Spaces:
Running
Running
File size: 17,900 Bytes
5c51b47 a50320a 5c51b47 a50320a 5c51b47 4dc8a59 5c51b47 4dc8a59 5c51b47 a50320a 315aa68 5c51b47 60b7b04 5609901 60b7b04 5609901 60b7b04 5c51b47 a50320a 5c51b47 a50320a 5c51b47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
"""
Compare Screen for TraceMind-AI
Side-by-side comparison of two evaluation runs
"""
import gradio as gr
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from typing import Dict, Any
from components.report_cards import generate_comparison_report_card
def create_run_comparison_card(run_data: Dict[str, Any], label: str) -> str:
"""
Create HTML card for a run in comparison view
Args:
run_data: Dict with run information
label: "A" or "B"
Returns:
HTML string for the card
"""
model = run_data.get('model', 'Unknown')
success_rate = run_data.get('success_rate', 0)
total_cost = run_data.get('total_cost_usd', 0)
duration = run_data.get('total_duration_ms', 0) / 1000 # Convert to seconds
tokens = run_data.get('total_tokens', 0)
co2 = run_data.get('co2_emissions_g', 0)
return f"""
<div style="background: linear-gradient(135deg, {'#667eea' if label == 'A' else '#764ba2'} 0%, {'#764ba2' if label == 'A' else '#f093fb'} 100%);
padding: 25px;
border-radius: 12px;
box-shadow: 0 4px 12px rgba(0,0,0,0.2);
color: white;">
<h3 style="margin-top: 0;">Run {label}: {model}</h3>
<div style="margin: 20px 0;">
<div style="display: flex; justify-content: space-between; margin: 10px 0;">
<span>Success Rate:</span>
<strong>{success_rate:.1f}%</strong>
</div>
<div style="display: flex; justify-content: space-between; margin: 10px 0;">
<span>Total Cost:</span>
<strong>${total_cost:.4f}</strong>
</div>
<div style="display: flex; justify-content: space-between; margin: 10px 0;">
<span>Duration:</span>
<strong>{duration:.2f}s</strong>
</div>
<div style="display: flex; justify-content: space-between; margin: 10px 0;">
<span>Tokens:</span>
<strong>{tokens:,}</strong>
</div>
<div style="display: flex; justify-content: space-between; margin: 10px 0;">
<span>CO2:</span>
<strong>{co2:.2f}g</strong>
</div>
</div>
</div>
"""
def create_comparison_charts(run_a: Dict[str, Any], run_b: Dict[str, Any]) -> go.Figure:
"""
Create comparison charts for two runs
Args:
run_a: First run data dict
run_b: Second run data dict
Returns:
Plotly figure with comparison charts
"""
try:
# Extract metrics
metrics = {
'Success Rate (%)': [run_a.get('success_rate', 0), run_b.get('success_rate', 0)],
'Cost ($)': [run_a.get('total_cost_usd', 0), run_b.get('total_cost_usd', 0)],
'Duration (s)': [run_a.get('total_duration_ms', 0) / 1000, run_b.get('total_duration_ms', 0) / 1000],
'Tokens': [run_a.get('total_tokens', 0), run_b.get('total_tokens', 0)],
'CO2 (g)': [run_a.get('co2_emissions_g', 0), run_b.get('co2_emissions_g', 0)]
}
# Create subplots
fig = make_subplots(
rows=2, cols=3,
subplot_titles=list(metrics.keys()),
specs=[[{"type": "bar"}, {"type": "bar"}, {"type": "bar"}],
[{"type": "bar"}, {"type": "bar"}, {"type": "indicator"}]],
vertical_spacing=0.15,
horizontal_spacing=0.1
)
model_a = run_a.get('model', 'Run A')
model_b = run_b.get('model', 'Run B')
# Add bar charts for each metric
positions = [(1, 1), (1, 2), (1, 3), (2, 1), (2, 2)]
colors_a = ['#667eea', '#667eea', '#667eea', '#667eea', '#667eea']
colors_b = ['#764ba2', '#764ba2', '#764ba2', '#764ba2', '#764ba2']
