Spaces:
Running
Running
File size: 79,129 Bytes
fae4e5b 9cec855 fae4e5b 284086c fae4e5b 9cec855 fae4e5b 9cec855 10186e7 5a775ac 942ce50 3138502 5c51b47 659d404 fae4e5b 942ce50 5828eb5 f0d23ea 942ce50 f0d23ea 942ce50 9cec855 fae4e5b 659d404 fae4e5b 659d404 3138502 659d404 3138502 659d404 fae4e5b 9cec855 659d404 1fc3adb 659d404 9cec855 920ea09 9cec855 920ea09 9cec855 659d404 920ea09 9cec855 920ea09 9cec855 920ea09 9cec855 920ea09 9cec855 920ea09 60b7b04 920ea09 cb9eb3c 659d404 184f198 cb9eb3c 184f198 659d404 184f198 cb9eb3c 184f198 284086c 659d404 184f198 284086c 184f198 284086c 184f198 cb9eb3c 659d404 184f198 cb9eb3c c040b82 d9a086c 10186e7 d9a086c 10186e7 d9a086c 10186e7 d9a086c 10186e7 d9a086c 10186e7 d9a086c 10186e7 813e1f3 5a775ac 813e1f3 5a775ac 813e1f3 fd7daa9 184f198 fd7daa9 184f198 fd7daa9 184f198 fd7daa9 184f198 fd7daa9 659d404 5a775ac 659d404 5a775ac 659d404 5a775ac 659d404 942ce50 659d404 5a775ac 659d404 5a775ac 659d404 5a775ac 659d404 942ce50 659d404 5a775ac 659d404 5a775ac 659d404 942ce50 659d404 6fa9d57 5a775ac 659d404 6fa9d57 5a775ac 659d404 5a775ac 659d404 9cec855 659d404 9cec855 4a44e51 3138502 4a44e51 659d404 3138502 659d404 3138502 659d404 920ea09 659d404 920ea09 659d404 920ea09 659d404 920ea09 659d404 3138502 659d404 3138502 659d404 3138502 659d404 920ea09 daacf12 920ea09 659d404 920ea09 659d404 920ea09 daacf12 920ea09 659d404 920ea09 659d404 920ea09 cb9eb3c 659d404 daacf12 659d404 bf61933 cb9eb3c bf61933 d9a086c bf61933 659d404 daacf12 bf61933 659d404 daacf12 bf61933 659d404 942ce50 659d404 5a775ac 942ce50 5a775ac 942ce50 5c51b47 3138502 5c51b47 3138502 5c51b47 3138502 5c51b47 60b7b04 5c51b47 60b7b04 5c51b47 659d404 3138502 5c51b47 3138502 659d404 9cec855 920ea09 659d404 9cec855 659d404 c040b82 659d404 c040b82 659d404 f65e58b 920ea09 f65e58b 659d404 f65e58b 659d404 920ea09 659d404 920ea09 659d404 920ea09 9cec855 659d404 fae4e5b 920ea09 cb9eb3c 659d404 cb9eb3c 920ea09 659d404 c4cc2c2 659d404 920ea09 659d404 c4cc2c2 920ea09 659d404 10186e7 d9a086c 659d404 10186e7 659d404 10186e7 d9a086c 659d404 10186e7 659d404 813e1f3 5a775ac 659d404 813e1f3 659d404 fd7daa9 659d404 fd7daa9 659d404 fd7daa9 659d404 3138502 5c51b47 3138502 5c51b47 3138502 659d404 5a775ac 659d404 942ce50 659d404 5a775ac 659d404 fd7daa9 fae4e5b 3138502 fae4e5b 9cec855 fae4e5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 |
"""
TraceMind-AI - Agent Evaluation Platform
Enterprise-grade AI agent evaluation with MCP integration
"""
import os
import pandas as pd
import gradio as gr
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Import data loader and components
from data_loader import create_data_loader_from_env
from components.leaderboard_table import generate_leaderboard_html
from components.analytics_charts import (
create_trends_plot,
create_performance_heatmap,
create_speed_accuracy_scatter,
create_cost_efficiency_scatter
)
from components.report_cards import generate_leaderboard_summary_card, generate_run_report_card, download_card_as_png_js
from screens.trace_detail import (
create_span_visualization,
create_span_table,
create_gpu_metrics_dashboard,
create_gpu_summary_cards
)
from screens.dashboard import (
create_dashboard_ui,
update_dashboard_data
)
from screens.compare import (
create_compare_ui,
on_compare_runs
)
from utils.navigation import Navigator, Screen
# Trace Detail handlers and helpers
def create_span_details_table(spans):
"""
Create table view of span details
Args:
spans: List of span dictionaries
Returns:
DataFrame with span details
"""
try:
if not spans:
return pd.DataFrame(columns=["Span Name", "Kind", "Duration (ms)", "Tokens", "Cost (USD)", "Status"])
rows = []
for span in spans:
name = span.get('name', 'Unknown')
kind = span.get('kind', 'INTERNAL')
# Get attributes
attributes = span.get('attributes', {})
if isinstance(attributes, dict) and 'openinference.span.kind' in attributes:
kind = attributes.get('openinference.span.kind', kind)
# Calculate duration
start = span.get('startTime') or span.get('startTimeUnixNano', 0)
end = span.get('endTime') or span.get('endTimeUnixNano', 0)
duration = (end - start) / 1000000 if start and end else 0 # Convert to ms
status = span.get('status', {}).get('code', 'OK') if isinstance(span.get('status'), dict) else 'OK'
# Extract tokens and cost information
tokens_str = "-"
cost_str = "-"
if isinstance(attributes, dict):
# Check for token usage
prompt_tokens = attributes.get('gen_ai.usage.prompt_tokens') or attributes.get('llm.token_count.prompt')
completion_tokens = attributes.get('gen_ai.usage.completion_tokens') or attributes.get('llm.token_count.completion')
total_tokens = attributes.get('llm.usage.total_tokens')
# Build tokens string
if prompt_tokens is not None and completion_tokens is not None:
total = int(prompt_tokens) + int(completion_tokens)
tokens_str = f"{total} ({int(prompt_tokens)}+{int(completion_tokens)})"
elif total_tokens is not None:
tokens_str = str(int(total_tokens))
# Check for cost
cost = attributes.get('gen_ai.usage.cost.total') or attributes.get('llm.usage.cost')
if cost is not None:
cost_str = f"${float(cost):.6f}"
rows.append({
"Span Name": name,
"Kind": kind,
"Duration (ms)": round(duration, 2),
"Tokens": tokens_str,
"Cost (USD)": cost_str,
"Status": status
})
return pd.DataFrame(rows)
except Exception as e:
print(f"[ERROR] create_span_details_table: {e}")
import traceback
traceback.print_exc()
return pd.DataFrame(columns=["Span Name", "Kind", "Duration (ms)", "Tokens", "Cost (USD)", "Status"])
def create_trace_metadata_html(trace_data: dict) -> str:
"""Create HTML for trace metadata display"""
trace_id = trace_data.get('trace_id', 'Unknown')
spans = trace_data.get('spans', [])
if hasattr(spans, 'tolist'):
spans = spans.tolist()
elif not isinstance(spans, list):
spans = list(spans) if spans is not None else []
metadata_html = f"""
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 20px; border-radius: 10px; color: white; margin-bottom: 20px;">
<h3 style="margin: 0 0 10px 0;">Trace Information</h3>
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 15px;">
<div>
<strong>Trace ID:</strong> {trace_id}<br>
<strong>Total Spans:</strong> {len(spans)}
</div>
</div>
</div>
"""
return metadata_html
def on_test_case_select(evt: gr.SelectData, df):
"""Handle test case selection in run detail - navigate to trace detail"""
global current_selected_run, current_selected_trace
print(f"[DEBUG] on_test_case_select called with index: {evt.index}")
# Check if we have a selected run
if current_selected_run is None:
print("[ERROR] No run selected - current_selected_run is None")
gr.Warning("Please select a run from the leaderboard first")
return {}
try:
# Get selected test case
selected_idx = evt.index[0]
if df is None or df.empty or selected_idx >= len(df):
gr.Warning("Invalid test case selection")
return {}
test_case = df.iloc[selected_idx].to_dict()
trace_id = test_case.get('trace_id')
print(f"[DEBUG] Selected test case: {test_case.get('task_id', 'Unknown')} (trace_id: {trace_id})")
# Load trace data
traces_dataset = current_selected_run.get('traces_dataset')
if not traces_dataset:
gr.Warning("No traces dataset found in current run")
return {}
trace_data = data_loader.get_trace_by_id(traces_dataset, trace_id)
