Spaces:
Running
Running
File size: 78,744 Bytes
abb32f1 0f82736 abb32f1 a85f4e8 0f82736 abb32f1 0f82736 abb32f1 8b1b1c7 abb32f1 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 6d05e15 abb32f1 0f82736 abb32f1 8b1b1c7 abb32f1 880ef7f 6ae304e 880ef7f 8b1b1c7 54d748d f42b8e7 8b1b1c7 abb32f1 0f82736 abb32f1 0f82736 abb32f1 3578f6e abb32f1 0f82736 a85f4e8 0f82736 a85f4e8 0f82736 a85f4e8 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 20a9e6f abb32f1 6d05e15 abb32f1 20a9e6f abb32f1 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 555014b abb32f1 a85f4e8 555014b a85f4e8 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 7e3ac1d abb32f1 4449927 abb32f1 7e3ac1d abb32f1 4449927 7e3ac1d abb32f1 7e3ac1d 4449927 abb32f1 7e3ac1d abb32f1 7e3ac1d abb32f1 0f82736 abb32f1 0f82736 abb32f1 a85f4e8 0f82736 abb32f1 0f82736 abb32f1 0f82736 abb32f1 880ef7f 6ae304e 880ef7f abb32f1 040fd52 abb32f1 3fbacd1 469bf5d 3fbacd1 469bf5d 3fbacd1 469bf5d 3fbacd1 469bf5d 3fbacd1 469bf5d 3fbacd1 469bf5d 3fbacd1 469bf5d 3fbacd1 469bf5d 3fbacd1 040fd52 3fbacd1 040fd52 3fbacd1 abb32f1 2d6d337 abb32f1 2d6d337 abb32f1 3fbacd1 abb32f1 2d6d337 abb32f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 |
"""
Documentation Screen for TraceMind-AI
Comprehensive documentation for the TraceMind ecosystem
"""
import gradio as gr
def create_about_tab():
"""Create the About tab with ecosystem overview"""
return gr.Markdown("""
# 🧠 TraceMind Ecosystem
<div align="center">
<img src="https://raw.githubusercontent.com/Mandark-droid/TraceMind-AI/assets/Logo.png" alt="TraceMind Logo" width="300"/>
</div>
<br/>
**The Complete AI Agent Evaluation Platform**
<div align="center" style="display: flex; flex-wrap: wrap; justify-content: center; gap: 5px;">
<a href="https://github.com/modelcontextprotocol"><img src="https://img.shields.io/badge/MCP%27s%201st%20Birthday-Hackathon-blue" alt="MCP's 1st Birthday Hackathon"></a>
<a href="https://github.com/modelcontextprotocol/hackathon"><img src="https://img.shields.io/badge/Track-MCP%20in%20Action%20(Enterprise)-purple" alt="Track 2"></a>
<a href="https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind"><img src="https://img.shields.io/badge/HuggingFace-TraceMind-yellow?logo=huggingface" alt="HF Space"></a>
<a href="https://gradio.app/"><img src="https://img.shields.io/badge/Powered%20by-Gradio-orange" alt="Powered by Gradio"></a>
</div>
> **🎯 Track 2 Submission**: MCP in Action (Enterprise)
> **📅 MCP's 1st Birthday Hackathon**: November 14-30, 2025
TraceMind is a comprehensive ecosystem for evaluating, monitoring, and optimizing AI agents. Built on open-source foundations and powered by the Model Context Protocol (MCP), TraceMind provides everything you need for production-grade agent evaluation.
---
## 📖 Table of Contents
- [Architecture Overview](#️-architecture-overview)
- [The Complete Flow](#-the-complete-flow)
- [Key Features](#-key-features)
- [Built for MCP's 1st Birthday Hackathon](#-built-for-mcps-1st-birthday-hackathon)
- [Quick Links](#-quick-links)
- [Documentation Navigation](#-documentation-navigation)
- [Getting Started](#-getting-started)
- [Contributing](#-contributing)
- [Acknowledgments](#-acknowledgments)
---
<details open>
<summary><h2>🏗️ Architecture Overview</h2></summary>
<div align="center">
<img src="https://raw.githubusercontent.com/Mandark-droid/TraceMind-AI/assets/TraceVerse_Logo.png" alt="TraceVerse Ecosystem" width="500"/>
</div>
<br/>
The TraceMind ecosystem consists of four integrated components:
```
┌─────────────────────────────────────────────────────────────┐
│ TraceMind Ecosystem │
├─────────────────────────────────────────────────────────────┤
│ │
│ 1️⃣ TraceVerde (genai_otel_instrument) │
│ └─ Automatic OpenTelemetry Instrumentation │
│ └─ Zero-code tracing for LLM frameworks │
│ │
│ 2️⃣ SMOLTRACE │
│ └─ Lightweight Agent Evaluation Engine │
│ └─ Generates structured datasets │
│ │
│ 3️⃣ TraceMind-MCP-Server │
│ └─ MCP Server (Track 1: Building MCP) │
│ └─ Provides intelligent analysis tools │
│ │
│ 4️⃣ TraceMind-AI (This App!) │
│ └─ Gradio UI (Track 2: MCP in Action) │
│ └─ Visualizes data + consumes MCP tools │
│ │
└─────────────────────────────────────────────────────────────┘
```
</details>
---
<details open>
<summary><h2>🔄 The Complete Flow</h2></summary>
### 1. **Instrument Your Agents** (TraceVerde)
```python
import genai_otel
# Zero-code instrumentation
genai_otel.instrument()
