='NDARAGWA', county=nyandarua) nyeri = County.objects.create(name='NYERI') SubCounty.objects.create(name='TETU', county=nyeri) SubCounty.objects.create(name='KIENI', county=nyeri) SubCounty.objects.create(name='MATHIRA', county=nyeri) SubCounty.objects.create(name='OTHAYA', county=nyeri) SubCounty.objects.create(name='MUKUWE-INI', county=nyeri) SubCounty.objects.create(name='NYERI TOWN', county=nyeri) samburu = County.objects.create(name='SAMBURU') SubCounty.objects.create(name='SAMBURU WEST', county=samburu) SubCounty.objects.create(name='SAMBURU NORTH', county=samburu) SubCounty.objects.create(name='SAMBURU EAST', county=samburu) siaya = County.objects.create(name='SIAYA') SubCounty.objects.create(name='UGENYA', county=siaya) SubCounty.objects.create(name='UGUNJA', county=siaya) SubCounty.objects.create(name='ALEGO USONGA', county=siaya) SubCounty.objects.create(name='GEM', county=siaya) SubCounty.objects.create(name='BONDO', county=siaya) SubCounty.objects.create(name='RARIEDA', county=siaya) taitataveta = County.objects.create(name='TAITA TAVETA') SubCounty.objects.create(name='TAVETA', county=taitataveta) SubCounty.objects.create(name='WUNDANYI', county=taitataveta) SubCounty.objects.create(name='MWATATE', county=taitataveta) SubCounty.objects.create(name='VOI', county=taitataveta) tanariver = County.objects.create(name='TANA RIVER') SubCounty.objects.create(name='GARSEN', county=tanariver) SubCounty.objects.create(name='GALOLE', county=tanariver) SubCounty.objects.create(name='BURA', county=tanariver) tharakanithi = County.objects.create(name='THARAKA NITHI') SubCounty.objects.create(name='NITHI', county=tharakanithi) SubCounty.objects.create(name='MAARA', county=tharakanithi) SubCounty.objects.create(name='THARAKA', county=tharakanithi) transnzoia = County.objects.create(name='TRANS NZOIA') SubCounty.objects.create(name='KWANZA', county=transnzoia) SubCounty.objects.create(name='ENDEBESS', county=transnzoia) SubCounty.objects.create(name='SABOTI', county=transnzoia) SubCounty.objects.create(name='KIMININI', county=transnzoia) SubCounty.objects.create(name='CHERENGANYI', county=transnzoia) turkana = County.objects.create(name='TURKANA') SubCounty.objects.create(name='TURKANA NORTH', county=turkana) SubCounty.objects.create(name='TURKANA WEST', county=turkana) SubCounty.objects.create(name='TURKANA CENTRAL', county=turkana) SubCounty.objects.create(name='LOIMA', county=turkana) SubCounty.objects.create(name='TURKANA SOUTH', county=turkana) SubCounty.objects.create(name='TURKANA EAST', county=turkana) uasingishu = County.objects.create(name='UASIN GISHU') SubCounty.objects.create(name='ELDORET EAST', county=uasingishu) SubCounty.objects.create(name='ELDORET NORT', county=uasingishu) SubCounty.objects.create(name='ELDORET SOUTH', county=uasingishu) vihiga = County.objects.create(name='VIHIGA') SubCounty.objects.create(name='VIHIGA', county=vihiga) SubCounty.objects.create(name='SABATIA', county=vihiga) SubCounty.objects.create(name='HAMISI', county=vihiga) SubCounty.objects.create(name='EMUHAYA', county=vihiga) SubCounty.objects.create(name='LUANDA', county=vihiga) wajir = County.objects.create(name='WAJIR') SubCounty.objects.create(name='WAJIR NORTH', county=wajir) SubCounty.objects.create(name='WAJIR EAST', county=wajir) SubCounty.objects.create(name='TARBAJ', county=wajir) SubCounty.objects.create(name='WAJIR WEST', county=wajir) SubCounty.objects.create(name='ELDAS', county=wajir) SubCounty.objects.create(name='WAJIR SOUTH', county=wajir) westpokot = County.objects.create(name='WEST POKOT') SubCounty.objects.create(name='KAPENGURIA ', county=westpokot) SubCounty.objects.create(name='SIGOR ', county=westpokot) SubCounty.objects.create(name='KACHELIBA', county=westpokot) SubCounty.objects.create(name='POKOT SOUTH ', county=westpokot) #courts instance = Court.objects.create(name='BARICHO MAGISTRATES\' COURT') instance = Court.objects.create(name='BOMET LAW COURT') instance = Court.objects.create(name='BOMET MAGISTRATES\' COURT') instance = Court.objects.create(name='BONDO MAGISTRATES\' COURT') instance = Court.objects.create(name='BUNGOMA LAW COURT') instance = Court.objects.create(name='BUSIA LAW COURT') instance = Court.objects.create(name='BUTALI MAGISTRATES\' COURT') instance = Court.objects.create(name='BUTERE MAGISTRATES\' COURT') instance = Court.objects.create(name='CHILDREN’S COURT NAIROBI MAGISTRATES\' COURT') instance = Court.objects.create(name='CHUKA LAW COURT') instance = Court.objects.create(name='CHUKA MAGISTRATES\' COURT') instance = Court.objects.create(name='CITY COURT MAGISTRATES\' COURT') instance = Court.objects.create(name='ELDAMA RAVINE MAGISTRATES\' COURT') instance = Court.objects.create(name='ELDORET LAW COURT') instance = Court.objects.create(name='ELDORET MAGISTRATES\' COURT') instance = Court.objects.create(name='EMBU LAW COURT') instance = Court.objects.create(name='EMBU MAGISTRATES\' COURT') instance = Court.objects.create(name='ENGINEER MAGISTRATES\' COURT') instance = Court.objects.create(name='GARISSA LAW COURT') instance = Court.objects.create(name='GARISSA MAGISTRATES\' COURT') instance = Court.objects.create(name='GARSEN LAW COURT') instance = Court.objects.create(name='GATUNDU MAGISTRATES\' COURT') instance = Court.objects.create(name='GICHUGU MAGISTRATES\' COURT') instance = Court.objects.create(name='GITHUNGURI MAGISTRATES\' COURT') instance = Court.objects.create(name='HAMISI MAGISTRATES\' COURT') instance = Court.objects.create(name='HOLA MAGISTRATES\' COURT') instance = Court.objects.create(name='HOMA-BAY LAW COURT') instance = Court.objects.create(name='HOMABAY MAGISTRATES\' COURT') instance = Court.objects.create(name='ISIOLO MAGISTRATES\' COURT') instance = Court.objects.create(name='ITEN MAGISTRATES\' COURT') instance = Court.objects.create(name='KABARNET LAW COURT') instance = Court.objects.create(name='KABARNET MAGISTRATES\' COURT') instance = Court.objects.create(name='KABARNET MAGISTRATES\' COURT') instance = Court.objects.create(name='KADHI MAGISTRATES\' COURT') instance = Court.objects.create(name='KAJIADO LAW COURT') instance = Court.objects.create(name='KAJIADO MAGISTRATES\' COURT') instance = Court.objects.create(name='KAKAMEGA LAW COURT') instance = Court.objects.create(name='KAKAMEGA MAGISTRATES\' COURT') instance = Court.objects.create(name='KALOLENI MAGISTRATES\' COURT') instance = Court.objects.create(name='KANDARA MAGISTRATES\' COURT') instance = Court.objects.create(name='KANGEMA MAGISTRATES\' COURT') instance = Court.objects.create(name='KANGUNDO MAGISTRATES\' COURT') instance = Court.objects.create(name='KAPENGURIA LAW COURT') instance = Court.objects.create(name='KAPENGURIA MAGISTRATES\' COURT') instance = Court.objects.create(name='KAPSABET MAGISTRATES\' COURT') instance = Court.objects.create(name='KARATINA MAGISTRATES\' COURT') instance = Court.objects.create(name='KEHANCHA MAGISTRATES\' COURT') instance = Court.objects.create(name='KERICHO LAW COURT') instance = Court.objects.create(name='KERICHO MAGISTRATES\' COURT') instance = Court.objects.create(name='KEROKA MAGISTRATES\' COURT') instance = Court.objects.create(name='KERUGOYA LAW COURT') instance = Court.objects.create(name='KERUGOYA MAGISTRATES\' COURT') instance = Court.objects.create(name='KIAMBU LAW COURT') instance = Court.objects.create(name='KIAMBU MAGISTRATES\' COUR') instance = Court.objects.create(name='KIBERA MAGISTRATES\' COURT') instance = Court.objects.create(name='KIGUMO MAGISTRATES\' COURT') instance = Court.objects.create(name='KIKUYU MAGISTRATES\' COURT') instance = Court.objects.create(name='KILGORIS MAGISTRATES\' COURT') instance = Court.objects.create(name='KILIFI MAGISTRATES\' COURT') instance = Court.objects.create(name='KILUNGU/NUNGUNI MAGISTRATES\' COURT') instance = Court.objects.create(name='KIMILILI MAGISTRATES\' COURT') instance = Court.objects.create(name='KISII LAW COURT') instance = Court.objects.create(name='KISII MAGISTRATES\' COURT') instance = Court.objects.create(name='KISUMU LAW COURT') instance = Court.objects.create(name='KISUMU MAGISTRATES\' COURT') instance = Court.objects.create(name='KITALE LAW COURT') instance = Court.objects.create(name='KITALE MAGISTRATES\' COURT') instance = Court.objects.create(name='KITHIMANI/YATTA MAGISTRATES\' COURT') instance = Court.objects.create(name='KITUI LAW COURT') instance = Court.objects.create(name='KITUI MAGISTRATES\' COURT') instance = Court.objects.create(name='KWALE MAGISTRATES\' COURT') instance = Court.objects.create(name='KYUSO MAGISTRATES\' COURT') instance = Court.objects.create(name='LAMU MAGISTRATES\' COURT') instance = Court.objects.create(name='LIMURU MAGISTRATES\' COURT') instance = Court.objects.create(name='LODWAR LAW COURT') instance = Court.objects.create(name='LODWAR MAGISTRATES\' COURT') instance = Court.objects.create(name='MACHAKOS LAW COURT') instance = Court.objects.create(name='MACHAKOS MAGISTRATES\' COURT') instance = Court.objects.create(name='MAKADARA MAGISTRATES\' COURT') instance = Court.objects.create(name='MAKINDU MAGISTRATES\' COURT') instance = Court.objects.create(name='MAKUENI LAW COURT') instance = Court.objects.create(name='MAKUENI MAGISTRATES\' COURT') instance = Court.objects.create(name='MALINDI LAW COURT') instance = Court.objects.create(name='MALINDI MAGISTRATES\' COURT') instance = Court.objects.create(name='MANDERA MAGISTRATES\' COURT') instance = Court.objects.create(name='MARALAL MAGISTRATES\' COURT') instance = Court.objects.create(name='MARIAKANI MAGISTRATES\' COURT') instance = Court.objects.create(name='MARIMANTI MAGISTRATES\' COURT') instance = Court.objects.create(name='MARSABIT LAW COURT') instance = Court.objects.create(name='MARSABIT MAGISTRATES\' COURT') instance = Court.objects.create(name='MASENO MAGISTRATES\' COURT') instance = Court.objects.create(name='MAUA MAGISTRATES\' COURT') instance = Court.objects.create(name='MAVOKO MAGISTRATES\' COURT') instance = Court.objects.create(name='MERU LAW COURT') instance = Court.objects.create(name='MERU MAGISTRATES\' COURT') instance = Court.objects.create(name='MIGORI LAW COURT') instance = Court.objects.create(name='MIGORI MAGISTRATES\' COURT') instance = Court.objects.create(name='MILIMANI COMMERCIAL COURT MAGISTRATES\' COURT') instance = Court.objects.create(name='MILIMANI LAW COURT') instance = Court.objects.create(name='MILIMANI MAGISTRATES\' COURT') instance = Court.objects.create(name='MOLO MAGISTRATES\' COURT') instance = Court.objects.create(name='MOMBASA LAW COURT') instance = Court.objects.create(name='MOMBASA