if not trace_data:
gr.Warning(f"Trace not found: {trace_id}")
return {}
current_selected_trace = trace_data
# Get spans and ensure it's a list
spans = trace_data.get('spans', [])
if hasattr(spans, 'tolist'):
spans = spans.tolist()
elif not isinstance(spans, list):
spans = list(spans) if spans is not None else []
print(f"[DEBUG] Loaded trace with {len(spans)} spans")
# Create visualizations
span_viz_plot = create_span_visualization(spans, trace_id)
# Process spans for JSON display (create_span_table returns gr.JSON component, we need the data)
simplified_spans = []
for span in spans:
# Helper to get timestamp
def get_timestamp(s, field_name):
variations = [field_name, field_name.lower(), field_name.replace('Time', 'TimeUnixNano')]
for var in variations:
if var in s:
value = s[var]
return int(value) if isinstance(value, str) else value
return 0
start_time = get_timestamp(span, 'startTime')
end_time = get_timestamp(span, 'endTime')
duration_ms = (end_time - start_time) / 1000000 if (end_time and start_time) else 0
span_id = span.get('spanId') or span.get('span_id') or 'N/A'
parent_id = span.get('parentSpanId') or span.get('parent_span_id') or 'root'
simplified_spans.append({
"Span ID": span_id,
"Parent": parent_id,
"Name": span.get('name', 'N/A'),
"Kind": span.get('kind', 'N/A'),
"Duration (ms)": round(duration_ms, 2),
"Attributes": span.get('attributes', {}),
"Status": span.get('status', {}).get('code', 'UNKNOWN')
})
span_details_data = simplified_spans
# Create thought graph
from components.thought_graph import create_thought_graph as create_network_graph
thought_graph_plot = create_network_graph(spans, trace_id)
# Create span details table
span_table_df = create_span_details_table(spans)
# Load GPU metrics (if available)
gpu_summary_html = "<div style='padding: 20px; text-align: center;'>β οΈ No GPU metrics available (expected for API models)</div>"
gpu_plot = None
gpu_json_data = {}
try:
if 'metrics_dataset' in current_selected_run and current_selected_run['metrics_dataset']:
metrics_dataset = current_selected_run['metrics_dataset']
gpu_metrics_data = data_loader.load_metrics(metrics_dataset)
if gpu_metrics_data is not None and not gpu_metrics_data.empty:
gpu_plot = create_gpu_metrics_dashboard(gpu_metrics_data)
gpu_summary_html = create_gpu_summary_cards(gpu_metrics_data)
gpu_json_data = gpu_metrics_data.to_dict('records')
except Exception as e:
print(f"[WARNING] Could not load GPU metrics: {e}")
# Return dictionary with visibility updates and data
return {
run_detail_screen: gr.update(visible=False),
trace_detail_screen: gr.update(visible=True),
trace_title: gr.update(value=f"# π Trace Detail: {trace_id}"),
trace_metadata_html: gr.update(value=create_trace_metadata_html(trace_data)),
trace_thought_graph: gr.update(value=thought_graph_plot),
span_visualization: gr.update(value=span_viz_plot),
span_details_table: gr.update(value=span_table_df),
span_details_json: gr.update(value=span_details_data),
gpu_summary_cards_html: gr.update(value=gpu_summary_html),
gpu_metrics_plot: gr.update(value=gpu_plot),
gpu_metrics_json: gr.update(value=gpu_json_data)
}
except Exception as e:
print(f"[ERROR] on_test_case_select failed: {e}")
import traceback
traceback.print_exc()
gr.Warning(f"Error loading trace: {e}")
return {}
def create_performance_charts(results_df):
"""
Create performance analysis charts for the Performance tab
Args:
results_df: DataFrame with test results
Returns:
Plotly figure with performance metrics
"""
import plotly.graph_objects as go
from plotly.subplots import make_subplots
try:
if results_df.empty:
fig = go.Figure()
fig.add_annotation(text="No performance data available", showarrow=False)
return fig
# Create 2x2 subplots
fig = make_subplots(
rows=2, cols=2,
subplot_titles=(
"Response Time Distribution",
"Token Usage per Test",
"Cost per Test",
"Success vs Failure"
),
specs=[[{"type": "histogram"}, {"type": "bar"}],
[{"type": "bar"}, {"type": "pie"}]]
)
# 1. Response Time Distribution (Histogram)
if 'execution_time_ms' in results_df.columns:
fig.add_trace(
go.Histogram(
x=results_df['execution_time_ms'],
nbinsx=20,
marker_color='#3498DB',
name='Response Time',
showlegend=False
),
row=1, col=1
)
fig.update_xaxes(title_text="Time (ms)", row=1, col=1)
fig.update_yaxes(title_text="Count", row=1, col=1)
# 2. Token Usage per Test (Bar)
if 'total_tokens' in results_df.columns:
test_indices = list(range(len(results_df)))
fig.add_trace(
go.Bar(
x=test_indices,
y=results_df['total_tokens'],
marker_color='#9B59B6',
name='Tokens',
showlegend=False
),
row=1, col=2
)
fig.update_xaxes(title_text="Test Index", row=1, col=2)
fig.update_yaxes(title_text="Tokens", row=1, col=2)
# 3. Cost per Test (Bar)
if 'cost_usd' in results_df.columns:
test_indices = list(range(len(results_df)))
fig.add_trace(
go.Bar(
x=test_indices,
y=results_df['cost_usd'],
marker_color='#E67E22',
name='Cost',
showlegend=False
),
row=2, col=1
)
fig.update_xaxes(title_text="Test Index", row=2, col=1)
fig.update_yaxes(title_text="Cost (USD)", row=2, col=1)
# 4. Success vs Failure (Pie)
if 'success' in results_df.columns:
# Convert to boolean if needed
success_series = results_df['success']
if success_series.dtype == object:
success_series = success_series == "β
"
success_count = int(success_series.sum())
failure_count = len(results_df) - success_count
fig.add_trace(
go.Pie(
labels=['Success', 'Failure'],
values=[success_count, failure_count],
marker_colors=['#2ECC71', '#E74C3C'],
showlegend=True
),
row=2, col=2
)
# Update layout
fig.update_layout(
height=700,
showlegend=False,
title_text="Performance Analysis Dashboard",
title_x=0.5
)
return fig
except Exception as e:
print(f"[ERROR] create_performance_charts: {e}")
import traceback
traceback.print_exc()
fig = go.Figure()
fig.add_annotation(text=f"Error creating charts: {str(e)}", showarrow=False)
return fig
def go_back_to_run_detail():
"""Navigate from trace detail back to run detail"""
return {
run_detail_screen: gr.update(visible=True),
trace_detail_screen: gr.update(visible=False)
}
# Initialize data loader
data_loader = create_data_loader_from_env()
navigator = Navigator()
# Pre-load and cache the leaderboard data before building UI
print("Pre-loading leaderboard data from HuggingFace...")
leaderboard_df_cache = data_loader.load_leaderboard()
print(f"Loaded {len(leaderboard_df_cache)} evaluation runs")
# Global state (already populated)
# leaderboard_df_cache is now set
# Additional global state for navigation
current_selected_run = None
current_selected_trace = None
current_drilldown_df = None # Store currently displayed drilldown data
def load_leaderboard():
"""Load initial leaderboard data from cache"""
global leaderboard_df_cache
# Use pre-cached data (already loaded before UI build)
df = leaderboard_df_cache.copy()
html = generate_leaderboard_html(df)
# Get filter choices
models = ["All Models"] + sorted(df['model'].unique().tolist())
providers = ["All"] + sorted(df['provider'].unique().tolist())
return html, gr.update(choices=models), gr.update(choices=models), gr.update(choices=providers)
def refresh_leaderboard():
"""Refresh leaderboard data from source (for reload button)"""
global leaderboard_df_cache
print("π Refreshing leaderboard data...")
