Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -60,15 +60,12 @@ from sentence_transformers import SentenceTransformer
|
|
| 60 |
from pypdf import PdfReader
|
| 61 |
import torch, os
|
| 62 |
|
| 63 |
-
# ======================================
|
| 64 |
-
# FastAPI Base
|
| 65 |
-
# ======================================
|
| 66 |
app = FastAPI(
|
| 67 |
title="Harshal AI Backend",
|
| 68 |
version="1.0.0",
|
| 69 |
-
description="Human-like assistant bound to Harshal's real resume facts."
|
| 70 |
)
|
| 71 |
|
|
|
|
| 72 |
app.add_middleware(
|
| 73 |
CORSMiddleware,
|
| 74 |
allow_origins=["*"],
|
|
@@ -76,77 +73,72 @@ app.add_middleware(
|
|
| 76 |
allow_headers=["*"],
|
| 77 |
)
|
| 78 |
|
| 79 |
-
#
|
| 80 |
-
#
|
| 81 |
-
#
|
|
|
|
| 82 |
MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct"
|
| 83 |
|
| 84 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
|
|
|
|
|
|
| 85 |
llm = AutoModelForCausalLM.from_pretrained(
|
| 86 |
MODEL_NAME,
|
| 87 |
-
|
| 88 |
-
device_map="cpu"
|
| 89 |
)
|
|
|
|
| 90 |
llm.eval()
|
| 91 |
|
| 92 |
-
#
|
| 93 |
-
#
|
| 94 |
-
#
|
|
|
|
| 95 |
embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 96 |
-
resume_data = None
|
| 97 |
RESUME_FILE = "resume.pdf"
|
|
|
|
| 98 |
|
| 99 |
-
|
| 100 |
-
# UTIL: Chunk Resume
|
| 101 |
-
# ======================================
|
| 102 |
-
def chunk_text(text, size=450, overlap=80):
|
| 103 |
text = " ".join(text.split())
|
| 104 |
-
|
| 105 |
-
|
| 106 |
while start < len(text):
|
| 107 |
end = start + size
|
| 108 |
-
|
| 109 |
start = end - overlap
|
|
|
|
| 110 |
|
| 111 |
-
|
|
|
|
| 112 |
|
| 113 |
-
# ======================================
|
| 114 |
-
# BUILD RAG
|
| 115 |
-
# ======================================
|
| 116 |
-
def load_resume():
|
| 117 |
-
global resume_data
|
| 118 |
if not os.path.exists(RESUME_FILE):
|
| 119 |
-
print("
|
| 120 |
return
|
| 121 |
|
| 122 |
reader = PdfReader(RESUME_FILE)
|
| 123 |
text = ""
|
| 124 |
-
for
|
| 125 |
-
text +=
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
resume_data = {"chunks": chunks, "embs": embs}
|
| 130 |
|
| 131 |
-
|
|
|
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
if resume_data is None:
|
| 136 |
return ""
|
| 137 |
|
| 138 |
-
|
| 139 |
-
sims = torch.nn.functional.cosine_similarity(
|
| 140 |
-
top = torch.topk(sims,
|
| 141 |
-
|
| 142 |
-
return "\n\n".join(resume_data["chunks"][i] for i in top.indices)
|
| 143 |
|
|
|
|
| 144 |
|
| 145 |
-
|
|
|
|
|
|
|
| 146 |
|
| 147 |
-
# ======================================
|
| 148 |
-
# SCHEMAS
|
| 149 |
-
# ======================================
|
| 150 |
class Msg(BaseModel):
|
| 151 |
role: str
|
| 152 |
content: str
|
|
@@ -154,59 +146,60 @@ class Msg(BaseModel):
|
|
| 154 |
class ChatReq(BaseModel):
|
| 155 |
messages: List[Msg]
|
| 156 |
|
| 157 |
-
#
|
| 158 |
-
# CHAT
|
| 159 |
-
#
|
|
|
|
| 160 |
@app.post("/chat")
|
| 161 |
def chat(req: ChatReq):
|
| 162 |
|
| 163 |
user_msg = req.messages[-1].content.strip()
|
| 164 |
-
|
| 165 |
|
| 166 |
-
# STRICT anti-hallucination persona
|
| 167 |
persona = f"""
|
| 168 |
You are Harshal Sonawane, a real human software engineer from Pune.