# Your agent code runs normally, but now traced!
agent.run("What's the weather in Tokyo?")
```
### 2. **Evaluate with SMOLTRACE**
```bash
# Run comprehensive evaluation
smoltrace-eval \\
--model openai/gpt-4 \\
--agent-type both \\
--enable-otel
```
### 3. **Analyze Results** (This UI)
- View leaderboard rankings
- Compare model performance
- Explore detailed traces
- Ask questions with MCP-powered chat
</details>
---
<details open>
<summary><h2>🎯 Key Features</h2></summary>
### For Developers
- ✅ **Zero-code Instrumentation**: Just import and go
- ✅ **Framework Agnostic**: Works with LiteLLM, Transformers, HF Inference, Ollama, etc.
- ✅ **Production Ready**: Lightweight, minimal overhead
- ✅ **Standards Compliant**: Uses OpenTelemetry conventions
### For Researchers
- ✅ **Comprehensive Metrics**: Token usage, costs, latency, GPU utilization
- ✅ **Reproducible Results**: Structured datasets on HuggingFace
- ✅ **Model Comparison**: Side-by-side analysis
- ✅ **Trace Visualization**: Step-by-step agent execution
### For Organizations
- ✅ **Cost Transparency**: Real-time cost tracking and estimation
- ✅ **Sustainability**: CO2 emissions monitoring (TraceVerde)
- ✅ **MCP Integration**: Connect to intelligent analysis tools
- ✅ **HuggingFace Native**: Seamless dataset integration
</details>
---
## 🏆 Built for MCP's 1st Birthday Hackathon
TraceMind demonstrates the complete MCP ecosystem:
**Track 1 (Building MCP)**: [TraceMind-mcp-server](https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server)
- Provides MCP tools for leaderboard analysis, cost estimation, trace debugging
**Track 2 (MCP in Action)**: TraceMind-AI (this app!)
- Consumes MCP servers for autonomous agent chat and intelligent insights
---
## 🔗 Quick Links
### 📦 Component Links
| Component | Description | Links |
|-----------|-------------|-------|
| **TraceVerde** | OTEL Instrumentation | [GitHub](https://github.com/Mandark-droid/genai_otel_instrument) • [PyPI](https://pypi.org/project/genai-otel-instrument) |
| **SMOLTRACE** | Evaluation Engine | [GitHub](https://github.com/Mandark-droid/SMOLTRACE) • [PyPI](https://pypi.org/project/smoltrace/) |
| **MCP Server** | Building MCP (Track 1) | [HF Space](https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server) |
| **TraceMind-AI** | MCP in Action (Track 2) | [HF Space](https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind) |
### 🎬 Demo Videos
| Video | Duration | Link |
|-------|----------|------|
| **TraceMind-AI Full Demo** | 20 mins | [Watch on Loom](https://www.loom.com/share/70b9689b57204da58b8fef0d23c304fe) |
| **TraceMind-MCP-Server Quick Demo** | 5 mins | [Watch on Loom](https://www.loom.com/share/d4d0003f06fa4327b46ba5c081bdf835) |
| **TraceMind-MCP-Server Full Demo** | 20 mins | [Watch on Loom](https://www.loom.com/share/de559bb0aef749559c79117b7f951250) |
### 📢 Community Posts
- 🚀 [**TraceMind-AI Hackathon Submission**](https://www.linkedin.com/posts/kshitij-thakkar-2061b924_mcp1stbirthdayhackathon-mcp-modelcontextprotocol-activity-7399775530218065920-owgR) - MCP's 1st Birthday Hackathon final submission
- 📝 [**Building TraceMind Ecosystem Blog Post**](https://huggingface.co/blog/kshitijthakkar/tracemind-ecosystem) - Complete technical deep-dive into the TraceVerse ecosystem
- 🎉 [**TraceMind Teaser**](https://www.linkedin.com/posts/kshitij-thakkar-2061b924_mcpsfirstbirthdayhackathon-mcpsfirstbirthdayhackathon-activity-7395686529270013952-g_id) - MCP's 1st Birthday Hackathon announcement
- 📊 [**SMOLTRACE Launch**](https://www.linkedin.com/posts/kshitij-thakkar-2061b924_ai-machinelearning-llm-activity-7394350375908126720-im_T) - Lightweight agent evaluation engine
- 🔭 [**TraceVerde Launch**](https://www.linkedin.com/posts/kshitij-thakkar-2061b924_genai-opentelemetry-observability-activity-7390339855135813632-wqEg) - Zero-code OTEL instrumentation for LLMs
- 🙏 [**TraceVerde 3K Downloads**](https://www.linkedin.com/posts/kshitij-thakkar-2061b924_thank-you-open-source-community-a-week-activity-7392205780592132096-nu6U) - Thank you to the community!
