Electra-Bert-Base-Discrim-Google: Optimized for Mobile Deployment

Language model for masked language modeling and general-purpose NLP tasks

ELECTRABERT is a lightweight BERT model designed for efficient self-supervised learning of language representations. It can be used for identify unnatural or artificially modified text and as a backbone for various NLP tasks.

This model is an implementation of Electra-Bert-Base-Discrim-Google found here.

This repository provides scripts to run Electra-Bert-Base-Discrim-Google on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.text_generation
  • Model Stats:
    • Model checkpoint: google/electra-base-discriminator
    • Input resolution: 1x384
    • Number of parameters: 109M
    • Model size (float): 417 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
Electra-Bert-Base-Discrim-Google float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 66.115 ms 0 - 302 MB NPU Electra-Bert-Base-Discrim-Google.tflite
Electra-Bert-Base-Discrim-Google float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 65.271 ms 0 - 327 MB NPU Electra-Bert-Base-Discrim-Google.dlc
Electra-Bert-Base-Discrim-Google float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 23.58 ms 0 - 280 MB NPU Electra-Bert-Base-Discrim-Google.tflite
Electra-Bert-Base-Discrim-Google float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 24.876 ms 0 - 305 MB NPU Electra-Bert-Base-Discrim-Google.dlc
Electra-Bert-Base-Discrim-Google float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 16.824 ms 0 - 29 MB NPU Electra-Bert-Base-Discrim-Google.tflite
Electra-Bert-Base-Discrim-Google float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 16.974 ms 0 - 41 MB NPU Electra-Bert-Base-Discrim-Google.dlc
Electra-Bert-Base-Discrim-Google float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 24.091 ms 0 - 256 MB NPU Electra-Bert-Base-Discrim-Google.onnx.zip
Electra-Bert-Base-Discrim-Google float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 98.459 ms 0 - 302 MB NPU Electra-Bert-Base-Discrim-Google.tflite
Electra-Bert-Base-Discrim-Google float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 21.082 ms 0 - 331 MB NPU Electra-Bert-Base-Discrim-Google.dlc
Electra-Bert-Base-Discrim-Google float SA7255P ADP Qualcomm® SA7255P TFLITE 66.115 ms 0 - 302 MB NPU Electra-Bert-Base-Discrim-Google.tflite
Electra-Bert-Base-Discrim-Google float SA7255P ADP Qualcomm® SA7255P QNN_DLC 65.271 ms 0 - 327 MB NPU Electra-Bert-Base-Discrim-Google.dlc
Electra-Bert-Base-Discrim-Google float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 16.128 ms 0 - 15 MB NPU Electra-Bert-Base-Discrim-Google.tflite
Electra-Bert-Base-Discrim-Google float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 16.934 ms 0 - 45 MB NPU Electra-Bert-Base-Discrim-Google.dlc
Electra-Bert-Base-Discrim-Google float SA8295P ADP Qualcomm® SA8295P TFLITE 26.152 ms 0 - 273 MB NPU Electra-Bert-Base-Discrim-Google.tflite
Electra-Bert-Base-Discrim-Google float SA8295P ADP Qualcomm® SA8295P QNN_DLC 26.433 ms 0 - 296 MB NPU Electra-Bert-Base-Discrim-Google.dlc
Electra-Bert-Base-Discrim-Google float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 16.8 ms 0 - 31 MB NPU Electra-Bert-Base-Discrim-Google.tflite
Electra-Bert-Base-Discrim-Google float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 16.945 ms 0 - 45 MB NPU Electra-Bert-Base-Discrim-Google.dlc
Electra-Bert-Base-Discrim-Google float SA8775P ADP Qualcomm® SA8775P TFLITE 98.459 ms 0 - 302 MB NPU Electra-Bert-Base-Discrim-Google.tflite
Electra-Bert-Base-Discrim-Google float SA8775P ADP Qualcomm® SA8775P QNN_DLC 21.082 ms 0 - 331 MB NPU Electra-Bert-Base-Discrim-Google.dlc
Electra-Bert-Base-Discrim-Google float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 11.657 ms 0 - 307 MB NPU Electra-Bert-Base-Discrim-Google.tflite
Electra-Bert-Base-Discrim-Google float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 11.651 ms 0 - 332 MB NPU Electra-Bert-Base-Discrim-Google.dlc
Electra-Bert-Base-Discrim-Google float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 16.753 ms 0 - 359 MB NPU Electra-Bert-Base-Discrim-Google.onnx.zip
Electra-Bert-Base-Discrim-Google float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 7.985 ms 0 - 303 MB NPU Electra-Bert-Base-Discrim-Google.tflite
Electra-Bert-Base-Discrim-Google float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 7.843 ms 0 - 335 MB NPU Electra-Bert-Base-Discrim-Google.dlc
Electra-Bert-Base-Discrim-Google float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 11.213 ms 0 - 361 MB NPU Electra-Bert-Base-Discrim-Google.onnx.zip
Electra-Bert-Base-Discrim-Google float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 6.154 ms 4 - 308 MB NPU Electra-Bert-Base-Discrim-Google.tflite
Electra-Bert-Base-Discrim-Google float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 5.908 ms 0 - 342 MB NPU Electra-Bert-Base-Discrim-Google.dlc
Electra-Bert-Base-Discrim-Google float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 8.275 ms 0 - 367 MB NPU Electra-Bert-Base-Discrim-Google.onnx.zip
Electra-Bert-Base-Discrim-Google float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 17.66 ms 1034 - 1034 MB NPU Electra-Bert-Base-Discrim-Google.dlc
Electra-Bert-Base-Discrim-Google float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 24.045 ms 221 - 221 MB NPU Electra-Bert-Base-Discrim-Google.onnx.zip

Installation

Install the package via pip:

# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[electra-bert-base-discrim-google]"

Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub Workbench with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.electra_bert_base_discrim_google.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.electra_bert_base_discrim_google.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.electra_bert_base_discrim_google.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.electra_bert_base_discrim_google import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.electra_bert_base_discrim_google.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.electra_bert_base_discrim_google.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on Electra-Bert-Base-Discrim-Google's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of Electra-Bert-Base-Discrim-Google can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month
7
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Paper for qualcomm/Electra-Bert-Base-Discrim-Google