df = data_loader.refresh_leaderboard() # Clears cache and reloads
leaderboard_df_cache = df.copy()
print(f"β
Refreshed {len(df)} evaluation runs")
html = generate_leaderboard_html(df)
models = ["All Models"] + sorted(df['model'].unique().tolist())
return html, gr.update(choices=models), gr.update(choices=models)
def apply_leaderboard_filters(agent_type, provider, sort_by_col, sort_order):
"""Apply filters and sorting to styled HTML leaderboard"""
global leaderboard_df_cache, model_filter
df = leaderboard_df_cache.copy() if leaderboard_df_cache is not None else data_loader.load_leaderboard()
# Apply model filter from sidebar
selected_model = model_filter.value if hasattr(model_filter, 'value') else "All Models"
if selected_model != "All Models":
df = df[df['model'] == selected_model]
# Apply agent type filter
if agent_type != "All":
df = df[df['agent_type'] == agent_type]
# Apply provider filter
if provider != "All":
df = df[df['provider'] == provider]
# Sort
ascending = (sort_order == "Ascending")
df = df.sort_values(by=sort_by_col, ascending=ascending)
html = generate_leaderboard_html(df, sort_by_col, ascending)
return html
def apply_drilldown_filters(agent_type, provider, sort_by_col, sort_order):
"""Apply filters and sorting to drilldown table"""
global leaderboard_df_cache
df = leaderboard_df_cache.copy() if leaderboard_df_cache is not None else data_loader.load_leaderboard()
# Apply model filter from sidebar
selected_model = model_filter.value if hasattr(model_filter, 'value') else "All Models"
if selected_model != "All Models":
df = df[df['model'] == selected_model]
# Apply agent type filter
if agent_type != "All":
df = df[df['agent_type'] == agent_type]
# Apply provider filter
if provider != "All":
df = df[df['provider'] == provider]
# Sort
ascending = (sort_order == "Ascending")
df = df.sort_values(by=sort_by_col, ascending=ascending).reset_index(drop=True)
# Prepare simplified dataframe for display
display_df = df[[
'run_id', 'model', 'agent_type', 'provider', 'success_rate',
'total_tests', 'avg_duration_ms', 'total_cost_usd', 'submitted_by'
]].copy()
display_df.columns = ['Run ID', 'Model', 'Agent Type', 'Provider', 'Success Rate', 'Tests', 'Duration (ms)', 'Cost (USD)', 'Submitted By']
return gr.update(value=display_df)
def apply_sidebar_filters(selected_model, selected_agent_type):
"""Apply sidebar filters to both leaderboard tabs"""
global leaderboard_df_cache
df = leaderboard_df_cache.copy() if leaderboard_df_cache is not None else data_loader.load_leaderboard()
# Apply model filter
if selected_model != "All Models":
df = df[df['model'] == selected_model]
# Apply agent type filter
if selected_agent_type != "All":
df = df[df['agent_type'] == selected_agent_type]
# For HTML leaderboard
sorted_df = df.sort_values(by='success_rate', ascending=False).reset_index(drop=True)
html = generate_leaderboard_html(sorted_df, 'success_rate', False)
# For drilldown table
display_df = df[[
'run_id', 'model', 'agent_type', 'provider', 'success_rate',
'total_tests', 'avg_duration_ms', 'total_cost_usd', 'submitted_by'
]].copy()
display_df.columns = ['Run ID', 'Model', 'Agent Type', 'Provider', 'Success Rate', 'Tests', 'Duration (ms)', 'Cost (USD)', 'Submitted By']
# Update trends
trends_fig = create_trends_plot(df)
# Update compare dropdowns
compare_choices = []
for _, row in df.iterrows():
label = f"{row.get('model', 'Unknown')} - {row.get('timestamp', 'N/A')}"
# Use composite key: run_id|timestamp to ensure uniqueness
value = f"{row.get('run_id', '')}|{row.get('timestamp', '')}"
if value:
compare_choices.append((label, value))
return {
leaderboard_by_model: gr.update(value=html),
leaderboard_table: gr.update(value=display_df),
trends_plot: gr.update(value=trends_fig),
compare_components['compare_run_a_dropdown']: gr.update(choices=compare_choices),
compare_components['compare_run_b_dropdown']: gr.update(choices=compare_choices)
}
def load_drilldown(agent_type, provider):
"""Load drilldown data with filters"""
global current_drilldown_df
try:
df = data_loader.load_leaderboard()
if df.empty:
current_drilldown_df = pd.DataFrame()
return pd.DataFrame()
if agent_type != "All" and 'agent_type' in df.columns:
df = df[df['agent_type'] == agent_type]
if provider != "All" and 'provider' in df.columns:
df = df[df['provider'] == provider]
# IMPORTANT: Store the FULL dataframe in global state (with ALL columns)
# This ensures the event handler has access to results_dataset, traces_dataset, etc.
current_drilldown_df = df.copy()
# Select only columns for DISPLAY
desired_columns = [
'run_id', 'model', 'agent_type', 'provider',
'success_rate', 'total_tests', 'avg_duration_ms', 'total_cost_usd'
]
# Filter to only existing columns
available_columns = [col for col in desired_columns if col in df.columns]
if not available_columns:
# If no desired columns exist, return empty dataframe
return pd.DataFrame()
display_df = df[available_columns].copy()
# Return ONLY display columns for the UI table
return display_df
except Exception as e:
print(f"[ERROR] load_drilldown: {e}")
import traceback
traceback.print_exc()
return pd.DataFrame()
def load_trends():
"""Load trends visualization"""
df = data_loader.load_leaderboard()
fig = create_trends_plot(df)
return fig
def get_chart_explanation(viz_type):
"""Get explanation text for the selected chart type"""
explanations = {
"π₯ Performance Heatmap": """
#### π₯ Performance Heatmap
**What it shows:** All models compared across all metrics in one view
**How to read it:**
- π’ **Green cells** = Better performance (higher is better)
- π‘ **Yellow cells** = Average performance
- π΄ **Red cells** = Worse performance (needs improvement)
**Metrics displayed:**
- Success Rate (%), Avg Duration (ms), Total Cost ($)
- CO2 Emissions (g), GPU Utilization (%), Total Tokens
**Use it to:** Quickly identify which models excel in which areas
""",
"β‘ Speed vs Accuracy": """
#### β‘ Speed vs Accuracy Trade-off
**What it shows:** The relationship between model speed and accuracy
**How to read it:**
- **X-axis** = Average Duration (log scale) - left is faster
- **Y-axis** = Success Rate (%) - higher is better
- **Bubble size** = Total Cost - larger bubbles are more expensive
- **Color** = Agent Type (tool/code/both)
**Sweet spot:** Top-left quadrant = β **Fast & Accurate** models
**Quadrant lines:**
- Median lines split the chart into 4 zones
- Models above/left of medians are better than average
**Use it to:** Find models that balance speed and accuracy for your needs
""",
"π° Cost Efficiency": """
#### π° Cost-Performance Efficiency
**What it shows:** Best value-for-money models
**How to read it:**
- **X-axis** = Total Cost (log scale) - left is cheaper
- **Y-axis** = Success Rate (%) - higher is better
- **Bubble size** = Duration - smaller bubbles are faster
- **Color** = Provider (blue=API, green=GPU/local)
- **β Stars** = Top 3 most efficient models
**Cost bands:**
- π’ **Budget** = < $0.01 per run
- π‘ **Mid-Range** = $0.01 - $0.10 per run
- π **Premium** = > $0.10 per run
**Efficiency metric:** Success Rate Γ· Cost (higher is better)
**Use it to:** Maximize ROI by finding models with best success-to-cost ratio
"""
}
return explanations.get(viz_type, explanations["π₯ Performance Heatmap"])
def update_analytics(viz_type):
"""Update analytics chart and explanation based on visualization type"""
df = data_loader.load_leaderboard()
# Get chart
if "Heatmap" in viz_type:
chart = create_performance_heatmap(df)
elif "Speed" in viz_type:
chart = create_speed_accuracy_scatter(df)
else:
chart = create_cost_efficiency_scatter(df)
# Get explanation
explanation = get_chart_explanation(viz_type)
return chart, explanation
def generate_card(top_n):
"""Generate summary card HTML"""
df = data_loader.load_leaderboard()
if df is None or df.empty:
return "<p>No data available</p>", gr.update(visible=False)
html = generate_leaderboard_summary_card(df, top_n)
return html, gr.update(visible=True)
def generate_insights():
"""Generate AI insights summary"""
try:
df = data_loader.load_leaderboard()
if df.empty or 'success_rate' not in df.columns:
return "## π Leaderboard Summary\n\nNo data available for insights."