---
## 📚 Documentation Navigation
Use the tabs above to explore detailed documentation for each component:
- **About**: This overview (you are here)
- **TraceVerde**: OpenTelemetry instrumentation for LLMs
- **SmolTrace**: Agent evaluation engine
- **TraceMind-MCP-Server**: MCP server implementation details
---
<details open>
<summary><h2>💡 Getting Started</h2></summary>
### Quick Start (5 minutes)
```bash
# 1. Install TraceVerde for instrumentation
pip install genai-otel-instrument
# 2. Install SMOLTRACE for evaluation
pip install smoltrace
# 3. Run your first evaluation
smoltrace-eval --model openai/gpt-4 --agent-type tool
# 4. View results in TraceMind-AI (this UI!)
```
### Learn More
- Read component-specific docs in the tabs above
- Try the **Agent Chat** for interactive queries
- Explore the **Leaderboard** to see real evaluation data
- Check the **Trace Detail** screen for deep inspection
</details>
---
## 🤝 Contributing
All components are open source under AGPL-3.0:
- Report issues on GitHub
- Submit pull requests
- Share your evaluation results
- Join the community discussions
---
## 👏 Acknowledgments
Built with ❤️ for **MCP's 1st Birthday Hackathon** by **Kshitij Thakkar**
Special thanks to:
- **Anthropic** - For the Model Context Protocol
- **Gradio Team** - For Gradio 6 with MCP integration
- **HuggingFace** - For Spaces and dataset infrastructure
- **Google** - For Gemini API access
- **OpenTelemetry** - For standardized observability
- **[Eliseu Silva](https://huggingface.co/elismasilva)** - For the [gradio_htmlplus](https://huggingface.co/spaces/elismasilva/gradio_htmlplus) custom component that powers our interactive leaderboard table. Eliseu's timely help and collaboration during the hackathon was invaluable!
---
*Last Updated: November 2025*
""")
def create_traceverde_tab():
"""Create the TraceVerde documentation tab"""
return gr.Markdown("""
# 🔭 TraceVerde (genai_otel_instrument)
<div align="center">
<img src="https://raw.githubusercontent.com/Mandark-droid/genai_otel_instrument/main/.github/images/Logo.jpg" alt="TraceVerde Logo" width="400"/>
</div>
<br/>
<div align="center" style="display: flex; flex-wrap: wrap; justify-content: center; gap: 5px;">
<a href="https://badge.fury.io/py/genai-otel-instrument"><img src="https://badge.fury.io/py/genai-otel-instrument.svg" alt="PyPI version"></a>
<a href="https://pypi.org/project/genai-otel-instrument/"><img src="https://img.shields.io/pypi/pyversions/genai-otel-instrument.svg" alt="Python Versions"></a>
<a href="https://www.gnu.org/licenses/agpl-3.0"><img src="https://img.shields.io/badge/License-AGPL%203.0-blue.svg" alt="License"></a>
<a href="https://pepy.tech/project/genai-otel-instrument"><img src="https://static.pepy.tech/badge/genai-otel-instrument" alt="Downloads"></a>
<a href="https://pepy.tech/project/genai-otel-instrument"><img src="https://static.pepy.tech/badge/genai-otel-instrument/month" alt="Downloads/Month"></a>
</div>
<div align="center" style="display: flex; flex-wrap: wrap; justify-content: center; gap: 5px;">
<a href="https://github.com/Mandark-droid/genai_otel_instrument"><img src="https://img.shields.io/github/stars/Mandark-droid/genai_otel_instrument?style=social" alt="GitHub Stars"></a>
<a href="https://github.com/Mandark-droid/genai_otel_instrument"><img src="https://img.shields.io/github/forks/Mandark-droid/genai_otel_instrument?style=social" alt="GitHub Forks"></a>
<a href="https://github.com/Mandark-droid/genai_otel_instrument/issues"><img src="https://img.shields.io/github/issues/Mandark-droid/genai_otel_instrument" alt="GitHub Issues"></a>
</div>
<div align="center" style="display: flex; flex-wrap: wrap; justify-content: center; gap: 5px;">
<a href="https://opentelemetry.io/"><img src="https://img.shields.io/badge/OpenTelemetry-1.20%2B-blueviolet" alt="OpenTelemetry"></a>
<a href="https://opentelemetry.io/docs/specs/semconv/gen-ai/"><img src="https://img.shields.io/badge/OTel%20Semconv-GenAI%20v1.28-orange" alt="Semantic Conventions"></a>
<a href="https://github.com/psf/black"><img src="https://img.shields.io/badge/code%20style-black-000000.svg" alt="Code Style: Black"></a>
</div>
**Automatic OpenTelemetry Instrumentation for LLM Applications**
---
## 📖 Table of Contents
- [What is TraceVerde?](#what-is-traceverde)
- [Installation](#-installation)
- [Quick Start](#-quick-start)
- [Supported Frameworks](#-supported-frameworks)
- [What Gets Captured?](#-what-gets-captured)
- [CO2 Emissions Tracking](#-co2-emissions-tracking)
- [Advanced Configuration](#-advanced-configuration)
- [Integration with SMOLTRACE](#-integration-with-smoltrace)
- [Use Cases](#-use-cases)
- [OpenTelemetry Standards](#-opentelemetry-standards)
- [Resources](#-resources)
- [Troubleshooting](#-troubleshooting)
- [License](#-license)
- [Contributing](#-contributing)