for idx, (metric_name, values) in enumerate(metrics.items()):
if idx < 5: # First 5 metrics
row, col = positions[idx]
fig.add_trace(
go.Bar(
name=model_a,
x=[model_a],
y=[values[0]],
marker_color=colors_a[idx],
text=[f"{values[0]:.2f}"],
textposition='auto',
showlegend=(idx == 0)
),
row=row, col=col
)
fig.add_trace(
go.Bar(
name=model_b,
x=[model_b],
y=[values[1]],
marker_color=colors_b[idx],
text=[f"{values[1]:.2f}"],
textposition='auto',
showlegend=(idx == 0)
),
row=row, col=col
)
fig.update_layout(
height=600,
showlegend=True,
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
),
margin=dict(l=50, r=50, t=80, b=50)
)
return fig
except Exception as e:
print(f"[ERROR] Creating comparison charts: {e}")
fig = go.Figure()
fig.add_annotation(text=f"Error creating charts: {str(e)}", showarrow=False)
return fig
def generate_winner_summary(run_a: Dict[str, Any], run_b: Dict[str, Any]) -> str:
"""
Generate winner summary comparing two runs
Args:
run_a: First run data dict
run_b: Second run data dict
Returns:
Markdown string with winner analysis
"""
model_a = run_a.get('model', 'Run A')
model_b = run_b.get('model', 'Run B')
# Compare metrics
winners = {
'accuracy': model_a if run_a.get('success_rate', 0) > run_b.get('success_rate', 0) else model_b,
'cost': model_a if run_a.get('total_cost_usd', 999) < run_b.get('total_cost_usd', 999) else model_b,
'speed': model_a if run_a.get('total_duration_ms', 999999) < run_b.get('total_duration_ms', 999999) else model_b,
'eco': model_a if run_a.get('co2_emissions_g', 999) < run_b.get('co2_emissions_g', 999) else model_b
}
# Count wins
a_wins = sum(1 for w in winners.values() if w == model_a)
b_wins = sum(1 for w in winners.values() if w == model_b)
overall_winner = model_a if a_wins > b_wins else model_b if b_wins > a_wins else "Tie"
return f"""
### Category Winners
| Category | Winner | Metric |
|----------|--------|--------|
| **Accuracy** | **{winners['accuracy']}** | {run_a.get('success_rate', 0):.1f}% vs {run_b.get('success_rate', 0):.1f}% |
| **Cost** | **{winners['cost']}** | ${run_a.get('total_cost_usd', 0):.4f} vs ${run_b.get('total_cost_usd', 0):.4f} |
| **Speed** | **{winners['speed']}** | {run_a.get('total_duration_ms', 0)/1000:.2f}s vs {run_b.get('total_duration_ms', 0)/1000:.2f}s |
| **Eco-Friendly** | **{winners['eco']}** | {run_a.get('co2_emissions_g', 0):.2f}g vs {run_b.get('co2_emissions_g', 0):.2f}g |
---
### Overall Winner: **{overall_winner}**
**{model_a}** wins {a_wins} categories
**{model_b}** wins {b_wins} categories
### Recommendation
{f"**{model_a}** is the better choice for most use cases" if a_wins > b_wins else
f"**{model_b}** is the better choice for most use cases" if b_wins > a_wins else
"Both runs are evenly matched - choose based on your specific priorities"}
"""
def create_compare_ui():
"""
Create the compare screen UI components
Returns:
Tuple of (screen_column, component_dict)
"""
components = {}
with gr.Column(visible=False) as compare_screen:
gr.Markdown("# Compare Runs")
gr.Markdown("*Side-by-side comparison of two evaluation runs*")
components['back_to_leaderboard_btn'] = gr.Button(
"⬅️ Back to Leaderboard",
variant="secondary",
size="sm"
)
gr.Markdown("## Select Runs to Compare")
with gr.Row():
with gr.Column():
components['compare_run_a_dropdown'] = gr.Dropdown(
label="Run A",
choices=[],
interactive=True,
info="Select the first evaluation run for comparison"