top_model = df.loc[df['success_rate'].idxmax()]
most_cost_effective = df.loc[(df['success_rate'] / (df['total_cost_usd'] + 0.0001)).idxmax()]
fastest = df.loc[df['avg_duration_ms'].idxmin()]
insights = f"""
## π Leaderboard Summary
**Total Runs:** {len(df)}
**Top Performers:**
- π₯ **Best Accuracy:** {top_model['model']} ({top_model['success_rate']:.1f}%)
- π° **Most Cost-Effective:** {most_cost_effective['model']} ({most_cost_effective['success_rate']:.1f}% @ ${most_cost_effective['total_cost_usd']:.4f})
- β‘ **Fastest:** {fastest['model']} ({fastest['avg_duration_ms']:.0f}ms avg)
**Key Trends:**
- Average Success Rate: {df['success_rate'].mean():.1f}%
- Average Cost: ${df['total_cost_usd'].mean():.4f}
- Average Duration: {df['avg_duration_ms'].mean():.0f}ms
---
*Note: AI-powered insights will be available via MCP integration in the full version.*
"""
return insights
except Exception as e:
print(f"[ERROR] generate_insights: {e}")
import traceback
traceback.print_exc()
return f"## π Leaderboard Summary\n\nError generating insights: {str(e)}"
def on_html_table_row_click(row_index_str):
"""Handle row click from HTML table via JavaScript (hidden textbox bridge)"""
global current_selected_run, leaderboard_df_cache
print(f"[DEBUG] on_html_table_row_click called with: '{row_index_str}'")
try:
# Parse row index from string
if not row_index_str or row_index_str == "" or row_index_str.strip() == "":
print("[DEBUG] Empty row index, ignoring")
return {
leaderboard_screen: gr.update(),
run_detail_screen: gr.update(),
run_metadata_html: gr.update(),
test_cases_table: gr.update(),
run_card_html: gr.update(),
selected_row_index: gr.update(value="") # Clear textbox
}
selected_idx = int(row_index_str)
print(f"[DEBUG] Parsed row index: {selected_idx}")
# Get the full run data from cache
if leaderboard_df_cache is None or leaderboard_df_cache.empty:
print("[ERROR] Leaderboard cache is empty")
gr.Warning("Leaderboard data not loaded")
return {
leaderboard_screen: gr.update(),
run_detail_screen: gr.update(),
run_metadata_html: gr.update(),
test_cases_table: gr.update(),
run_card_html: gr.update(),
selected_row_index: gr.update(value="") # Clear textbox
}
if selected_idx < 0 or selected_idx >= len(leaderboard_df_cache):
print(f"[ERROR] Invalid row index: {selected_idx}, cache size: {len(leaderboard_df_cache)}")
gr.Warning(f"Invalid row index: {selected_idx}")
return {
leaderboard_screen: gr.update(),
run_detail_screen: gr.update(),
run_metadata_html: gr.update(),
test_cases_table: gr.update(),
run_card_html: gr.update(),
selected_row_index: gr.update(value="") # Clear textbox
}
run_data = leaderboard_df_cache.iloc[selected_idx].to_dict()
# Set global
current_selected_run = run_data
print(f"[DEBUG] Selected run from HTML table: {run_data.get('model', 'Unknown')} (row {selected_idx})")
# Load results for this run
results_dataset = run_data.get('results_dataset')
if not results_dataset:
gr.Warning("No results dataset found for this run")
return {
leaderboard_screen: gr.update(visible=True),
run_detail_screen: gr.update(visible=False),
run_metadata_html: gr.update(value="<h3>No results dataset found</h3>"),
test_cases_table: gr.update(value=pd.DataFrame()),
selected_row_index: gr.update(value="")
}
results_df = data_loader.load_results(results_dataset)
# Generate performance chart
perf_chart = create_performance_charts(results_df)
# Create metadata HTML
metadata_html = f"""
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 20px; border-radius: 10px; color: white; margin-bottom: 20px;">
<h2 style="margin: 0 0 10px 0;">π Run Detail: {run_data.get('model', 'Unknown')}</h2>
<div style="display: grid; grid-template-columns: 1fr 1fr 1fr; gap: 20px; margin-top: 15px;">
<div>
<strong>Agent Type:</strong> {run_data.get('agent_type', 'N/A')}<br>
<strong>Provider:</strong> {run_data.get('provider', 'N/A')}<br>
<strong>Success Rate:</strong> {run_data.get('success_rate', 0):.1f}%
</div>
<div>
<strong>Total Tests:</strong> {run_data.get('total_tests', 0)}<br>
<strong>Successful:</strong> {run_data.get('successful_tests', 0)}<br>
<strong>Failed:</strong> {run_data.get('failed_tests', 0)}
</div>
<div>
<strong>Total Cost:</strong> ${run_data.get('total_cost_usd', 0):.4f}<br>
<strong>Avg Duration:</strong> {run_data.get('avg_duration_ms', 0):.0f}ms<br>
<strong>Submitted By:</strong> {run_data.get('submitted_by', 'Unknown')}
</div>
</div>
</div>
"""
# Generate run report card HTML
run_card_html_content = generate_run_report_card(run_data)
# Format results for display
display_df = results_df.copy()
# Select and format columns if they exist
display_columns = []
if 'task_id' in display_df.columns:
display_columns.append('task_id')
if 'success' in display_df.columns:
display_df['success'] = display_df['success'].apply(lambda x: "β
" if x else "β")
display_columns.append('success')
if 'tool_called' in display_df.columns:
display_columns.append('tool_called')
if 'execution_time_ms' in display_df.columns:
display_df['execution_time_ms'] = display_df['execution_time_ms'].apply(lambda x: f"{x:.0f}ms")
display_columns.append('execution_time_ms')
if 'total_tokens' in display_df.columns:
display_columns.append('total_tokens')
if 'cost_usd' in display_df.columns:
display_df['cost_usd'] = display_df['cost_usd'].apply(lambda x: f"${x:.4f}")
display_columns.append('cost_usd')
if 'trace_id' in display_df.columns:
display_columns.append('trace_id')
if display_columns:
display_df = display_df[display_columns]
print(f"[DEBUG] Successfully loaded run detail for: {run_data.get('model', 'Unknown')}")
return {
# Hide leaderboard, show run detail
leaderboard_screen: gr.update(visible=False),
run_detail_screen: gr.update(visible=True),
run_metadata_html: gr.update(value=metadata_html),
test_cases_table: gr.update(value=display_df),
run_card_html: gr.update(value=run_card_html_content),
selected_row_index: gr.update(value="") # Clear textbox
}
except Exception as e:
print(f"[ERROR] Handling HTML table row click: {e}")
import traceback
traceback.print_exc()
gr.Warning(f"Error loading run details: {str(e)}")
return {
leaderboard_screen: gr.update(visible=True), # Stay on leaderboard
run_detail_screen: gr.update(visible=False),
run_metadata_html: gr.update(),
test_cases_table: gr.update(),
run_card_html: gr.update(),
selected_row_index: gr.update(value="") # Clear textbox
}
def load_run_detail(run_id):
"""Load run detail data including results dataset"""
global current_selected_run, leaderboard_df_cache
try:
# Find run in cache
df = leaderboard_df_cache
run_data = df[df['run_id'] == run_id].iloc[0].to_dict()
current_selected_run = run_data
# Load results dataset
results_dataset = run_data.get('results_dataset')
if not results_dataset:
return pd.DataFrame(), f"# Error\n\nNo results dataset found for this run", ""
results_df = data_loader.load_results(results_dataset)
# Generate performance chart
perf_chart = create_performance_charts(results_df)
# Create metadata HTML
metadata_html = f"""
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 20px; border-radius: 10px; color: white; margin-bottom: 20px;">
<h2 style="margin: 0 0 10px 0;">π Run Detail: {run_data.get('model', 'Unknown')}</h2>
<div style="display: grid; grid-template-columns: 1fr 1fr 1fr; gap: 20px; margin-top: 15px;">
<div>
<strong>Agent Type:</strong> {run_data.get('agent_type', 'N/A')}<br>
<strong>Provider:</strong> {run_data.get('provider', 'N/A')}<br>
<strong>Success Rate:</strong> {run_data.get('success_rate', 0):.1f}%
</div>
<div>
<strong>Total Tests:</strong> {run_data.get('total_tests', 0)}<br>
<strong>Successful:</strong> {run_data.get('successful_tests', 0)}<br>
<strong>Failed:</strong> {run_data.get('failed_tests', 0)}
</div>
<div>
<strong>Total Cost:</strong> ${run_data.get('total_cost_usd', 0):.4f}<br>
<strong>Avg Duration:</strong> {run_data.get('avg_duration_ms', 0):.0f}ms<br>
<strong>Submitted By:</strong> {run_data.get('submitted_by', 'Unknown')}
</div>
</div>
</div>
"""
# Generate run report card HTML
run_card_html_content = generate_run_report_card(run_data)
# Format results for display
display_df = results_df.copy()
