BaoKhuong's picture
Upload 4 files
39f67e1 verified
import os
import json
import time
import random
from collections import defaultdict
from datetime import date, datetime, timedelta
import gradio as gr
import pandas as pd
import finnhub
from io import StringIO
import requests
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
from huggingface_hub import InferenceClient, hf_hub_download
try:
from llama_cpp import Llama
except Exception:
Llama = None
try:
import torch
except Exception:
torch = None
import psutil
# Suppress Google Cloud warnings
os.environ['GRPC_VERBOSITY'] = 'ERROR'
os.environ['GRPC_TRACE'] = ''
# Suppress other warnings
import warnings
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=FutureWarning)
# ---------- CẤU HÌNH ---------------------------------------------------------
# Model and Inference configuration (Hugging Face Inference API)
FIN_MODEL_ID = "TheFinAI/Fin-o1-14B"
# RapidAPI Configuration
RAPIDAPI_HOST = "alpha-vantage.p.rapidapi.com"
# Load Finnhub API keys from single secret (multiple keys separated by newlines)
FINNHUB_KEYS_RAW = os.getenv("FINNHUB_KEYS", "")
if FINNHUB_KEYS_RAW:
FINNHUB_KEYS = [key.strip() for key in FINNHUB_KEYS_RAW.split('\n') if key.strip()]
else:
FINNHUB_KEYS = []
# Load RapidAPI keys from single secret (multiple keys separated by newlines)
RAPIDAPI_KEYS_RAW = os.getenv("RAPIDAPI_KEYS", "")
if RAPIDAPI_KEYS_RAW:
RAPIDAPI_KEYS = [key.strip() for key in RAPIDAPI_KEYS_RAW.split('\n') if key.strip()]
else:
RAPIDAPI_KEYS = []
# Hugging Face token (support multiple common env var names)
HF_TOKEN = (
os.getenv("HF_TOKEN")
or os.getenv("HF_API_TOKEN")
or os.getenv("HUGGINGFACEHUB_API_TOKEN")
or os.getenv("HUGGINGFACE_TOKEN")
or ""
)
# Optional local GGUF configuration for CPU inference via llama.cpp
FIN_GGUF_PATH = os.getenv("FIN_GGUF_PATH", "").strip()
FIN_GGUF_REPO = os.getenv("FIN_GGUF_REPO", "").strip() # e.g., "TheFinAI/Fin-o1-14B-GGUF"
FIN_GGUF_FILE = os.getenv("FIN_GGUF_FILE", "").strip() # e.g., "fino1-14b-q4_k_m.gguf"
# Filter out empty keys
FINNHUB_KEYS = [key for key in FINNHUB_KEYS if key.strip()]
# Validate that we have at least one key for each service
if not FINNHUB_KEYS:
print("⚠️ Warning: No Finnhub API keys found in secrets")
if not RAPIDAPI_KEYS:
print("⚠️ Warning: No RapidAPI keys found in secrets")
if not HF_TOKEN:
print("⚠️ Warning: No Hugging Face token (HF_TOKEN) found in secrets – Fin-o1-14B will use mock responses")
# Initialize inference backends (prefer local GGUF if provided)
hf_client = None
llama_local = None
# Try resolve GGUF path from repo if not directly provided
if not FIN_GGUF_PATH and FIN_GGUF_REPO and FIN_GGUF_FILE:
try:
FIN_GGUF_PATH = hf_hub_download(repo_id=FIN_GGUF_REPO, filename=FIN_GGUF_FILE)
print(f"✅ Downloaded GGUF from {FIN_GGUF_REPO}/{FIN_GGUF_FILE}")
except Exception as e:
print(f"⚠️ Failed to download GGUF: {e}")
if FIN_GGUF_PATH and Llama is not None:
try:
llama_local = Llama(
model_path=FIN_GGUF_PATH,
n_ctx=8192,
logits_all=False,
n_threads=max(1, os.cpu_count() or 2),
)
print(f"✅ Local llama.cpp initialized with GGUF at {FIN_GGUF_PATH}")
except Exception as e:
print(f"⚠️ Failed to initialize local llama.cpp: {e}")
if llama_local is None and HF_TOKEN:
try:
hf_client = InferenceClient(model=FIN_MODEL_ID, token=HF_TOKEN, timeout=60)
print(f"✅ Hugging Face Inference Client initialized for {FIN_MODEL_ID}")
except Exception as e:
print(f"⚠️ Failed to initialize HF Inference Client: {e}")
print("=" * 50)
print("🚀 FinRobot Forecaster Starting Up...")