---
## What is TraceVerde?
TraceVerde is a **zero-code** OpenTelemetry instrumentation library for GenAI applications. It automatically captures:
- 🔹 Every LLM call (token usage, cost, latency)
- 🔹 Tool executions and results
- 🔹 Agent reasoning steps
- 🔹 GPU metrics (utilization, memory, temperature)
- 🔹 CO2 emissions (via CodeCarbon integration)
All with **one import statement** - no code changes required!
---
## 📦 Installation
```bash
pip install genai-otel-instrument
# With GPU metrics support
pip install genai-otel-instrument[gpu]
# With CO2 emissions tracking
pip install genai-otel-instrument[carbon]
# All features
pip install genai-otel-instrument[all]
```
---
<details open>
<summary><h2>🚀 Quick Start</h2></summary>
### Basic Usage
**Option 1: Environment Variables (No code changes)**
```bash
export OTEL_SERVICE_NAME=my-llm-app
export OTEL_EXPORTER_OTLP_ENDPOINT=http://localhost:4318
python your_app.py
```
**Option 2: One line of code**
```python
import genai_otel
genai_otel.instrument()
# Your existing code works unchanged
import openai
client = openai.OpenAI()
response = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": "Hello!"}]
)
# Traces are automatically captured and exported!
```
**Option 3: With OpenTelemetry Setup**
```python
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import ConsoleSpanExporter, SimpleSpanProcessor
# 1. Setup OpenTelemetry (one-time setup)
trace.set_tracer_provider(TracerProvider())
span_processor = SimpleSpanProcessor(ConsoleSpanExporter())
trace.get_tracer_provider().add_span_processor(span_processor)
# 2. Instrument all LLM frameworks (one line!)
import genai_otel
genai_otel.instrument()
# 3. Use your LLM framework normally - it's now traced!
from litellm import completion
response = completion(
model="gpt-4",
messages=[{"role": "user", "content": "Hello!"}]
)
# Traces are automatically captured and exported!
```
</details>
---
<details>
<summary><h2>🎯 Supported Frameworks</h2></summary>
TraceVerde automatically instruments **30+ LLM frameworks and providers**:
### 🔥 Popular Frameworks
| Framework | Status | Description |
|-----------|--------|-------------|
| **LiteLLM** | ✅ Full Support | Universal LLM gateway (100+ models) |
| **Transformers** | ✅ Full Support | HuggingFace models |
| **LangChain** | ✅ Full Support | LLM application framework |
| **LangGraph** | ✅ Full Support | LangChain graph-based workflows |
| **CrewAI** | ✅ Full Support | Multi-agent orchestration |
| **smolagents** | ✅ Full Support | HuggingFace agent framework |
| **LlamaIndex** | ✅ Full Support | Data framework for LLMs |
### 🏢 LLM Providers
| Provider | Status | Description |
|----------|--------|-------------|
| **OpenAI** | ✅ Full Support | GPT-4, GPT-3.5, etc. |
| **Anthropic** | ✅ Full Support | Claude models |
| **Google AI** | ✅ Full Support | Gemini models |
| **Cohere** | ✅ Full Support | Command models |
| **Mistral AI** | ✅ Full Support | Mistral models |
| **Groq** | ✅ Full Support | Fast LLM inference |
| **Together AI** | ✅ Full Support | Open source models |
| **Anyscale** | ✅ Full Support | Ray-based LLM serving |
| **Replicate** | ✅ Full Support | Open source model API |
| **SambaNova** | ✅ Full Support | Enterprise AI platform |
| **Hyperbolic** | ✅ Full Support | Decentralized AI |
### ☁️ Cloud AI Services
| Service | Status | Description |
|---------|--------|-------------|
| **Azure OpenAI** | ✅ Full Support | Azure-hosted OpenAI |
| **AWS Bedrock** | ✅ Full Support | Amazon LLM service |
| **Bedrock Agents** | ✅ Full Support | AWS agent framework |
| **Vertex AI** | ✅ Full Support | Google Cloud AI |
### 🤖 Agent & Workflow Frameworks
| Framework | Status | Description |
|-----------|--------|-------------|
| **AutoGen** | ✅ Full Support | Microsoft agent framework |
| **OpenAI Agents** | ✅ Full Support | OpenAI assistants API |
| **Pydantic AI** | ✅ Full Support | Type-safe agent framework |
| **DSPy** | ✅ Full Support | Programming framework for LMs |
| **Haystack** | ✅ Full Support | NLP framework |
| **Guardrails AI** | ✅ Full Support | LLM validation framework |
| **Instructor** | ✅ Full Support | Structured LLM outputs |
### 🖥️ Local & Self-Hosted
| Provider | Status | Description |
|----------|--------|-------------|
| **Ollama** | ✅ Full Support | Local LLM runtime |
**No code changes needed** - just import and use as normal!
</details>
---
<details>
<summary><h2>📊 What Gets Captured?</h2></summary>
### LLM Spans
Every LLM call creates a span with:
```json
{
"span_name": "LLM Call - Reasoning",
"attributes": {
"gen_ai.system": "openai",
"gen_ai.request.model": "gpt-4",
"gen_ai.operation.name": "chat",
"gen_ai.usage.prompt_tokens": 78,
"gen_ai.usage.completion_tokens": 156,
"gen_ai.usage.total_tokens": 234,
"gen_ai.usage.cost.total": 0.0012,
"gen_ai.response.finish_reasons": ["stop"],
"gen_ai.request.temperature": 0.7
}
}
```
### Tool Spans
Tool executions are traced with:
```json
{
"span_name": "Tool Call - get_weather",
"attributes": {
"tool.name": "get_weather",
"tool.input": "{\\"location\\": \\"Tokyo\\"}",
"tool.output": "{\\"temp\\": \\"18°C\\"}",
"tool.latency_ms": 890
}
}
```
### GPU Metrics
When enabled, captures real-time GPU data:
```json
{
"metrics": [
{
"name": "gen_ai.gpu.utilization",
"value": 67.5,
"unit": "%",
"timestamp": "2025-11-18T14:23:00Z"
},
{
"name": "gen_ai.gpu.memory.used",
"value": 512.34,
"unit": "MiB"
}
]
}
```
</details>
---
## 🌱 CO2 Emissions Tracking
TraceVerde integrates with CodeCarbon for sustainability monitoring:
```python
import genai_otel
# Enable CO2 tracking
genai_otel.instrument(enable_carbon_tracking=True)
# Your LLM calls now track carbon emissions!
```
**Captured Metrics:**
- 🌍 CO2 emissions (grams)
- ⚡ Energy consumed (kWh)
- 📍 Geographic region
- 💻 Hardware type (CPU/GPU)
---
## 🔧 Advanced Configuration
### Custom Exporters
```python
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace.export import BatchSpanProcessor
# Export to Jaeger/Tempo/etc
otlp_exporter = OTLPSpanExporter(endpoint="http://localhost:4317")
span_processor = BatchSpanProcessor(otlp_exporter)
trace.get_tracer_provider().add_span_processor(span_processor)
import genai_otel
genai_otel.instrument()
```
### GPU Metrics
```python
# Enable GPU monitoring (requires pynvml)
import genai_otel
genai_otel.instrument(
enable_gpu_metrics=True,
gpu_poll_interval=1.0 # seconds
)
```
---
## 📈 Integration with SMOLTRACE
TraceVerde powers SMOLTRACE's evaluation capabilities:
```python
# SMOLTRACE automatically uses TraceVerde for instrumentation
from smoltrace import evaluate_agent
results = evaluate_agent(
model="gpt-4",
agent_type="tool",
enable_otel=True # Uses TraceVerde under the hood!