# Select and format columns if they exist
display_columns = []
if 'task_id' in display_df.columns:
display_columns.append('task_id')
if 'success' in display_df.columns:
display_df['success'] = display_df['success'].apply(lambda x: "β
" if x else "β")
display_columns.append('success')
if 'tool_called' in display_df.columns:
display_columns.append('tool_called')
if 'execution_time_ms' in display_df.columns:
display_df['execution_time_ms'] = display_df['execution_time_ms'].apply(lambda x: f"{x:.0f}ms")
display_columns.append('execution_time_ms')
if 'total_tokens' in display_df.columns:
display_columns.append('total_tokens')
if 'cost_usd' in display_df.columns:
display_df['cost_usd'] = display_df['cost_usd'].apply(lambda x: f"${x:.4f}")
display_columns.append('cost_usd')
if 'trace_id' in display_df.columns:
display_columns.append('trace_id')
if display_columns:
display_df = display_df[display_columns]
return display_df, metadata_html, run_data.get('run_id', '')
except Exception as e:
print(f"[ERROR] load_run_detail: {e}")
import traceback
traceback.print_exc()
return pd.DataFrame(), f"# Error\n\nError loading run detail: {str(e)}", ""
# Screen 3 (Run Detail) event handlers
def on_drilldown_select(evt: gr.SelectData, df):
"""Handle row selection from DrillDown table - EXACT COPY from MockTraceMind"""
global current_selected_run, current_drilldown_df
try:
# Get selected run - use currently displayed dataframe (filtered/sorted)
selected_idx = evt.index[0]
# Get the full run data from the displayed dataframe
# This ensures we get the correct row even after filtering/sorting
if current_drilldown_df is not None and not current_drilldown_df.empty:
if selected_idx < len(current_drilldown_df):
run_data = current_drilldown_df.iloc[selected_idx].to_dict()
else:
gr.Warning(f"Invalid row selection: index {selected_idx} out of bounds")
return {}
else:
gr.Warning("Leaderboard data not available")
return {}
# IMPORTANT: Set global FIRST before any operations that might fail
current_selected_run = run_data
print(f"[DEBUG] Selected run: {run_data.get('model', 'Unknown')} (run_id: {run_data.get('run_id', 'N/A')[:8]}...)")
# Load results for this run
results_dataset = run_data.get('results_dataset')
if not results_dataset:
gr.Warning("No results dataset found for this run")
return {
leaderboard_screen: gr.update(visible=True),
run_detail_screen: gr.update(visible=False),
run_metadata_html: gr.update(value="<h3>No results dataset found</h3>"),
test_cases_table: gr.update(value=pd.DataFrame()),
performance_charts: gr.update(),
run_card_html: gr.update()
}
results_df = data_loader.load_results(results_dataset)
# Generate performance chart
perf_chart = create_performance_charts(results_df)
# Create metadata HTML
metadata_html = f"""
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 20px; border-radius: 10px; color: white; margin-bottom: 20px;">
<h2 style="margin: 0 0 10px 0;">π Run Detail: {run_data.get('model', 'Unknown')}</h2>
<div style="display: grid; grid-template-columns: 1fr 1fr 1fr; gap: 20px; margin-top: 15px;">
<div>
<strong>Agent Type:</strong> {run_data.get('agent_type', 'N/A')}<br>
<strong>Provider:</strong> {run_data.get('provider', 'N/A')}<br>
<strong>Success Rate:</strong> {run_data.get('success_rate', 0):.1f}%
</div>
<div>
<strong>Total Tests:</strong> {run_data.get('total_tests', 0)}<br>
<strong>Successful:</strong> {run_data.get('successful_tests', 0)}<br>
<strong>Failed:</strong> {run_data.get('failed_tests', 0)}
</div>
<div>
<strong>Total Cost:</strong> ${run_data.get('total_cost_usd', 0):.4f}<br>
<strong>Avg Duration:</strong> {run_data.get('avg_duration_ms', 0):.0f}ms<br>
<strong>Submitted By:</strong> {run_data.get('submitted_by', 'Unknown')}
</div>
</div>
</div>
"""
# Generate run report card HTML
run_card_html_content = generate_run_report_card(run_data)
# Format results for display
display_df = results_df.copy()
# Select and format columns if they exist
display_columns = []
if 'task_id' in display_df.columns:
display_columns.append('task_id')
if 'success' in display_df.columns:
display_df['success'] = display_df['success'].apply(lambda x: "β
" if x else "β")
display_columns.append('success')
if 'tool_called' in display_df.columns:
display_columns.append('tool_called')
if 'execution_time_ms' in display_df.columns:
display_df['execution_time_ms'] = display_df['execution_time_ms'].apply(lambda x: f"{x:.0f}ms")
display_columns.append('execution_time_ms')
if 'total_tokens' in display_df.columns:
display_columns.append('total_tokens')
if 'cost_usd' in display_df.columns:
display_df['cost_usd'] = display_df['cost_usd'].apply(lambda x: f"${x:.4f}")
display_columns.append('cost_usd')
if 'trace_id' in display_df.columns:
display_columns.append('trace_id')
if display_columns:
display_df = display_df[display_columns]
print(f"[DEBUG] Successfully loaded run detail for: {run_data.get('model', 'Unknown')}")
return {
# Hide leaderboard, show run detail
leaderboard_screen: gr.update(visible=False),
run_detail_screen: gr.update(visible=True),
run_metadata_html: gr.update(value=metadata_html),
test_cases_table: gr.update(value=display_df),
performance_charts: gr.update(value=perf_chart),
run_card_html: gr.update(value=run_card_html_content)
}
except Exception as e:
print(f"[ERROR] Loading run details: {e}")
import traceback
traceback.print_exc()
gr.Warning(f"Error loading run details: {e}")
# Return updates for all output components to avoid Gradio error
return {
leaderboard_screen: gr.update(visible=True), # Stay on leaderboard
run_detail_screen: gr.update(visible=False),
run_metadata_html: gr.update(value="<h3>Error loading run detail</h3>"),
test_cases_table: gr.update(value=pd.DataFrame()),
performance_charts: gr.update(),
run_card_html: gr.update()
}
def go_back_to_leaderboard():
"""Navigate back to leaderboard screen"""
return {
leaderboard_screen: gr.update(visible=True),
run_detail_screen: gr.update(visible=False)
}
# Build Gradio app
# Theme configuration (like MockTraceMind)
theme = gr.themes.Base(
primary_hue="indigo",
secondary_hue="purple",
neutral_hue="slate",
font=gr.themes.GoogleFont("Inter"),
).set(
body_background_fill="*neutral_50",
body_background_fill_dark="*neutral_900",
button_primary_background_fill="*primary_500",
button_primary_background_fill_hover="*primary_600",
button_primary_text_color="white",
)
with gr.Blocks(title="TraceMind-AI", theme=theme) as app:
# Top Banner
gr.HTML("""
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 25px;
border-radius: 10px;
margin-bottom: 20px;
text-align: center;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);">
<h1 style="color: white !important; margin: 0; font-size: 2.5em; font-weight: bold;">
π§ TraceMind
</h1>
<p style="color: rgba(255,255,255,0.9); margin: 10px 0 0 0; font-size: 1.2em;">
Agent Evaluation Platform
</p>
<p style="color: rgba(255,255,255,0.8); margin: 10px 0 0 0; font-size: 0.9em;">
Powered by Gradio π | HuggingFace Jobs | TraceVerde | SmolTrace | MCP | Gemini | Modal
</p>
</div>
""")
# Main app container (wraps Sidebar + all screens like MockTraceMind)
with gr.Column() as main_app_container:
# Sidebar Navigation
with gr.Sidebar():
gr.Markdown("## π§ TraceMind")
gr.Markdown("*Navigation & Controls*")
gr.Markdown("---")
# Navigation section
gr.Markdown("### π§ Navigation")
# Navigation buttons
dashboard_nav_btn = gr.Button("π Dashboard", variant="primary", size="lg")
leaderboard_nav_btn = gr.Button("π Leaderboard", variant="secondary", size="lg")
compare_nav_btn = gr.Button("βοΈ Compare", variant="secondary", size="lg")
docs_nav_btn = gr.Button("π Documentation", variant="secondary", size="lg")
gr.Markdown("---")
# Data Controls
gr.Markdown("### π Data Controls")
refresh_leaderboard_btn = gr.Button("π Refresh Data", variant="secondary", size="sm")
gr.Markdown("*Reload leaderboard from HuggingFace*")
gr.Markdown("---")
# Filters section
gr.Markdown("### π Filters")
model_filter = gr.Dropdown(
choices=["All Models"],
value="All Models",
label="Model",
info="Filter evaluations by AI model. Select 'All Models' to see all runs."