print("=" * 50)
if FINNHUB_KEYS:
print(f"📊 Finnhub API: {len(FINNHUB_KEYS)} keys loaded")
else:
print("📊 Finnhub API: Not configured")
if RAPIDAPI_KEYS:
print(f"📈 RapidAPI Alpha Vantage: {RAPIDAPI_HOST} ({len(RAPIDAPI_KEYS)} keys loaded)")
else:
print("📈 RapidAPI Alpha Vantage: Not configured")
if HF_TOKEN:
print("🤖 HF Inference: Token detected for Fin-o1-14B")
else:
print("🤖 HF Inference: No token provided (mock responses will be used)")
print("✅ Application started successfully!")
print("=" * 50)
# Cấu hình Google Generative AI (if keys available)
# No Gemini setup needed; using HF Inference API instead
if llama_local is not None:
print("🤖 LLM: Fin-o1-14B via local GGUF (llama.cpp, CPU)")
else:
print("🤖 LLM: Fin-o1-14B via Hugging Face Inference API")
# Cấu hình Finnhub client (if keys available)
if FINNHUB_KEYS:
# Configure with first key for initial setup
finnhub_client = finnhub.Client(api_key=FINNHUB_KEYS[0])
print(f"✅ Finnhub configured with {len(FINNHUB_KEYS)} keys")
else:
finnhub_client = None
print("⚠️ Finnhub not configured - will use mock news data")
# Tạo session với retry strategy cho requests
def create_session():
session = requests.Session()
retry_strategy = Retry(
total=3,
backoff_factor=1,
status_forcelist=[429, 500, 502, 503, 504],
)
adapter = HTTPAdapter(max_retries=retry_strategy)
session.mount("http://", adapter)
session.mount("https://", adapter)
return session
# Tạo session global
requests_session = create_session()
SYSTEM_PROMPT = (
"You are a seasoned stock-market analyst. "
"Given recent company news and optional basic financials, "
"return:\n"
"[Positive Developments] – 2-4 bullets\n"
"[Potential Concerns] – 2-4 bullets\n"
"[Prediction & Analysis] – a one-week price outlook with rationale."
)
# ---------- UTILITY HELPERS ----------------------------------------
def today() -> str:
return date.today().strftime("%Y-%m-%d")
def n_weeks_before(date_string: str, n: int) -> str:
return (datetime.strptime(date_string, "%Y-%m-%d") -
timedelta(days=7 * n)).strftime("%Y-%m-%d")
# ---------- DATA FETCHING --------------------------------------------------
def get_stock_data(symbol: str, steps: list[str]) -> pd.DataFrame:
# Thử tất cả RapidAPI Alpha Vantage keys
for rapidapi_key in RAPIDAPI_KEYS:
try:
print(f"📈 Fetching stock data for {symbol} via RapidAPI (key: {rapidapi_key[:8]}...)")
