Diffusers documentation
Bria Fibo
Bria Fibo
Text-to-image models have mastered imagination - but not control. FIBO changes that.
FIBO is trained on structured JSON captions up to 1,000+ words and designed to understand and control different visual parameters such as lighting, composition, color, and camera settings, enabling precise and reproducible outputs.
With only 8 billion parameters, FIBO provides a new level of image quality, prompt adherence and proffesional control.
FIBO is trained exclusively on a structured prompt and will not work with freeform text prompts. you can use the FIBO-VLM-prompt-to-JSON model or the FIBO-gemini-prompt-to-JSON to convert your freeform text prompt to a structured JSON prompt.
Avoid using freeform text prompts directly with FIBO because it does not produce the best results.
Refer to the Bria Fibo Hugging Face page to learn more.
Usage
As the model is gated, before using it with diffusers you first need to go to the Bria Fibo Hugging Face page, fill in the form and accept the gate. Once you are in, you need to login so that your system knows you’ve accepted the gate.
Use the command below to log in:
hf auth login
BriaFiboPipeline
class diffusers.BriaFiboPipeline
< source >( transformer: BriaFiboTransformer2DModel scheduler: typing.Union[diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler, diffusers.schedulers.scheduling_utils.KarrasDiffusionSchedulers] vae: AutoencoderKLWan text_encoder: SmolLM3ForCausalLM tokenizer: AutoTokenizer )
Parameters
- transformer (
BriaFiboTransformer2DModel) — The transformer model for 2D diffusion modeling. - scheduler (
FlowMatchEulerDiscreteSchedulerorKarrasDiffusionSchedulers) — Scheduler to be used withtransformerto denoise the encoded latents. - vae (
AutoencoderKLWan) — Variational Auto-Encoder for encoding and decoding images to and from latent representations. - text_encoder (
SmolLM3ForCausalLM) — Text encoder for processing input prompts. - tokenizer (
AutoTokenizer) — Tokenizer used for processing the input text prompts for the text_encoder.
__call__
< source >( prompt: typing.Union[str, typing.List[str]] = None height: typing.Optional[int] = None width: typing.Optional[int] = None num_inference_steps: int = 30 timesteps: typing.List[int] = None guidance_scale: float = 5 negative_prompt: typing.Union[str, typing.List[str], NoneType] = None num_images_per_prompt: typing.Optional[int] = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True joint_attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None callback_on_step_end: typing.Optional[typing.Callable[[int, int, typing.Dict], NoneType]] = None callback_on_step_end_tensor_inputs: typing.List[str] = ['latents'] max_sequence_length: int = 3000 do_patching = False ) → ~pipelines.flux.BriaFiboPipelineOutput or tuple
Parameters
- prompt (
strorList[str], optional) — The prompt or prompts to guide the image generation. If not defined, one has to passprompt_embeds. instead. - height (
int, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated image. This is set to 1024 by default for the best results. - width (
int, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated image. This is set to 1024 by default for the best results. - num_inference_steps (
int, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. - timesteps (
List[int], optional) — Custom timesteps to use for the denoising process with schedulers which support atimestepsargument in theirset_timestepsmethod. If not defined, the default behavior whennum_inference_stepsis passed will be used. Must be in descending order. - guidance_scale (
float, optional, defaults to 5.0) — Guidance scale as defined in Classifier-Free Diffusion Guidance.guidance_scaleis defined aswof equation 2. of Imagen Paper. Guidance scale is enabled by settingguidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the textprompt, usually at the expense of lower image quality. - negative_prompt (
strorList[str], optional) — The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embedsinstead. Ignored when not using guidance (i.e., ignored ifguidance_scaleis less than1). - num_images_per_prompt (
int, optional, defaults to 1) — The number of images to generate per prompt. - generator (
torch.GeneratororList[torch.Generator], optional) — One or a list of torch generator(s) to make generation deterministic. - latents (
torch.FloatTensor, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied randomgenerator. - prompt_embeds (
torch.FloatTensor, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated frompromptinput argument. - negative_prompt_embeds (
torch.FloatTensor, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_promptinput argument. - output_type (
str, optional, defaults to"pil") — The output format of the generate image. Choose between PIL:PIL.Image.Imageornp.array. - return_dict (
bool, optional, defaults toTrue) — Whether or not to return a~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutputinstead of a plain tuple. - joint_attention_kwargs (
dict, optional) — A kwargs dictionary that if specified is passed along to theAttentionProcessoras defined underself.processorin diffusers.models.attention_processor. - callback_on_step_end (
Callable, optional) — A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments:callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict).callback_kwargswill include a list of all tensors as specified bycallback_on_step_end_tensor_inputs. - callback_on_step_end_tensor_inputs (
List, optional) — The list of tensor inputs for thecallback_on_step_endfunction. The tensors specified in the list will be passed ascallback_kwargsargument. You will only be able to include variables listed in the._callback_tensor_inputsattribute of your pipeline class. - max_sequence_length (
intdefaults to 3000) — Maximum sequence length to use with theprompt. - do_patching (
bool, optional, defaults toFalse) — Whether to use patching.
Returns
~pipelines.flux.BriaFiboPipelineOutput or tuple
~pipelines.flux.BriaFiboPipelineOutput if
return_dict is True, otherwise a tuple. When returning a tuple, the first element is a list with the
generated images.
Function invoked when calling the pipeline for generation.
Example:
import torch
from diffusers import BriaFiboPipeline
from diffusers.modular_pipelines import ModularPipeline
torch.set_grad_enabled(False)
vlm_pipe = ModularPipeline.from_pretrained("briaai/FIBO-VLM-prompt-to-JSON", trust_remote_code=True)
pipe = BriaFiboPipeline.from_pretrained(
"briaai/FIBO",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
with torch.inference_mode():
# 1. Create a prompt to generate an initial image
output = vlm_pipe(prompt="a beautiful dog")
json_prompt_generate = output.values["json_prompt"]
# Generate the image from the structured json prompt
results_generate = pipe(prompt=json_prompt_generate, num_inference_steps=50, guidance_scale=5)
results_generate.images[0].save("image_generate.png")encode_prompt
< source >( prompt: typing.Union[str, typing.List[str]] device: typing.Optional[torch.device] = None num_images_per_prompt: int = 1 guidance_scale: float = 5 negative_prompt: typing.Union[str, typing.List[str], NoneType] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None max_sequence_length: int = 3000 lora_scale: typing.Optional[float] = None )
Parameters
- prompt (
strorList[str], optional) — prompt to be encoded - device — (
torch.device): torch device - num_images_per_prompt (
int) — number of images that should be generated per prompt - guidance_scale (
float) — Guidance scale for classifier free guidance. - negative_prompt (
strorList[str], optional) — The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embedsinstead. Ignored when not using guidance (i.e., ignored ifguidance_scaleis less than1). - prompt_embeds (
torch.FloatTensor, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated frompromptinput argument. - negative_prompt_embeds (
torch.FloatTensor, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_promptinput argument.