)
```
---
## 🎯 Use Cases
### 1. Development & Debugging
```python
# See exactly what your agent is doing
import genai_otel
genai_otel.instrument()
# Run your agent
agent.run("Complex task")
# View traces in console or Jaeger
```
### 2. Production Monitoring
```python
# Export to your observability platform
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
otlp_exporter = OTLPSpanExporter(endpoint="https://your-otel-collector")
# ... setup processor ...
import genai_otel
genai_otel.instrument()
```
### 3. Cost Analysis
```python
# Track costs across all LLM calls
import genai_otel
genai_otel.instrument()
# Analyze cost per user/session/feature
# All costs automatically captured in span attributes
```
### 4. Sustainability Reporting
```python
# Monitor environmental impact
import genai_otel
genai_otel.instrument(
enable_carbon_tracking=True,
enable_gpu_metrics=True
)
# Generate CO2 reports from trace data
```
---
## 📐 OpenTelemetry Standards
TraceVerde follows the **Gen AI Semantic Conventions**:
- ✅ Consistent attribute naming (`gen_ai.*`)
- ✅ Standard span structure
- ✅ Compatible with all OTEL collectors
- ✅ Works with Jaeger, Tempo, Datadog, New Relic, etc.
---
## 🔗 Resources
- **GitHub**: [github.com/Mandark-droid/genai_otel_instrument](https://github.com/Mandark-droid/genai_otel_instrument)
- **PyPI**: [pypi.org/project/genai-otel-instrument](https://pypi.org/project/genai-otel-instrument)
- **Examples**: [github.com/Mandark-droid/genai_otel_instrument/examples](https://github.com/Mandark-droid/genai_otel_instrument/tree/main/examples)
- **OpenTelemetry Docs**: [opentelemetry.io](https://opentelemetry.io)
---
## 🐛 Troubleshooting
### Common Issues
**Q: Traces not appearing?**
```python
# Make sure you setup a tracer provider first
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
trace.set_tracer_provider(TracerProvider())
```
**Q: GPU metrics not working?**
```bash
# Install GPU support
pip install genai-otel-instrument[gpu]
# Verify NVIDIA drivers installed
nvidia-smi
```
**Q: How to configure different options?**
```python
# Use environment variables or pass options to instrument()
import genai_otel
genai_otel.instrument(enable_gpu_metrics=True)
```
---
## 📄 License
**AGPL-3.0** - Open source and free to use
---
## 🤝 Contributing
Contributions welcome!
- Report bugs on GitHub Issues
- Submit PRs for new framework support
- Share your use cases
---
*TraceVerde - Making AI agents observable, one trace at a time* 🔭
""")
def create_smoltrace_tab():
"""Create the SMOLTRACE documentation tab"""
return gr.Markdown("""
# 📊 SMOLTRACE
<div align="center">
<img src="https://raw.githubusercontent.com/Mandark-droid/SMOLTRACE/main/.github/images/Logo.png" alt="SMOLTRACE Logo" width="400"/>
</div>
<br/>
**Lightweight Agent Evaluation Engine with Built-in OpenTelemetry Tracing**
<div align="center" style="display: flex; flex-wrap: wrap; justify-content: center; gap: 5px;">
<a href="https://www.python.org/downloads/"><img src="https://img.shields.io/badge/Python-3.10%2B-blue" alt="Python"></a>
<a href="https://github.com/Mandark-droid/SMOLTRACE/blob/main/LICENSE"><img src="https://img.shields.io/badge/License-AGPL--3.0-blue.svg" alt="License"></a>
<a href="https://badge.fury.io/py/smoltrace"><img src="https://badge.fury.io/py/smoltrace.svg" alt="PyPI version"></a>
<a href="https://pepy.tech/project/smoltrace"><img src="https://static.pepy.tech/badge/smoltrace" alt="Downloads"></a>
<a href="https://pepy.tech/project/smoltrace"><img src="https://static.pepy.tech/badge/smoltrace/month" alt="Downloads/Month"></a>
</div>
<div align="center" style="display: flex; flex-wrap: wrap; justify-content: center; gap: 5px;">
<a href="https://github.com/psf/black"><img src="https://img.shields.io/badge/code%20style-black-000000.svg" alt="Code style: black"></a>
<a href="https://pycqa.github.io/isort/"><img src="https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336" alt="Imports: isort"></a>
<a href="https://github.com/Mandark-droid/SMOLTRACE/actions?query=workflow%3Atest"><img src="https://img.shields.io/github/actions/workflow/status/Mandark-droid/SMOLTRACE/test.yml?branch=main&label=tests" alt="Tests"></a>
<a href="https://huggingface.co/docs/smoltrace/en/index"><img src="https://img.shields.io/badge/docs-stable-blue.svg" alt="Docs"></a>
</div>
---
## 📖 Table of Contents
- [What is SMOLTRACE?](#what-is-smoltrace)
- [Installation](#-installation)
- [Quick Start](#-quick-start)
- [Evaluation Types](#-evaluation-types)
- [What Gets Generated?](#-what-gets-generated)
- [Configuration Options](#-configuration-options)
- [Integration with HuggingFace Jobs](#️-integration-with-huggingface-jobs)
- [Integration with TraceMind-AI](#-integration-with-tracemind-ai)
- [Best Practices](#-best-practices)
- [Cost Estimation](#-cost-estimation)
- [Architecture](#-architecture)
- [Resources](#-resources)
- [Troubleshooting](#-troubleshooting)
- [License](#-license)
- [Contributing](#-contributing)