# RapidAPI Alpha Vantage endpoint
url = f"https://{RAPIDAPI_HOST}/query"
headers = {
"X-RapidAPI-Host": RAPIDAPI_HOST,
"X-RapidAPI-Key": rapidapi_key
}
params = {
"function": "TIME_SERIES_DAILY",
"symbol": symbol,
"outputsize": "full",
"datatype": "csv"
}
# Thử lại 3 lần với RapidAPI key hiện tại
for attempt in range(3):
try:
resp = requests_session.get(url, headers=headers, params=params, timeout=30)
if not resp.ok:
print(f"RapidAPI HTTP error {resp.status_code} with key {rapidapi_key[:8]}..., attempt {attempt + 1}")
time.sleep(2 ** attempt)
continue
text = resp.text.strip()
if text.startswith("{"):
info = resp.json()
msg = info.get("Note") or info.get("Error Message") or info.get("Information") or str(info)
if "rate limit" in msg.lower() or "quota" in msg.lower():
print(f"RapidAPI rate limit hit with key {rapidapi_key[:8]}..., trying next key")
break # Thử key tiếp theo
raise RuntimeError(f"RapidAPI Alpha Vantage Error: {msg}")
# Parse CSV data
df = pd.read_csv(StringIO(text))
date_col = "timestamp" if "timestamp" in df.columns else df.columns[0]
df[date_col] = pd.to_datetime(df[date_col])
df = df.sort_values(date_col).set_index(date_col)
data = {"Start Date": [], "End Date": [], "Start Price": [], "End Price": []}
for i in range(len(steps) - 1):
s_date = pd.to_datetime(steps[i])
e_date = pd.to_datetime(steps[i+1])
seg = df.loc[s_date:e_date]
if seg.empty:
raise RuntimeError(
f"RapidAPI Alpha Vantage cannot get {symbol} data for {steps[i]}{steps[i+1]}"
)
data["Start Date"].append(seg.index[0])
data["Start Price"].append(seg["close"].iloc[0])
data["End Date"].append(seg.index[-1])
data["End Price"].append(seg["close"].iloc[-1])
time.sleep(1) # RapidAPI has higher limits
print(f"✅ Successfully retrieved {symbol} data via RapidAPI (key: {rapidapi_key[:8]}...)")
return pd.DataFrame(data)
except requests.exceptions.Timeout:
print(f"RapidAPI timeout with key {rapidapi_key[:8]}..., attempt {attempt + 1}")
if attempt < 2:
time.sleep(5 * (attempt + 1))
continue
else:
break
except requests.exceptions.RequestException as e:
print(f"RapidAPI request error with key {rapidapi_key[:8]}..., attempt {attempt + 1}: {e}")
if attempt < 2:
time.sleep(3)
continue
else:
break
except Exception as e:
print(f"RapidAPI Alpha Vantage failed with key {rapidapi_key[:8]}...: {e}")
continue # Thử key tiếp theo
# Fallback: Tạo mock data nếu tất cả RapidAPI keys đều fail
print("⚠️ All RapidAPI keys failed, using mock data for demonstration...")
return create_mock_stock_data(symbol, steps)
def create_mock_stock_data(symbol: str, steps: list[str]) -> pd.DataFrame:
"""Tạo mock data để demo khi API không hoạt động"""
import numpy as np
data = {"Start Date": [], "End Date": [], "Start Price": [], "End Price": []}
# Giá cơ bản khác nhau cho các symbol khác nhau
base_prices = {
"AAPL": 180.0, "MSFT": 350.0, "GOOGL": 140.0,
"TSLA": 200.0, "NVDA": 450.0, "AMZN": 150.0
}
base_price = base_prices.get(symbol.upper(), 150.0)
for i in range(len(steps) - 1):
s_date = pd.to_datetime(steps[i])
e_date = pd.to_datetime(steps[i+1])
# Tạo giá ngẫu nhiên với xu hướng tăng nhẹ
start_price = base_price + np.random.normal(0, 5)
end_price = start_price + np.random.normal(2, 8) # Xu hướng tăng nhẹ
data["Start Date"].append(s_date)
data["Start Price"].append(round(start_price, 2))
data["End Date"].append(e_date)
data["End Price"].append(round(end_price, 2))
base_price = end_price # Cập nhật giá cơ bản cho tuần tiếp theo
return pd.DataFrame(data)
def current_basics(symbol: str, curday: str) -> dict:
# Check if Finnhub is configured
if not FINNHUB_KEYS:
print(f"⚠️ Finnhub not configured, skipping financial basics for {symbol}")
return {}
# Thử với tất cả các Finnhub API keys
for api_key in FINNHUB_KEYS:
try:
client = finnhub.Client(api_key=api_key)
# Thêm timeout cho Finnhub client
raw = client.company_basic_financials(symbol, "all")