|
| 169 |
|
| 170 |
-
|
| 171 |
-
-
|
| 172 |
-
- ONLY answer using
|
| 173 |
-
- If the resume does
|
| 174 |
-
|
| 175 |
-
-
|
| 176 |
-
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
|
|
|
| 180 |
""".strip()
|
| 181 |
|
| 182 |
-
|
| 183 |
{"role": "system", "content": persona},
|
| 184 |
-
{"role": "user", "content": user_msg}
|
| 185 |
]
|
| 186 |
|
| 187 |
ids = tokenizer.apply_chat_template(
|
| 188 |
-
|
| 189 |
return_tensors="pt",
|
| 190 |
add_generation_prompt=True
|
| 191 |
-
).to(
|
| 192 |
|
| 193 |
out = llm.generate(
|
| 194 |
ids,
|
| 195 |
-
max_new_tokens=
|
| 196 |
temperature=0.45,
|
| 197 |
top_p=0.9,
|
| 198 |
repetition_penalty=1.1,
|
| 199 |
-
|
| 200 |
-
|
| 201 |
)
|
| 202 |
|
| 203 |
-
|
|
|
|
| 204 |
|
| 205 |
-
|
|
|
|
|
|
|
| 206 |
|
| 207 |
-
# ======================================
|
| 208 |
-
# HEALTH
|
| 209 |
-
# ======================================
|
| 210 |
@app.get("/")
|
| 211 |
def health():
|
| 212 |
-
return {"status": "Harshal AI backend running with Qwen 1.5B +
|
|
|
|
| 60 |
from pypdf import PdfReader
|
| 61 |
import torch, os
|
| 62 |
|
|
|
|
|
|
|
|
|
|
| 63 |
app = FastAPI(
|
| 64 |
title="Harshal AI Backend",
|
| 65 |
version="1.0.0",
|
|
|
|
| 66 |
)
|
| 67 |
|
| 68 |
+
# Allow requests from anywhere (Next.js frontend)
|
| 69 |
app.add_middleware(
|
| 70 |
CORSMiddleware,
|
| 71 |
allow_origins=["*"],
|
|
|
|
| 73 |
allow_headers=["*"],
|
| 74 |
)
|
| 75 |
|
| 76 |
+
# =======================================================
|
| 77 |
+
# 1) LOAD Qwen 1.5B (NO device_map, NO accelerate needed)
|
| 78 |
+
# =======================================================
|
| 79 |
+
|
| 80 |
MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct"
|
| 81 |
|
| 82 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 83 |
+
|
| 84 |
+
# β Load normally then move to CPU
|
| 85 |
llm = AutoModelForCausalLM.from_pretrained(
|
| 86 |
MODEL_NAME,
|
| 87 |
+
torch_dtype=torch.float32,
|
|
|
|
| 88 |
)
|
| 89 |
+
llm = llm.to("cpu")
|
| 90 |
llm.eval()
|
| 91 |
|
| 92 |
+
# =======================================================
|
| 93 |
+
# 2) RAG (Resume Embeddings)
|
| 94 |
+
# =======================================================
|
| 95 |
+
|
| 96 |
embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
|
|
|
| 97 |
RESUME_FILE = "resume.pdf"
|
| 98 |
+
RAG = None
|
| 99 |
|
| 100 |
+
def chunk(text, size=450, overlap=80):
|
|
|
|
|
|
|
|
|
|
| 101 |
text = " ".join(text.split())
|
| 102 |
+
chunks, start = [], 0
|
|
|
|
| 103 |
while start < len(text):
|
| 104 |
end = start + size
|
| 105 |
+
chunks.append(text[start:end])
|
| 106 |
start = end - overlap
|
| 107 |
+
return chunks
|
| 108 |
|
| 109 |
+
def build_rag():
|
| 110 |
+
global RAG
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
if not os.path.exists(RESUME_FILE):
|
| 113 |
+
print("β resume.pdf NOT FOUND β RAG DISABLED")
|
| 114 |
return
|
| 115 |
|
| 116 |
reader = PdfReader(RESUME_FILE)
|
| 117 |
text = ""
|
| 118 |
+
for p in reader.pages:
|
| 119 |
+