)
with gr.Column():
components['compare_run_b_dropdown'] = gr.Dropdown(
label="Run B",
choices=[],
interactive=True,
info="Select the second evaluation run for comparison"
)
components['compare_button'] = gr.Button(
"Compare Selected Runs",
variant="primary",
size="lg"
)
# Comparison results
with gr.Column(visible=False) as comparison_output:
gr.Markdown("## Comparison Results")
with gr.Tabs():
with gr.TabItem("Side-by-Side"):
# Side-by-side metrics
with gr.Row():
with gr.Column():
gr.Markdown("### Run A")
components['run_a_card'] = gr.HTML()
with gr.Column():
gr.Markdown("### Run B")
components['run_b_card'] = gr.HTML()
# Comparison charts
gr.Markdown("## Metric Comparisons")
components['comparison_charts'] = gr.Plot(
label="Comparison Charts",
show_label=False
)
# Winner summary
gr.Markdown("## Winner Summary")
components['winner_summary'] = gr.Markdown()
with gr.TabItem("Radar Comparison"):
gr.Markdown("""
### Multi-Dimensional Comparison
Compare runs across **6 normalized dimensions**:
- **Success Rate**: Percentage of successful test cases
- **Speed**: Execution time (faster is better)
- **Cost Efficiency**: Dollar cost per test (cheaper is better)
- **Token Efficiency**: Success per 1000 tokens
- **CO2 Efficiency**: Environmental impact (lower is better)
- **GPU Utilization**: Resource usage (if applicable)
""")
components['radar_comparison_chart'] = gr.Plot(
label="Multi-Dimensional Radar Chart",
show_label=False
)
with gr.TabItem("📄 Report Card"):
gr.Markdown("### 📥 Downloadable Comparison Report Card")
gr.Markdown("*Side-by-side comparison card with winner analysis*")
with gr.Row():
with gr.Column(scale=1):
components['download_comparison_card_btn'] = gr.Button(
"📥 Download as PNG",
variant="primary",
size="lg"
)
with gr.Column(scale=2):
components['comparison_card_html'] = gr.HTML(
label="Comparison Report Card",
elem_id="comparison-card-html"
)
with gr.TabItem("🤖 AI Insights"):
gr.Markdown("### AI-Powered Comparison Analysis")
gr.Markdown("*Get intelligent insights about the differences between these runs using the MCP server*")
with gr.Row():
components['comparison_focus'] = gr.Dropdown(
label="Analysis Focus",
choices=["comprehensive", "cost", "performance", "eco_friendly"],
value="comprehensive",
info="Choose what aspect to focus on in the AI analysis"
)
components['generate_ai_comparison_btn'] = gr.Button(
"🤖 Generate AI Insights",
variant="primary",
size="lg"
)
components['ai_comparison_insights'] = gr.Markdown(
"*Click 'Generate AI Insights' to get intelligent analysis powered by the MCP server*"
)
components['comparison_output'] = comparison_output
return compare_screen, components
def on_compare_runs(run_a_id: str, run_b_id: str, leaderboard_df, components: Dict):
"""
Handle comparison of two runs
Args:
run_a_id: ID of first run
run_b_id: ID of second run
leaderboard_df: Full leaderboard dataframe
components: Dictionary of Gradio components
Returns:
Dictionary of component updates
"""
try:
if not run_a_id or not run_b_id:
gr.Warning("Please select two runs to compare")
return {
components['comparison_output']: gr.update(visible=False)
}
if run_a_id == run_b_id:
gr.Warning("Please select two different runs")
return {
components['comparison_output']: gr.update(visible=False)
}
if leaderboard_df is None or leaderboard_df.empty:
gr.Warning("Leaderboard data not loaded")
return {