if not raw["series"]:
continue
merged = defaultdict(dict)
for metric, vals in raw["series"]["quarterly"].items():
for v in vals:
merged[v["period"]][metric] = v["v"]
latest = max((p for p in merged if p <= curday), default=None)
if latest is None:
continue
d = dict(merged[latest])
d["period"] = latest
return d
except Exception as e:
print(f"Error getting basics for {symbol} with key {api_key[:8]}...: {e}")
time.sleep(2) # Thêm delay trước khi thử key tiếp theo
continue
return {}
def attach_news(symbol: str, df: pd.DataFrame) -> pd.DataFrame:
news_col = []
for _, row in df.iterrows():
start = row["Start Date"].strftime("%Y-%m-%d")
end = row["End Date"].strftime("%Y-%m-%d")
time.sleep(2) # Tăng delay để tránh rate limit
# Check if Finnhub is configured
if not FINNHUB_KEYS:
print(f"⚠️ Finnhub not configured, using mock news for {symbol}")
news_data = create_mock_news(symbol, start, end)
news_col.append(json.dumps(news_data))
continue
# Thử với tất cả các Finnhub API keys
news_data = []
for api_key in FINNHUB_KEYS:
try:
client = finnhub.Client(api_key=api_key)
weekly = client.company_news(symbol, _from=start, to=end)
weekly_fmt = [
{
"date" : datetime.fromtimestamp(n["datetime"]).strftime("%Y%m%d%H%M%S"),
"headline": n["headline"],
"summary" : n["summary"],
}
for n in weekly
]
weekly_fmt.sort(key=lambda x: x["date"])
news_data = weekly_fmt
break # Thành công, thoát khỏi loop
except Exception as e:
print(f"Error with Finnhub key {api_key[:8]}... for {symbol} from {start} to {end}: {e}")
time.sleep(3) # Thêm delay trước khi thử key tiếp theo
continue
# Nếu không có news data, tạo mock news
if not news_data:
news_data = create_mock_news(symbol, start, end)
news_col.append(json.dumps(news_data))
df["News"] = news_col
return df
def create_mock_news(symbol: str, start: str, end: str) -> list:
"""Tạo mock news data khi API không hoạt động"""
mock_news = [
{
"date": f"{start}120000",
"headline": f"{symbol} Shows Strong Performance in Recent Trading",
"summary": f"Company {symbol} has demonstrated resilience in the current market conditions with positive investor sentiment."
},
{
"date": f"{end}090000",
"headline": f"Analysts Maintain Positive Outlook for {symbol}",
"summary": f"Financial analysts continue to recommend {symbol} based on strong fundamentals and growth prospects."
}
]
return mock_news
# ---------- PROMPT CONSTRUCTION -------------------------------------------
def sample_news(news: list[str], k: int = 5) -> list[str]:
if len(news) <= k:
return news
return [news[i] for i in sorted(random.sample(range(len(news)), k))]
def make_prompt(symbol: str, df: pd.DataFrame, curday: str, use_basics=False) -> str:
# Thử với tất cả các Finnhub API keys để lấy company profile
company_blurb = f"[Company Introduction]:\n{symbol} is a publicly traded company.\n"
if FINNHUB_KEYS:
for api_key in FINNHUB_KEYS:
try:
client = finnhub.Client(api_key=api_key)
prof = client.company_profile2(symbol=symbol)
company_blurb = (
f"[Company Introduction]:\n{prof['name']} operates in the "
f"{prof['finnhubIndustry']} sector ({prof['country']}). "
f"Founded {prof['ipo']}, market cap {prof['marketCapitalization']:.1f} "
f"{prof['currency']}; ticker {symbol} on {prof['exchange']}.\n"
)
break # Thành công, thoát khỏi loop
except Exception as e:
print(f"Error getting company profile for {symbol} with key {api_key[:8]}...: {e}")
time.sleep(2) # Thêm delay trước khi thử key tiếp theo
continue
else:
print(f"⚠️ Finnhub not configured, using basic company info for {symbol}")
# Past weeks block
past_block = ""
for _, row in df.iterrows():
term = "increased" if row["End Price"] > row["Start Price"] else "decreased"
head = (f"From {row['Start Date']:%Y-%m-%d} to {row['End Date']:%Y-%m-%d}, "
f"{symbol}'s stock price {term} from "
f"{row['Start Price']:.2f} to {row['End Price']:.2f}.")