---
## What is SMOLTRACE?
SMOLTRACE is a **production-ready** evaluation framework for AI agents that:
- ✅ Evaluates agents across tool usage, code execution, and both
- ✅ Supports both API models (via LiteLLM) and local models (via Transformers)
- ✅ Automatically captures OpenTelemetry traces using TraceVerde
- ✅ Generates structured datasets for HuggingFace
- ✅ Tracks costs, GPU metrics, and CO2 emissions
**Goal**: Become HuggingFace's standard agent evaluation platform
---
## 📦 Installation
```bash
# Basic installation
pip install smoltrace
# With OpenTelemetry support
pip install smoltrace[otel]
# With GPU metrics
pip install smoltrace[otel,gpu]
# Everything
pip install smoltrace[all]
```
---
<details open>
<summary><h2>🚀 Quick Start</h2></summary>
### Command Line
```bash
# Evaluate GPT-4 as a tool agent
smoltrace-eval \\
--model openai/gpt-4 \\
--provider litellm \\
--agent-type tool \\
--enable-otel
# Evaluate local Llama model
smoltrace-eval \\
--model meta-llama/Llama-3.1-8B \\
--provider transformers \\
--agent-type both \\
--enable-otel \\
--enable-gpu-metrics
```
### Python API
```python
from smoltrace import evaluate_agent
# Run evaluation
results = evaluate_agent(
model="openai/gpt-4",
provider="litellm",
agent_type="tool",
enable_otel=True,
num_tests=100
)
# Access results
print(f"Success Rate: {results.success_rate}%")
print(f"Total Cost: ${results.total_cost}")
print(f"Avg Duration: {results.avg_duration_ms}ms")
# Upload to HuggingFace
results.upload_to_hf(
results_repo="username/agent-results-gpt4",
traces_repo="username/agent-traces-gpt4",
leaderboard_repo="username/agent-leaderboard"
)
```
</details>
---
## 🎯 Evaluation Types
### 1. Tool Agent
Tests ability to use external tools:
```bash
smoltrace-eval --model gpt-4 --agent-type tool
```
**Example Task**: "What's the weather in Tokyo?"
- Agent must call `get_weather` tool
- Verify correct tool selection
- Check response quality
### 2. Code Agent
Tests code generation and execution:
```bash
smoltrace-eval --model gpt-4 --agent-type code
```
**Example Task**: "Calculate the sum of first 10 prime numbers"
- Agent must generate Python code
- Execute code safely
- Return correct result
### 3. Both (Combined)
Tests comprehensive agent capabilities:
```bash
smoltrace-eval --model gpt-4 --agent-type both
```
**Tests both tool usage AND code generation**
---
<details>
<summary><h2>📊 What Gets Generated?</h2></summary>
SMOLTRACE creates **4 structured datasets** on HuggingFace:
### 1. Leaderboard Dataset
Aggregate statistics for all evaluation runs:
```python
{
"run_id": "uuid",
"model": "openai/gpt-4",
"agent_type": "tool",
"provider": "litellm",
# Performance
"success_rate": 95.8,
"total_tests": 100,
"avg_duration_ms": 3200.0,
# Cost & Resources
"total_tokens": 15000,
"total_cost_usd": 0.05,
"co2_emissions_g": 0.22,
"gpu_utilization_avg": 67.5,
# Dataset References
"results_dataset": "username/agent-results-gpt4",
"traces_dataset": "username/agent-traces-gpt4",
"metrics_dataset": "username/agent-metrics-gpt4",
# Metadata
"timestamp": "2025-11-18T14:23:00Z",
"submitted_by": "username"
}
```
### 2. Results Dataset
Individual test case results:
```python
{
"run_id": "uuid",
"task_id": "task_001",
"test_index": 0,
# Test Case
"prompt": "What's the weather in Tokyo?",
"expected_tool": "get_weather",
# Result
"success": true,
"response": "The weather in Tokyo is 18°C and clear.",
"tool_called": "get_weather",
# Metrics
"execution_time_ms": 2450.0,
"total_tokens": 234,
"cost_usd": 0.0012,
# Trace Reference
"trace_id": "trace_abc123"
}
```
### 3. Traces Dataset
Full OpenTelemetry traces:
```python
{
"trace_id": "trace_abc123",
"run_id": "uuid",
"spans": [
{
"spanId": "span_001",
"name": "Agent Execution",
"startTime": "2025-11-18T14:23:01.000Z",
"endTime": "2025-11-18T14:23:03.450Z",
"attributes": {
"agent.type": "tool",
"gen_ai.system": "openai",
"gen_ai.request.model": "gpt-4"