)
sidebar_agent_type_filter = gr.Radio(
choices=["All", "tool", "code", "both"],
value="All",
label="Agent Type",
info="Tool: Function calling agents | Code: Code execution | Both: Hybrid agents"
)
# Main content area
# Screen 0: Dashboard
dashboard_screen, dashboard_components = create_dashboard_ui()
# Screen 1: Main Leaderboard
with gr.Column(visible=False) as leaderboard_screen:
gr.Markdown("## π Agent Evaluation Leaderboard")
with gr.Tabs():
with gr.TabItem("π Leaderboard"):
gr.Markdown("*Styled leaderboard with inline filters*")
# User Guide Accordion
with gr.Accordion("π How to Use the Leaderboard", open=False):
gr.Markdown("""
### π Interactive Leaderboard View
**What is this tab?**
The main leaderboard displays all evaluation runs in a styled HTML table with color-coded performance indicators.
**How to use it:**
- π¨ **Visual Design**: Gradient cards with model logos and performance metrics
- π **Filters**: Use agent type, provider, and sorting controls above
- π **Sort Options**: Click "Sort By" to order by success rate, cost, duration, or tokens
**Performance Indicators:**
- π’ Green metrics = Excellent performance
- π‘ Yellow metrics = Average performance
- π΄ Red metrics = Needs improvement
**Tips:**
- Use sidebar filters to narrow down by model
- Apply inline filters for more granular control
- Switch to "DrillDown" tab for a raw table view
""")
# Inline filters for styled leaderboard
with gr.Row():
with gr.Column(scale=1):
agent_type_filter = gr.Radio(
choices=["All", "tool", "code", "both"],
value="All",
label="Agent Type",
info="Filter by agent type"
)
with gr.Column(scale=1):
provider_filter = gr.Dropdown(
choices=["All"],
value="All",
label="Provider",
info="Filter by provider"
)
with gr.Column(scale=1):
sort_by_dropdown = gr.Dropdown(
choices=["success_rate", "total_cost_usd", "avg_duration_ms", "total_tokens"],
value="success_rate",
label="Sort By"
)
with gr.Column(scale=1):
sort_order = gr.Radio(
choices=["Descending", "Ascending"],
value="Descending",
label="Sort Order"
)
with gr.Row():
apply_filters_btn = gr.Button("π Apply Filters", variant="primary", size="sm")
# Styled HTML leaderboard
leaderboard_by_model = gr.HTML(label="Styled Leaderboard")
with gr.TabItem("π DrillDown"):
gr.Markdown("*Click any row to view detailed run information*")
# User Guide Accordion
with gr.Accordion("π How to Use DrillDown", open=False):
gr.Markdown("""
### π Data Table View
**What is this tab?**
The DrillDown tab provides a raw, sortable table view of all evaluation runs with full details.
**How to use it:**
- π **Table Format**: Clean, spreadsheet-like view of all runs
- π **Filters**: Apply agent type, provider, and sorting controls
- π₯ **Export Ready**: Easy to copy/paste data for reports
- π **Click Rows**: Click any row to navigate to detailed run view
- π’ **All Metrics**: Shows run ID, model, success rate, cost, duration, and more
**Columns Explained:**
- **Run ID**: Unique identifier for each evaluation
- **Model**: AI model that was evaluated
- **Agent Type**: tool (function calling), code (code execution), or both
- **Provider**: litellm (API models) or transformers (local models)
- **Success Rate**: Percentage of test cases passed
- **Tests**: Number of test cases executed
- **Duration**: Average execution time in milliseconds
- **Cost**: Total cost in USD for this run
- **Submitted By**: HuggingFace username of evaluator
**Tips:**
- Use this for detailed data analysis
- Combine with sidebar filters for focused views
- Sort by any column to find best/worst performers
""")
# Inline filters for drilldown table
with gr.Row():
with gr.Column(scale=1):
drilldown_agent_type_filter = gr.Radio(
choices=["All", "tool", "code", "both"],
value="All",
label="Agent Type",
info="Filter by agent type"
)
with gr.Column(scale=1):
drilldown_provider_filter = gr.Dropdown(
choices=["All"],
value="All",
label="Provider",
info="Filter by provider"
)
with gr.Column(scale=1):
drilldown_sort_by_dropdown = gr.Dropdown(
choices=["success_rate", "total_cost_usd", "avg_duration_ms", "total_tokens"],
value="success_rate",
label="Sort By"
)
with gr.Column(scale=1):
drilldown_sort_order = gr.Radio(
choices=["Descending", "Ascending"],
value="Descending",
label="Sort Order"
)
with gr.Row():
apply_drilldown_filters_btn = gr.Button("π Apply Filters", variant="primary", size="sm")
# Simple table controlled by inline filters
leaderboard_table = gr.Dataframe(
headers=["Run ID", "Model", "Agent Type", "Provider", "Success Rate", "Tests", "Duration (ms)", "Cost (USD)", "Submitted By"],
interactive=False,
wrap=True
)
with gr.TabItem("π Trends"):
# User Guide Accordion
with gr.Accordion("π How to Read Trends", open=False):
gr.Markdown("""
### π Temporal Performance Analysis
**What is this tab?**
The Trends tab visualizes how model performance evolves over time, helping you identify patterns and improvements.
**How to read it:**
- π
**X-axis**: Timeline showing when evaluations were run
- π **Y-axis**: Performance metrics (success rate, cost, duration, etc.)
- π **Line Charts**: Each line represents a different model
- π¨ **Color Coding**: Different colors for different models
- π **Interactive**: Hover over points to see exact values
**What to look for:**
- **Upward trends** = Model improvements over time
- **Downward trends** = Performance degradation (needs investigation)
- **Flat lines** = Consistent performance
- **Spikes** = Anomalies or special test conditions
- **Gaps** = Periods without evaluations
**Use cases:**
- Track model version improvements
- Identify when performance degraded
- Compare model evolution over time
- Spot patterns in cost or latency changes
- Validate optimization efforts
**Tips:**
- Use sidebar filters to focus on specific models
- Look for correlation between cost and accuracy
- Identify best time periods for each model
""")
trends_plot = gr.Plot()
with gr.TabItem("π Analytics"):
viz_type = gr.Radio(
choices=["π₯ Performance Heatmap", "β‘ Speed vs Accuracy", "π° Cost Efficiency"],
value="π₯ Performance Heatmap",
label="Select Visualization",
info="Choose which analytics chart to display"
)
analytics_chart = gr.Plot(label="Interactive Chart", show_label=False)
# Explanation panel in accordion (dynamically updates based on chart selection)
with gr.Accordion("π‘ How to Read This Chart", open=False):
viz_explanation = gr.Markdown("""
#### π₯ Performance Heatmap
**What it shows:** All models compared across all metrics in one view
**How to read it:**
- π’ **Green cells** = Better performance (higher is better)
- π‘ **Yellow cells** = Average performance
- π΄ **Red cells** = Worse performance (needs improvement)
**Metrics displayed:**
- Success Rate (%), Avg Duration (ms), Total Cost ($)
- CO2 Emissions (g), GPU Utilization (%), Total Tokens
**Use it to:** Quickly identify which models excel in which areas
""", elem_id="viz-explanation")
with gr.TabItem("π₯ Summary Card"):
# User Guide Accordion
with gr.Accordion("π How to Create Summary Cards", open=False):
gr.Markdown("""
### π₯ Downloadable Leaderboard Summary Card
**What is this tab?**
Generate professional, shareable summary cards with top performers and key statistics.
Perfect for presentations, reports, and sharing results with your team!