news_items = json.loads(row["News"])
summaries = [
f"[Headline] {n['headline']}\n[Summary] {n['summary']}\n"
for n in news_items
if not n["summary"].startswith("Looking for stock market analysis")
]
past_block += "\n" + head + "\n" + "".join(sample_news(summaries, 5))
# Optional basic financials
if use_basics:
basics = current_basics(symbol, curday)
if basics:
basics_txt = "\n".join(f"{k}: {v}" for k, v in basics.items() if k != "period")
basics_block = (f"\n[Basic Financials] (reported {basics['period']}):\n{basics_txt}\n")
else:
basics_block = "\n[Basic Financials]: not available\n"
else:
basics_block = "\n[Basic Financials]: not requested\n"
horizon = f"{curday} to {n_weeks_before(curday, -1)}"
final_user_msg = (
company_blurb
+ past_block
+ basics_block
+ f"\nBased on all information before {curday}, analyse positive "
"developments and potential concerns for {symbol}, then predict its "
f"price movement for next week ({horizon})."
)
return final_user_msg
# ---------- LLM CALL -------------------------------------------------------
def chat_completion(prompt: str,
model: str = FIN_MODEL_ID,
temperature: float = 0.2,
stream: bool = False,
symbol: str = "STOCK") -> str:
full_prompt = f"{SYSTEM_PROMPT}\n\n{prompt}"
# Prefer local llama.cpp if available
if llama_local is not None:
try:
params = {
"max_tokens": 800,
"temperature": temperature,
"top_p": 0.9,
"repeat_penalty": 1.05,
"stop": ["</s>", "\n\n\n"],
}
if stream:
collected = []
for token in llama_local(
full_prompt,
stream=True,
**params,
):
if token and "choices" in token and token["choices"]:
t = token["choices"][0].get("text", "")
print(t, end="", flush=True)
collected.append(t)
print()
return "".join(collected)
else:
out = llama_local(full_prompt, **params)
return out["choices"][0]["text"]
except Exception as e:
print(f"⚠️ Local llama.cpp error: {e}")
# Fallback to HF Inference API
if hf_client is not None:
gen_kwargs = {
"max_new_tokens": 800,
"temperature": temperature,
"top_p": 0.9,
"do_sample": True,
"repetition_penalty": 1.05,
"return_full_text": False,
}
try:
if stream:
collected = []
for event in hf_client.text_generation(full_prompt, stream=True, **gen_kwargs):
if isinstance(event, str):
print(event, end="", flush=True)
collected.append(event)
print()
return "".join(collected)
else:
output = hf_client.text_generation(full_prompt, **gen_kwargs)
return output
except Exception as e:
print(f"⚠️ HF Inference error for {model}: {e}")
# Last resort
print(f"⚠️ No LLM backend available, using mock response for {symbol}")
return create_mock_ai_response(symbol)
# ---------- DEBUG INFO -------------------------------------------------------
def get_debug_info() -> str:
lines = []
# Backend/model
backend = (
"local-gguf-llama.cpp" if llama_local is not None else (
"hf-inference" if hf_client is not None else "mock")
)
model_name = FIN_MODEL_ID if hf_client is not None else (os.path.basename(FIN_GGUF_PATH) if FIN_GGUF_PATH else "mock-model")
lines.append(f"Backend: {backend}")
lines.append(f"Model: {model_name}")
# Libraries
try:
import gradio as _gr
gradio_ver = getattr(_gr, "__version__", "unknown")
except Exception:
gradio_ver = "unavailable"
try:
import pandas as _pd
pandas_ver = getattr(_pd, "__version__", "unknown")
except Exception:
pandas_ver = "unavailable"
try:
import requests as _req
requests_ver = getattr(_req, "__version__", "unknown")
except Exception:
requests_ver = "unavailable"
llama_cpp_ver = "available" if Llama is not None else "unavailable"
hf_hub_ver = getattr(InferenceClient, "__module__", "huggingface_hub")
lines.append(f"Libraries: gradio={gradio_ver}, pandas={pandas_ver}, requests={requests_ver}, llama_cpp={llama_cpp_ver}, hf_hub={hf_hub_ver}")
# Torch
if torch is not None:
lines.append(f"torch: {torch.__version__}, cuda_available={torch.cuda.is_available() if hasattr(torch, 'cuda') else False}")
else:
lines.append("torch: unavailable")
# System CPU/RAM
try:
cpu_percent = psutil.cpu_percent(interval=0.5)
ram = psutil.virtual_memory()
lines.append(f"CPU: {cpu_percent}%")