MAGISTRATES\' COURT') instance = Court.objects.create(name='MOYALE MAGISTRATES\' COURT') instance = Court.objects.create(name='MUKURWEINI MAGISTRATES\' COURT') instance = Court.objects.create(name='MUMIAS MAGISTRATES\' COURT') instance = Court.objects.create(name='MURANG’A LAW COURT') instance = Court.objects.create(name='MURANG’A MAGISTRATES\' COURT') instance = Court.objects.create(name='MUTOMO MAGISTRATES\' COURT') instance = Court.objects.create(name='MWINGI MAGISTRATES\' COURT') instance = Court.objects.create(name='NAIVASHA LAW COURT') instance = Court.objects.create(name='NAIVASHA MAGISTRATES\' COURT') instance = Court.objects.create(name='NAKURU LAW COURT') instance = Court.objects.create(name='NAKURU MAGISTRATES\' COURT') instance = Court.objects.create(name='NANYUKI LAW COURT') instance = Court.objects.create(name='NANYUKI MAGISTRATES\' COURT') instance = Court.objects.create(name='NAROK LAW COURT') instance = Court.objects.create(name='NAROK MAGISTRATES\' COURT') instance = Court.objects.create(name='NDHIWA MAGISTRATES\' COURT') instance = Court.objects.create(name='NKUBU MAGISTRATES\' COURT') instance = Court.objects.create(name='NYAHURURU LAW COURT') instance = Court.objects.create(name='NYAHURURU MAGISTRATES\' COURT') instance = Court.objects.create(name='NYAMIRA LAW COURT') instance = Court.objects.create(name='NYAMIRA MAGISTRATES\' COURT') instance = Court.objects.create(name='NYANDO MAGISTRATES\' COURT') instance = Court.objects.create(name='NYERI LAW COURT') instance = Court.objects.create(name='NYERI MAGISTRATES\' COURT') instance = Court.objects.create(name='OGEMBO MAGISTRATES\' COURT') instance = Court.objects.create(name='OTHAYA MAGISTRATES\' COURT') instance = Court.objects.create(name='OYUGIS MAGISTRATES\' COURT') instance = Court.objects.create(name='RONGO MAGISTRATES\' COURT') instance = Court.objects.create(name='RUNYENJES MAGISTRATES\' COURT') instance = Court.objects.create(name='SHANZU MAGISTRATES\' COURT') instance = Court.objects.create(name='SIAKAGO MAGISTRATES\' COURT') instance = Court.objects.create(name='SIAYA LAW COURT') instance = Court.objects.create(name='SIAYA MAGISTRATES\' COURT') instance = Court.objects.create(name='SIRISIA MAGISTRATES\' COURT') instance = Court.objects.create(name='SOTIK MAGISTRATES\' COURT') instance = Court.objects.create(name='TAMU MAGISTRATES\' COURT') instance = Court.objects.create(name='TAVETA MAGISTRATES\' COURT') instance = Court.objects.create(name='TAWA MAGISTRATES\' COURT') instance = Court.objects.create(name='THIKA MAGISTRATES\' COURT') instance = Court.objects.create(name='TIGANIA MAGISTRATES\' COURT') instance = Court.objects.create(name='UKWALA MAGISTRATES\' COURT') instance = Court.objects.create(name='VIHIGA MAGISTRATES\' COURT') instance = Court.objects.create(name='VOI LAW COURT') instance = Court.objects.create(name='VOI MAGISTRATES\' COURT') instance = Court.objects.create(name='WAJIR MAGISTRATES\' COURT') instance = Court.objects.create(name='WANGURU MAGISTRATES\' COURT') instance = Court.objects.create(name='WINAM MAGISTRATES\' COURT') instance = Court.objects.create(name='WUNDANYI MAGISTRATES\' COURT') #prisons instance = Prison.objects.create(name='ATHI RIVER PRISON') instance = Prison.objects.create(name='BOMET PRISON') instance = Prison.objects.create(name='BUNGOMA') instance = Prison.objects.create(name='BUSIA MAIN') instance = Prison.objects.create(name='CHUKA') instance = Prison.objects.create(name='ELDAMA RAVINE') instance = Prison.objects.create(name='ELDORET