This is a SmolLM3 model uploaded using the KerasHub library and can be used with JAX, TensorFlow, and PyTorch backends.
This model is related to a CausalLM task.
Model config:
- name: smol_lm3_backbone
- trainable: True
- dtype: {'module': 'keras', 'class_name': 'DTypePolicy', 'config': {'name': 'float32'}, 'registered_name': None}
- vocabulary_size: 128256
- hidden_dim: 2048
- intermediate_dim: 11008
- num_layers: 36
- num_attention_heads: 16
- num_key_value_heads: 4
- attention_bias: False
- attention_dropout: 0.0
- rope_layer_enabled_list: [True, True, True, False, True, True, True, False, True, True, True, False, True, True, True, False, True, True, True, False, True, True, True, False, True, True, True, False, True, True, True, False, True, True, True, False]
- layer_types: ['full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention', 'full_attention']
- mlp_bias: False
- layer_norm_epsilon: 1e-06
- max_position_embeddings: 65536
- rope_theta: 5000000.0
- partial_rotary_factor: 1.0
This model card has been generated automatically and should be completed by the model author. See Model Cards documentation for more information.
- Downloads last month
- 6