**How to use it:**
1. **Select Top N**: Use the slider to choose how many top models to include (1-5)
2. **Generate Preview**: Click "Generate Card Preview" to see the card
3. **Download**: Click "Download as PNG" to save as high-quality image
4. **Share**: Use the downloaded image in presentations, reports, or social media
**Card Features:**
- π **Medal Indicators**: Gold, silver, bronze for top 3 performers
- π **Key Metrics**: Success rate, cost, duration, and tokens per model
- π **Aggregate Stats**: Overall leaderboard statistics at a glance
- π¨ **TraceMind Branding**: Professional design with logo
- π₯ **High Quality**: PNG format suitable for presentations
**Best Practices:**
- Use 3-5 models for balanced card density
- Include metric context in your presentations
- Update cards regularly to reflect latest results
- Combine with detailed reports for stakeholders
**Tips:**
- Cards are automatically sized for readability
- All current sidebar filters are applied
- Cards update dynamically as data changes
""")
with gr.Row():
with gr.Column(scale=1):
top_n_slider = gr.Slider(
minimum=1,
maximum=5,
value=3,
step=1,
label="Number of top models to show",
info="Select how many top performers to include in the card"
)
with gr.Row():
generate_card_btn = gr.Button("π¨ Generate Card Preview", variant="secondary", size="lg")
download_card_btn = gr.Button("π₯ Download as PNG", variant="primary", size="lg", visible=False)
with gr.Column(scale=2):
card_preview = gr.HTML(label="Card Preview", value="<p style='text-align: center; color: #666; padding: 40px;'>Click 'Generate Card Preview' to see your summary card</p>")
with gr.TabItem("π€ AI Insights"):
# User Guide Accordion
with gr.Accordion("π About AI Insights", open=False):
gr.Markdown("""
### π€ LLM-Powered Leaderboard Analysis
**What is this tab?**
AI Insights provides intelligent, natural language analysis of your leaderboard data using advanced language models.
Get instant insights, trends, and recommendations powered by AI.
**How it works:**
- π **Automatic Analysis**: AI analyzes all leaderboard data automatically
- π **Streaming Responses**: Watch insights generate in real-time (Gradio 6)
- π― **Smart Recommendations**: Get actionable advice for model selection
- π **Trend Detection**: AI identifies patterns and anomalies
- π‘ **Context-Aware**: Insights adapt to current filters and data
**What insights you'll get:**
- **Top Performers**: Which models lead in accuracy, speed, cost
- **Trade-offs**: Cost vs accuracy, speed vs quality analysis
- **Recommendations**: Best model for different use cases
- **Trends**: Performance changes over time
- **Anomalies**: Unusual results that need attention
- **Optimization Tips**: How to improve evaluation strategies
**Powered by:**
- π€ **MCP Servers**: Model Context Protocol for intelligent data access
- π§ **Advanced LLMs**: Google Gemini 1.5 Pro for analysis
- π‘ **Real-time Streaming**: Gradio 6 for live response generation
- π **Context Integration**: Understands your full leaderboard context
**Tips:**
- Click "Regenerate" for updated insights after data changes
- Insights respect your sidebar and inline filters
- Use insights to guide model selection decisions
- Share AI insights in team discussions
""")
with gr.Row():
regenerate_btn = gr.Button("π Regenerate Insights (Streaming)", size="sm", variant="secondary")
gr.Markdown("*Real-time AI analysis powered by Gradio 6 streaming*", elem_classes=["text-sm"])
mcp_insights = gr.Markdown("*Loading insights...*")
# Hidden textbox for row selection (JavaScript bridge)
selected_row_index = gr.Textbox(visible=False, elem_id="selected_row_index")
# Screen 3: Run Detail (Enhanced with Tabs)
with gr.Column(visible=False) as run_detail_screen:
# Navigation
with gr.Row():
back_to_leaderboard_btn = gr.Button("β¬
οΈ Back to Leaderboard", variant="secondary", size="sm")
download_run_card_btn = gr.Button("π₯ Download Run Report Card", variant="secondary", size="sm")
run_detail_title = gr.Markdown("# π Run Detail")
with gr.Tabs():
with gr.TabItem("π Overview"):
gr.Markdown("*Run metadata and summary*")
run_metadata_html = gr.HTML("")
with gr.TabItem("β
Test Cases"):
gr.Markdown("*Individual test case results*")
test_cases_table = gr.Dataframe(
headers=["Task ID", "Status", "Tool", "Duration", "Tokens", "Cost", "Trace ID"],
interactive=False,
wrap=True
)
gr.Markdown("*Click a test case to view detailed trace (including Thought Graph)*")
with gr.TabItem("β‘ Performance"):
gr.Markdown("*Performance metrics and charts*")
performance_charts = gr.Plot(label="Performance Analysis", show_label=False)
with gr.TabItem("π Report Card"):
gr.Markdown("*Downloadable run summary card*")
run_card_html = gr.HTML(label="Run Report Card", value="<p style='text-align: center; color: #666; padding: 40px;'>Select a run to view its report card</p>")
# Screen 4: Trace Detail with Sub-tabs
with gr.Column(visible=False) as trace_detail_screen:
with gr.Row():
back_to_run_detail_btn = gr.Button("β¬
οΈ Back to Run Detail", variant="secondary", size="sm")
trace_title = gr.Markdown("# π Trace Detail")
trace_metadata_html = gr.HTML("")
with gr.Tabs():
with gr.TabItem("π§ Thought Graph"):
gr.Markdown("""
### Agent Reasoning Flow
This interactive network graph shows **how your agent thinks** - the logical flow of reasoning steps,
tool calls, and LLM interactions.
**How to read it:**
- π£ **Purple nodes** = LLM reasoning steps
- π **Orange nodes** = Tool calls
- π΅ **Blue nodes** = Chains/Agents
- **Arrows** = Flow from one step to the next
- **Hover** = See tokens, costs, and timing details
""")
trace_thought_graph = gr.Plot(label="Thought Graph", show_label=False)
with gr.TabItem("π Waterfall"):
gr.Markdown("*Interactive waterfall diagram showing span execution timeline*")
gr.Markdown("*Hover over spans for details. Drag to zoom, double-click to reset.*")
span_visualization = gr.Plot(label="Trace Waterfall", show_label=False)
with gr.TabItem("π₯οΈ GPU Metrics"):
gr.Markdown("*Performance metrics for GPU-based models (not available for API models)*")
gpu_summary_cards_html = gr.HTML(label="GPU Summary", show_label=False)
with gr.Tabs():
with gr.TabItem("π Time Series Dashboard"):
gpu_metrics_plot = gr.Plot(label="GPU Metrics Over Time", show_label=False)
with gr.TabItem("π Raw Metrics Data"):
gpu_metrics_json = gr.JSON(label="GPU Metrics Data")
with gr.TabItem("π Span Details"):
gr.Markdown("*Detailed span information with token and cost data*")
span_details_table = gr.Dataframe(
headers=["Span Name", "Kind", "Duration (ms)", "Tokens", "Cost (USD)", "Status"],
interactive=False,
wrap=True,
label="Span Breakdown"
)
with gr.TabItem("π Raw Data"):
gr.Markdown("*Raw OpenTelemetry trace data (JSON)*")
span_details_json = gr.JSON()
with gr.Accordion("π€ Ask About This Trace", open=False):
trace_question = gr.Textbox(
label="Question",
placeholder="e.g., Why was the tool called twice?",
lines=2
)
trace_ask_btn = gr.Button("Ask", variant="primary")
trace_answer = gr.Markdown("*Ask a question to get AI-powered insights*")
# Screen 5: Compare Screen
compare_screen, compare_components = create_compare_ui()
# Navigation handlers (define before use)
def navigate_to_dashboard():
"""Navigate to dashboard screen and load dashboard data"""
try:
leaderboard_df = data_loader.load_leaderboard()
dashboard_updates = update_dashboard_data(leaderboard_df, dashboard_components)
except Exception as e:
print(f"[ERROR] Loading dashboard data: {e}")
dashboard_updates = {}
# Combine navigation updates with dashboard data updates
result = {
dashboard_screen: gr.update(visible=True),
leaderboard_screen: gr.update(visible=False),
run_detail_screen: gr.update(visible=False),