MAIN PRISON') instance = Prison.objects.create(name='ELDORET WOMEN PRISON') instance = Prison.objects.create(name='EMBU MAIN') instance = Prison.objects.create(name='EMBU WOMEN') instance = Prison.objects.create(name='GARISSA MAIN') instance = Prison.objects.create(name='GARISSA MEDIUM') instance = Prison.objects.create(name='HINDI') instance = Prison.objects.create(name='HOLA') instance = Prison.objects.create(name='HOMABAY') instance = Prison.objects.create(name='ISIOLO') instance = Prison.objects.create(name='JAMUHURI PRISON') instance = Prison.objects.create(name='KABARNET') instance = Prison.objects.create(name='KAJIADO MAIN PRISON') instance = Prison.objects.create(name='KAKAMEGA MAIN') instance = Prison.objects.create(name='KAKAMEGA WOMEN') instance = Prison.objects.create(name='KALOLENI') instance = Prison.objects.create(name='KAMAE GIRLS PRISON') instance = Prison.objects.create(name='KAMITI MAXIMUM SECURITY PRISON') instance = Prison.objects.create(name='KAMITI MEDIUM PRISON') instance = Prison.objects.create(name='KAMITI YCTC') instance = Prison.objects.create(name='KANGETA') instance = Prison.objects.create(name='KAPENGURIA PRISON') instance = Prison.objects.create(name='KAPSABET') instance = Prison.objects.create(name='KEHANCHA') instance = Prison.objects.create(name='KERICHO MAIN') instance = Prison.objects.create(name='KERICHO MEDIUM') instance = Prison.objects.create(name='KERICHO WOMEN') instance = Prison.objects.create(name='KERUGOYA PRISON') instance = Prison.objects.create(name='KIAMBU PRISON') instance = Prison.objects.create(name='KIBOS MAIN') instance = Prison.objects.create(name='KIBOS MEDIUM') instance = Prison.objects.create(name='KILGORIS') instance = Prison.objects.create(name='KILIFI') instance = Prison.objects.create(name='KING\'ORANI') instance = Prison.objects.create(name='KISII MAIN') instance = Prison.objects.create(name='KISII WOMEN') instance = Prison.objects.create(name='KISUMU MAIN') instance = Prison.objects.create(name='KISUMU MEDIUM') instance = Prison.objects.create(name='KISUMU WOMEN') instance = Prison.objects.create(name='KITALE ANNEXE') instance = Prison.objects.create(name='KITALE MAIN') instance = Prison.objects.create(name='KITALE MEDIUM') instance = Prison.objects.create(name='KITALE WOMEN') instance = Prison.objects.create(name='KITUI MAIN') instance = Prison.objects.create(name='KITUI WOMEN') instance = Prison.objects.create(name='KWALE MAIN') instance = Prison.objects.create(name='KWALE WOMEN') instance = Prison.objects.create(name='LANGATA WOMEN MAXIMUM PRISON') instance = Prison.objects.create(name='LODWAR') instance = Prison.objects.create(name='LOITOKTOK PRISON') instance = Prison.objects.create(name='MACHAKOS MAIN') instance = Prison.objects.create(name='MACHAKOS WOMEN') instance = Prison.objects.create(name='MAKUENI REMAND') instance = Prison.objects.create(name='MALINDI MAIN') instance = Prison.objects.create(name='MALINDI WOMEN') instance = Prison.objects.create(name='MANDERA') instance = Prison.objects.create(name='MANYANI') instance = Prison.objects.create(name='MARA') instance = Prison.objects.create(name='MARALAL') instance = Prison.objects.create(name='MARANJAU PRISON') instance = Prison.objects.create(name='MARIMATI') instance = Prison.objects.create(name='MARSABIT') instance = Prison.objects.create(name='MAUKENI MAIN') instance = Prison.objects.create(name='MERU MAIN') instance = Prison.objects.create(name='MERU WOMEN') instance = Prison.objects.create(name='MIGORI MAIN') instance = Prison.objects.create(name='MIGORI WOMEN') instance = Prison.objects.create(name='MOYALE') instance = Prison.objects.create(name='MURANGA MAIN PRSION') instance = Prison.objects.create(name='MURANGA WOMEN PRISON') instance = Prison.objects.create(name='MUTOMO') instance = Prison.objects.create(name='MWEA MAIN PRISON') instance = Prison.objects.create(name='MWINGI') instance = Prison.objects.create(name='NAIROBI MEDIUM PRISON') instance = Prison.objects.create(name='NAIROBI REMAND AND ALLOCATION MAXIMUM PRISON') instance = Prison.objects.create(name='NAIROBI WEST PRISON') instance = Prison.objects.create(name='NAIVASHA MAXIMUM PRISON') instance = Prison.objects.create(name='NAIVASHA MEDIUM PRISON') instance = Prison.objects.create(name='NAIVASHA WOMEN PRISON') instance = Prison.objects.create(name='NAKURU MAIN PRISON') instance = Prison.objects.create(name='NAKURU WOMEN PRISON') instance = Prison.objects.create(name='NANYUKI') instance = Prison.objects.create(name='NAROK') instance = Prison.objects.create(name='NGERIA FARM') instance = Prison.objects.create(name='NYAMIRA') instance = Prison.objects.create(name='NYANDARUA MAIN PRISON') instance = Prison.objects.create(name='NYERI MAIN MAXIMUM PRISON') instance = Prison.objects.create(name='NYERI MEDIUM PRISON') instance = Prison.objects.create(name='NYERI WOMEN PRISON') instance = Prison.objects.create(name='RACHUONYO') instance = Prison.objects.create(name='RC EASTERN') instance = Prison.objects.create(name='RUIRU PRISON') instance = Prison.objects.create(name='RUMURUTI') instance = Prison.objects.create(name='SHIKUSA B.I') instance = Prison.objects.create(name='SHIKUSA FARM') instance = Prison.objects.create(name='SHIMO B.I') instance = Prison.objects.create(name='SHIMO MAIN') instance = Prison.objects.create(name='SHIMO MEDIUM') instance = Prison.objects.create(name='SHIMO WOMEN') instance = Prison.objects.create(name='SIAYA') instance = Prison.objects.create(name='SOTIK') instance = Prison.objects.create(name='T/FALL WOMEN PRISON') instance = Prison.objects.create(name='T/FALLS MAIN PRISON') instance = Prison.objects.create(name='TAMBACH') instance = Prison.objects.create(name='TAVETA') instance = Prison.objects.create(name='THIKA MAIN PRISON') instance = Prison.objects.create(name='THIKA WOMEN PRISON') instance = Prison.objects.create(name='URUKU') instance = Prison.objects.create(name='VIHIGA') instance = Prison.objects.create(name='VOI') instance = Prison.objects.create(name='WAJIR') instance = Prison.objects.create(name='WUNDANYI') instance = Prison.objects.create(name='YATTA') #add few offences instance = Offence.objects.create(name='Assault') instance = Offence.objects.create(name='Handling of stolen goods') instance = Offence.objects.create(name='Grevious harm') instance = Offence.objects.create(name='Attempted defilement') instance = Offence.objects.create(name='Robbery with violence contrary to section 296(2) of the Penal Code') instance = Offence.objects.create(name='Murder') instance = Offence.objects.create(name='Robbery') instance = Offence.objects.create(name='Manslaughter') instance = Offence.objects.create(name='Defilement') instance = Offence.objects.create(name='Rape') instance = Offence.objects.create(name='Attempted Rape') instance = Offence.objects.create(name='Attempted Robbery With Violence') class Migration(migrations.Migration): dependencies = [ ('petitions', '0001_initial'), ] operations = [ migrations.RunPython(add_initial_data), ]
12
0
0
158
0
38,352
0
11
69