components['comparison_output']: gr.update(visible=False)
}
# Parse composite keys (run_id|timestamp)
run_a_parts = run_a_id.split('|')
run_b_parts = run_b_id.split('|')
if len(run_a_parts) != 2 or len(run_b_parts) != 2:
gr.Warning("Invalid run selection")
return {
components['comparison_output']: gr.update(visible=False)
}
run_a_id_parsed, run_a_timestamp = run_a_parts
run_b_id_parsed, run_b_timestamp = run_b_parts
# Debug logging
print(f"[COMPARE DEBUG] Looking for Run A:")
print(f" run_id: {run_a_id_parsed} (type: {type(run_a_id_parsed)})")
print(f" timestamp: {run_a_timestamp} (type: {type(run_a_timestamp)})")
print(f"[COMPARE DEBUG] Looking for Run B:")
print(f" run_id: {run_b_id_parsed} (type: {type(run_b_id_parsed)})")
print(f" timestamp: {run_b_timestamp} (type: {type(run_b_timestamp)})")
print(f"[COMPARE DEBUG] Leaderboard dataframe timestamp column type: {leaderboard_df['timestamp'].dtype}")
print(f"[COMPARE DEBUG] Sample timestamps from leaderboard:")
for idx, ts in enumerate(leaderboard_df['timestamp'].head(3)):
print(f" [{idx}] {ts} (type: {type(ts)})")
# Check if run_ids exist first
run_a_by_id = leaderboard_df[leaderboard_df['run_id'] == run_a_id_parsed]
run_b_by_id = leaderboard_df[leaderboard_df['run_id'] == run_b_id_parsed]
print(f"[COMPARE DEBUG] Runs matching run_id only:")
print(f" Run A matches: {len(run_a_by_id)}")
if len(run_a_by_id) > 0:
print(f" Timestamps: {run_a_by_id['timestamp'].tolist()}")
print(f" Run B matches: {len(run_b_by_id)}")
if len(run_b_by_id) > 0:
print(f" Timestamps: {run_b_by_id['timestamp'].tolist()}")
# Find the runs in the dataframe using both run_id and timestamp
run_a_match = leaderboard_df[
(leaderboard_df['run_id'] == run_a_id_parsed) &
(leaderboard_df['timestamp'] == run_a_timestamp)
]
run_b_match = leaderboard_df[
(leaderboard_df['run_id'] == run_b_id_parsed) &
(leaderboard_df['timestamp'] == run_b_timestamp)
]
print(f"[COMPARE DEBUG] Final matches: Run A={len(run_a_match)}, Run B={len(run_b_match)}")
if run_a_match.empty or run_b_match.empty:
gr.Warning("Could not find selected runs in leaderboard data")
return {
components['comparison_output']: gr.update(visible=False)
}
run_a = run_a_match.iloc[0].to_dict()
run_b = run_b_match.iloc[0].to_dict()
# Create comparison visualizations
card_a = create_run_comparison_card(run_a, "A")
card_b = create_run_comparison_card(run_b, "B")
charts = create_comparison_charts(run_a, run_b)
summary = generate_winner_summary(run_a, run_b)
# Create radar chart for multi-dimensional comparison
from components.analytics_charts import create_comparison_radar
radar_chart = create_comparison_radar([run_a, run_b])
# Generate comparison report card
comparison_card = generate_comparison_report_card(run_a, run_b)
return {
components['comparison_output']: gr.update(visible=True),
components['run_a_card']: gr.update(value=card_a),
components['run_b_card']: gr.update(value=card_b),
components['comparison_charts']: gr.update(value=charts),
components['winner_summary']: gr.update(value=summary),
components['radar_comparison_chart']: gr.update(value=radar_chart),
components['comparison_card_html']: gr.update(value=comparison_card)
}
except Exception as e:
print(f"[ERROR] Comparing runs: {e}")
import traceback
traceback.print_exc()
gr.Warning(f"Error comparing runs: {str(e)}")
return {
components['comparison_output']: gr.update(visible=False)
}
|