trace_detail_screen: gr.update(visible=False),
compare_screen: gr.update(visible=False),
dashboard_nav_btn: gr.update(variant="primary"),
leaderboard_nav_btn: gr.update(variant="secondary"),
compare_nav_btn: gr.update(variant="secondary"),
docs_nav_btn: gr.update(variant="secondary"),
}
result.update(dashboard_updates)
return result
def navigate_to_leaderboard():
"""Navigate to leaderboard screen"""
return {
dashboard_screen: gr.update(visible=False),
leaderboard_screen: gr.update(visible=True),
run_detail_screen: gr.update(visible=False),
trace_detail_screen: gr.update(visible=False),
compare_screen: gr.update(visible=False),
dashboard_nav_btn: gr.update(variant="secondary"),
leaderboard_nav_btn: gr.update(variant="primary"),
compare_nav_btn: gr.update(variant="secondary"),
docs_nav_btn: gr.update(variant="secondary"),
}
def navigate_to_compare():
"""Navigate to compare screen and populate dropdown choices"""
try:
leaderboard_df = data_loader.load_leaderboard()
# Create run choices for dropdowns (model name with composite unique identifier)
run_choices = []
for _, row in leaderboard_df.iterrows():
label = f"{row.get('model', 'Unknown')} - {row.get('timestamp', 'N/A')}"
# Use composite key: run_id|timestamp to ensure uniqueness
value = f"{row.get('run_id', '')}|{row.get('timestamp', '')}"
if value:
run_choices.append((label, value))
return {
dashboard_screen: gr.update(visible=False),
leaderboard_screen: gr.update(visible=False),
run_detail_screen: gr.update(visible=False),
trace_detail_screen: gr.update(visible=False),
compare_screen: gr.update(visible=True),
dashboard_nav_btn: gr.update(variant="secondary"),
leaderboard_nav_btn: gr.update(variant="secondary"),
compare_nav_btn: gr.update(variant="primary"),
docs_nav_btn: gr.update(variant="secondary"),
compare_components['compare_run_a_dropdown']: gr.update(choices=run_choices),
compare_components['compare_run_b_dropdown']: gr.update(choices=run_choices),
}
except Exception as e:
print(f"[ERROR] Navigating to compare: {e}")
return {
dashboard_screen: gr.update(visible=False),
leaderboard_screen: gr.update(visible=False),
run_detail_screen: gr.update(visible=False),
trace_detail_screen: gr.update(visible=False),
compare_screen: gr.update(visible=True),
dashboard_nav_btn: gr.update(variant="secondary"),
leaderboard_nav_btn: gr.update(variant="secondary"),
compare_nav_btn: gr.update(variant="primary"),
docs_nav_btn: gr.update(variant="secondary"),
}
# Event handlers
# Load dashboard on app start
app.load(
fn=navigate_to_dashboard,
outputs=[
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen,
dashboard_nav_btn, leaderboard_nav_btn, compare_nav_btn, docs_nav_btn
] + list(dashboard_components.values())
)
app.load(
fn=load_leaderboard,
outputs=[leaderboard_by_model, model_filter, model_filter, provider_filter]
)
app.load(
fn=load_trends,
outputs=[trends_plot]
)
# Load drilldown data on page load
app.load(
fn=load_drilldown,
inputs=[drilldown_agent_type_filter, drilldown_provider_filter],
outputs=[leaderboard_table]
)
# Refresh button handler
refresh_leaderboard_btn.click(
fn=refresh_leaderboard,
outputs=[leaderboard_by_model, model_filter, model_filter]
)
# Leaderboard tab inline filters
apply_filters_btn.click(
fn=apply_leaderboard_filters,
inputs=[agent_type_filter, provider_filter, sort_by_dropdown, sort_order],
outputs=[leaderboard_by_model]
)
# DrillDown tab inline filters
apply_drilldown_filters_btn.click(
fn=apply_drilldown_filters,
inputs=[drilldown_agent_type_filter, drilldown_provider_filter, drilldown_sort_by_dropdown, drilldown_sort_order],
outputs=[leaderboard_table]
)
# Sidebar filters (apply to all tabs)
model_filter.change(
fn=apply_sidebar_filters,
inputs=[model_filter, sidebar_agent_type_filter],
outputs=[leaderboard_by_model, leaderboard_table, trends_plot, compare_components['compare_run_a_dropdown'], compare_components['compare_run_b_dropdown']]
)
sidebar_agent_type_filter.change(
fn=apply_sidebar_filters,
inputs=[model_filter, sidebar_agent_type_filter],
outputs=[leaderboard_by_model, leaderboard_table, trends_plot, compare_components['compare_run_a_dropdown'], compare_components['compare_run_b_dropdown']]
)
viz_type.change(
fn=update_analytics,
inputs=[viz_type],
outputs=[analytics_chart, viz_explanation]
)
app.load(
fn=update_analytics,
inputs=[viz_type],
outputs=[analytics_chart, viz_explanation]
)
generate_card_btn.click(
fn=generate_card,
inputs=[top_n_slider],
outputs=[card_preview, download_card_btn]
)
# Download leaderboard summary card as PNG
download_card_btn.click(
fn=None,
js=download_card_as_png_js("summary-card-html")
)
app.load(
fn=generate_insights,
outputs=[mcp_insights]
)
regenerate_btn.click(
fn=generate_insights,
outputs=[mcp_insights]
)
# Wire up navigation buttons
dashboard_nav_btn.click(
fn=navigate_to_dashboard,
outputs=[
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen,
dashboard_nav_btn, leaderboard_nav_btn, compare_nav_btn, docs_nav_btn
] + list(dashboard_components.values())
)
leaderboard_nav_btn.click(
fn=navigate_to_leaderboard,
outputs=[
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen,
dashboard_nav_btn, leaderboard_nav_btn, compare_nav_btn, docs_nav_btn
]
)
compare_nav_btn.click(
fn=navigate_to_compare,
outputs=[
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen,
dashboard_nav_btn, leaderboard_nav_btn, compare_nav_btn, docs_nav_btn,
compare_components['compare_run_a_dropdown'], compare_components['compare_run_b_dropdown']
]
)
# Compare button handler
compare_components['compare_button'].click(
fn=lambda run_a, run_b: on_compare_runs(run_a, run_b, leaderboard_df_cache, compare_components),
inputs=[
compare_components['compare_run_a_dropdown'],
compare_components['compare_run_b_dropdown']
],
outputs=[
compare_components['comparison_output'],
compare_components['run_a_card'],
compare_components['run_b_card'],
compare_components['comparison_charts'],
compare_components['winner_summary'],
compare_components['radar_comparison_chart']
]
)
# Back to leaderboard from compare
compare_components['back_to_leaderboard_btn'].click(
fn=navigate_to_leaderboard,
outputs=[
dashboard_screen, leaderboard_screen, run_detail_screen, trace_detail_screen, compare_screen,
dashboard_nav_btn, leaderboard_nav_btn, compare_nav_btn, docs_nav_btn
]
)
leaderboard_table.select(
fn=on_drilldown_select,
inputs=[leaderboard_table], # Pass dataframe to handler (like MockTraceMind)
outputs=[leaderboard_screen, run_detail_screen, run_metadata_html, test_cases_table, performance_charts, run_card_html]
)
back_to_leaderboard_btn.click(
fn=go_back_to_leaderboard,
inputs=[],
outputs=[leaderboard_screen, run_detail_screen]
)
# Trace detail navigation
test_cases_table.select(
fn=on_test_case_select,
inputs=[test_cases_table],
outputs=[
run_detail_screen,
trace_detail_screen,
trace_title,
trace_metadata_html,
trace_thought_graph,
span_visualization,
span_details_table,
span_details_json,
gpu_summary_cards_html,
gpu_metrics_plot,
gpu_metrics_json
]
)
back_to_run_detail_btn.click(
fn=go_back_to_run_detail,
outputs=[run_detail_screen, trace_detail_screen]
)
# HTML table row click handler (JavaScript bridge via hidden textbox)
selected_row_index.change(
fn=on_html_table_row_click,
inputs=[selected_row_index],
outputs=[leaderboard_screen, run_detail_screen, run_metadata_html, test_cases_table, run_card_html, selected_row_index]
)
# Download run report card as PNG
download_run_card_btn.click(
fn=None,
js=download_card_as_png_js(element_id="run-card-html")
)
if __name__ == "__main__":
print("Starting TraceMind-AI...")
print(f"Data Source: {os.getenv('DATA_SOURCE', 'both')}")
print(f"JSON Path: {os.getenv('JSON_DATA_PATH', './sample_data')}")
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
|