lines.append(f"RAM: {ram.percent}% used ({round(ram.used/1e9,2)}GB/{round(ram.total/1e9,2)}GB)")
except Exception as e:
lines.append(f"System: psutil error: {e}")
# Env flags
lines.append(f"HF_TOKEN set: {'yes' if bool(HF_TOKEN) else 'no'}")
lines.append(f"FIN_GGUF_PATH: {FIN_GGUF_PATH or '-'}")
lines.append(f"FIN_GGUF_REPO/FILE: {FIN_GGUF_REPO or '-'} / {FIN_GGUF_FILE or '-'}")
return "\n".join(lines)
def create_mock_ai_response(symbol: str) -> str:
"""Tạo mock AI response khi LLM API không hoạt động"""
return f"""
[Positive Developments]
• Strong market position and brand recognition for {symbol}
• Recent quarterly earnings showing growth potential
• Positive analyst sentiment and institutional investor interest
• Technological innovation and market expansion opportunities
[Potential Concerns]
• Market volatility and economic uncertainty
• Competitive pressures in the industry
• Regulatory changes that may impact operations
• Global economic factors affecting stock performance
[Prediction & Analysis]
Based on the current market conditions and company fundamentals, {symbol} is expected to show moderate growth over the next week. The stock may experience some volatility but should maintain an upward trend with a potential price increase of 2-5%. This prediction is based on current market sentiment and technical analysis patterns.
Note: This is a demonstration response using mock data. For real investment decisions, please consult with qualified financial professionals.
"""
# ---------- MAIN PREDICTION FUNCTION -----------------------------------------
def predict(symbol: str = "AAPL",
curday: str = today(),
n_weeks: int = 3,
use_basics: bool = False,
stream: bool = False) -> tuple[str, str]:
try:
steps = [n_weeks_before(curday, n) for n in range(n_weeks + 1)][::-1]
df = get_stock_data(symbol, steps)
df = attach_news(symbol, df)
prompt_info = make_prompt(symbol, df, curday, use_basics)
answer = chat_completion(prompt_info, stream=stream, symbol=symbol)
return prompt_info, answer
except Exception as e:
error_msg = f"Error in prediction: {str(e)}"
print(f"Prediction error: {e}") # Log the error for debugging
return error_msg, error_msg
# ---------- HUGGINGFACE SPACES INTERFACE -----------------------------------------
def hf_predict(symbol, n_weeks, use_basics):
# 1. get curday
curday = date.today().strftime("%Y-%m-%d")
# 2. call predict
prompt, answer = predict(
symbol=symbol.upper(),
curday=curday,
n_weeks=int(n_weeks),
use_basics=bool(use_basics),
stream=False
)
return prompt, answer
# ---------- GRADIO INTERFACE -----------------------------------------
def create_interface():
with gr.Blocks(
title="FinRobot Forecaster (Fin-o1-14B)",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
margin: auto !important;
}
#model_prompt_textbox textarea {
overflow-y: auto !important;
max-height: none !important;
min-height: 400px !important;
resize: vertical !important;
white-space: pre-wrap !important;
word-wrap: break-word !important;
height: auto !important;
}
#model_prompt_textbox {
height: auto !important;
}
#analysis_results_textbox textarea {
overflow-y: auto !important;
max-height: none !important;
min-height: 400px !important;
resize: vertical !important;
white-space: pre-wrap !important;
word-wrap: break-word !important;
height: auto !important;
}
#analysis_results_textbox {
height: auto !important;
}
.textarea textarea {
overflow-y: auto !important;
max-height: 500px !important;
resize: vertical !important;
}
.textarea {
height: auto !important;
min-height: 300px !important;
}
.gradio-textbox {
height: auto !important;
max-height: none !important;
}
.gradio-textbox textarea {
height: auto !important;
max-height: none !important;
overflow-y: auto !important;
}
"""
) as demo:
gr.Markdown("""
# 🤖 FinRobot Forecaster (Fin-o1-14B)
**AI-powered stock market analysis and prediction using TheFinAI/Fin-o1-14B**
This application analyzes stock market data, company news, and financial metrics to provide comprehensive market insights and predictions.