text += p.extract_text() or ""
|
| 120 |
|
| 121 |
+
c = chunk(text)
|
| 122 |
+
e = embedder.encode(c, normalize_embeddings=True, convert_to_tensor=True)
|
|
|
|
| 123 |
|
| 124 |
+
RAG = {"chunks": c, "embs": e}
|
| 125 |
+
print(f"β
RAG ready with {len(c)} chunks")
|
| 126 |
|
| 127 |
+
def search_rag(q):
|
| 128 |
+
if RAG is None:
|
|
|
|
| 129 |
return ""
|
| 130 |
|
| 131 |
+
qv = embedder.encode([q], normalize_embeddings=True, convert_to_tensor=True)[0]
|
| 132 |
+
sims = torch.nn.functional.cosine_similarity(qv.unsqueeze(0), RAG["embs"])
|
| 133 |
+
top = torch.topk(sims, 3).indices
|
| 134 |
+
return "\n\n".join(RAG["chunks"][i] for i in top)
|
|
|
|
| 135 |
|
| 136 |
+
build_rag()
|
| 137 |
|
| 138 |
+
# =======================================================
|
| 139 |
+
# 3) SCHEMAS
|
| 140 |
+
# =======================================================
|
| 141 |
|
|
|
|
|
|
|
|
|
|
| 142 |
class Msg(BaseModel):
|
| 143 |
role: str
|
| 144 |
content: str
|
|
|
|
| 146 |
class ChatReq(BaseModel):
|
| 147 |
messages: List[Msg]
|
| 148 |
|
| 149 |
+
# =======================================================
|
| 150 |
+
# 4) CHAT ENDPOINT
|
| 151 |
+
# =======================================================
|
| 152 |
+
|
| 153 |
@app.post("/chat")
|
| 154 |
def chat(req: ChatReq):
|
| 155 |
|
| 156 |
user_msg = req.messages[-1].content.strip()
|
| 157 |
+
rag = search_rag(user_msg)
|
| 158 |
|
|
|
|
| 159 |
persona = f"""
|
| 160 |
You are Harshal Sonawane, a real human software engineer from Pune.
|
| 161 |
|
| 162 |
+
STRICT RULES:
|
| 163 |
+
- Never say you are an AI or model.
|
| 164 |
+
- ONLY answer using resume facts below.
|
| 165 |
+
- If the resume does not contain the answer β say:
|
| 166 |
+
"I haven't mentioned this in my resume."
|
| 167 |
+
- Do not guess or invent.
|
| 168 |
+
- Speak naturally like a human.
|
| 169 |
+
- Keep replies short (2β4 sentences).
|
| 170 |
+
|
| 171 |
+
Resume facts:
|
| 172 |
+
{rag}
|
| 173 |
""".strip()
|
| 174 |
|
| 175 |
+
msgs = [
|
| 176 |
{"role": "system", "content": persona},
|
| 177 |
+
{"role": "user", "content": user_msg},
|
| 178 |
]
|
| 179 |
|
| 180 |
ids = tokenizer.apply_chat_template(
|
| 181 |
+
msgs,
|
| 182 |
return_tensors="pt",
|
| 183 |
add_generation_prompt=True
|
| 184 |
+
).to("cpu")
|
| 185 |
|
| 186 |
out = llm.generate(
|
| 187 |
ids,
|
| 188 |
+
max_new_tokens=150,
|
| 189 |
temperature=0.45,
|
| 190 |
top_p=0.9,
|
| 191 |
repetition_penalty=1.1,
|
| 192 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 193 |
+
do_sample=True
|
| 194 |
)
|
| 195 |
|
| 196 |
+
resp = tokenizer.decode(out[0][ids.shape[-1]:], skip_special_tokens=True).strip()
|
| 197 |
+
return {"reply": resp}
|
| 198 |
|
| 199 |
+
# =======================================================
|
| 200 |
+
# 5) HEALTH CHECK
|
| 201 |
+
# =======================================================
|
| 202 |
|
|
|
|
|
|
|
|
|
|
| 203 |
@app.get("/")
|
| 204 |
def health():
|
| 205 |
+
return {"status": "Harshal AI backend running with Qwen 1.5B + RAG π―"}
|