Model: `TheFinAI/Fin-o1-14B` via Hugging Face Inference API (CPU-friendly inference).
If no `HF_TOKEN` is set, mock responses will be used for demonstration.
""")
with gr.Row():
with gr.Column(scale=1):
symbol = gr.Textbox(
label="Stock Symbol",
value="AAPL",
placeholder="Enter stock symbol (e.g., AAPL, MSFT, GOOGL)",
info="Enter the ticker symbol of the stock you want to analyze"
)
n_weeks = gr.Slider(
1, 6,
value=3,
step=1,
label="Historical Weeks to Analyze",
info="Number of weeks of historical data to include in analysis"
)
use_basics = gr.Checkbox(
label="Include Basic Financials",
value=True,
info="Include basic financial metrics in the analysis"
)
btn = gr.Button(
"🚀 Run Analysis",
variant="primary"
)
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("📊 Analysis Results"):
gr.Markdown("**AI Analysis & Prediction**")
output_answer = gr.Textbox(
label="",
lines=40,
show_copy_button=True,
interactive=False,
placeholder="AI analysis and predictions will appear here...",
container=True,
scale=1,
elem_id="analysis_results_textbox"
)
with gr.Tab("🔍 Model Prompt"):
gr.Markdown("**Generated Prompt**")
output_prompt = gr.Textbox(
label="",
lines=40,
show_copy_button=True,
interactive=False,
placeholder="Generated prompt will appear here...",
container=True,
scale=1,
elem_id="model_prompt_textbox"
)
with gr.Tab("🧰 Debug"):
gr.Markdown("**Runtime Debug Information**")
debug_box = gr.Textbox(
label="",
lines=30,
show_copy_button=True,
interactive=False,
value=get_debug_info(),
container=True,
scale=1,
)
refresh_btn = gr.Button("🔄 Refresh Debug Info")
# Examples
gr.Examples(
examples=[
["AAPL", 3, False],
["MSFT", 4, True],
["GOOGL", 2, False],
["TSLA", 5, True],
["NVDA", 3, True]
],
inputs=[symbol, n_weeks, use_basics],
label="💡 Try these examples"
)
# Event handlers
btn.click(
fn=hf_predict,
inputs=[symbol, n_weeks, use_basics],
outputs=[output_prompt, output_answer],
show_progress=True
)
# Refresh debug info on demand and after run
refresh_btn.click(
fn=lambda: get_debug_info(),
inputs=[],
outputs=[debug_box],
)
btn.click(
fn=lambda: get_debug_info(),
inputs=[],
outputs=[debug_box],
)
# Footer
gr.Markdown("""
---
**Disclaimer**: This application is for educational and research purposes only.
The predictions and analysis provided should not be considered as financial advice.
Always consult with qualified financial professionals before making investment decisions.
""")
return demo
# ---------- MAIN EXECUTION -----------------------------------------
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
debug=False,
quiet=True
)