}
},
# ... more spans ...
]
}
```
### 4. Metrics Dataset
GPU metrics and performance data:
```python
{
"run_id": "uuid",
"trace_id": "trace_abc123",
"metrics": [
{
"name": "gen_ai.gpu.utilization",
"value": 67.5,
"unit": "%",
"timestamp": "2025-11-18T14:23:01.000Z"
},
{
"name": "gen_ai.co2.emissions",
"value": 0.22,
"unit": "gCO2e"
}
]
}
```
</details>
---
## 🔧 Configuration Options
### Model Selection
```bash
# API Models (via LiteLLM)
--model openai/gpt-4
--model anthropic/claude-3-5-sonnet
--model google/gemini-pro
# Local Models (via Transformers)
--model meta-llama/Llama-3.1-8B
--model mistralai/Mistral-7B-v0.1
```
### Provider Selection
```bash
--provider litellm # For API models
--provider transformers # For local models
```
### Hardware Selection
Hardware is selected in HuggingFace Jobs configuration (`hardware:` field in job.yaml), not via CLI flags.
SMOLTRACE automatically detects available resources:
- API models (via litellm) → Uses CPU
- Local models (via transformers) → Uses available GPU if present
### OpenTelemetry Options
```bash
--enable-otel # Enable tracing
--enable-gpu-metrics # Capture GPU data
--enable-carbon-tracking # Track CO2 emissions
```
---
## 🏗️ Integration with HuggingFace Jobs
SMOLTRACE works seamlessly with HuggingFace Jobs for running evaluations on cloud infrastructure.
### ⚠️ Requirements to Submit Jobs
**IMPORTANT**: To submit jobs via TraceMind UI or HF CLI, you must:
1. **🔑 HuggingFace Pro Account**
- You must be a HuggingFace Pro user
- **Credit card required** to pay for compute usage
- Sign up at: https://huggingface.co/pricing
2. **🎫 HuggingFace Token Permissions**
- Your HF token needs **Read + Write** permissions
- Token must have **"Run Jobs"** permission enabled
- Create/update token at: https://huggingface.co/settings/tokens
- ⚠️ Read-only tokens will **NOT** work for job submission
3. **💳 Billing**
- You will be charged for compute usage
- Pricing: https://huggingface.co/pricing#spaces-pricing
- Monitor usage at: https://huggingface.co/settings/billing
### Example Job Configuration
```yaml
# job.yaml
name: SMOLTRACE Evaluation
hardware: gpu-a10 # Use gpu-h200 for 70B+ models
environment:
MODEL: meta-llama/Llama-3.1-8B
HF_TOKEN: ${{ secrets.HF_TOKEN }}
command: |
pip install smoltrace[otel,gpu]
smoltrace-eval \\
--model $MODEL \\
--provider transformers \\
--agent-type both \\
--enable-otel \\
--enable-gpu-metrics \\
--results-repo ${{ username }}/agent-results \\
--leaderboard-repo huggingface/smolagents-leaderboard
```
### Hardware Selection
- 🔧 **cpu-basic**: API models (OpenAI, Anthropic via LiteLLM) - ~$0.05/hr
- 🎮 **t4-small**: Small models (4B-8B) - ~$0.60/hr
- 🔧 **a10g-small**: Medium models (7B-13B) - ~$1.10/hr
- 🚀 **a100-large**: Large models (70B+) - ~$3.00/hr
**Pricing**: See https://huggingface.co/pricing#spaces-pricing
### Benefits
- 📊 **Automatic Upload**: Results → HuggingFace datasets
- 🔄 **Reproducible**: Same environment every time
- ⚡ **Optimized Compute**: Right hardware for your model size
- 💰 **Pay-per-use**: Only pay for actual compute time
---
## 📈 Integration with TraceMind-AI
SMOLTRACE datasets power the TraceMind-AI interface:
```
SMOLTRACE Evaluation
↓
4 Datasets Created
↓
┌────────┴────────┐
│ │
│ TraceMind-AI │ ← You are here!
│ (Gradio UI) │
│ │
└─────────────────┘
```
**What TraceMind-AI Shows:**
- 📊 **Leaderboard**: All evaluation runs
- 🔍 **Run Detail**: Individual test cases
- 🕵️ **Trace Detail**: OpenTelemetry visualization
- 🤖 **Agent Chat**: MCP-powered analysis
---
## 🎯 Best Practices
### 1. Start Small
```bash
# Test with 10 runs first
smoltrace-eval --model gpt-4 --num-tests 10
# Scale up after validation
smoltrace-eval --model gpt-4 --num-tests 1000
```
### 2. Choose Appropriate Hardware in HF Jobs
Hardware selection happens in your HuggingFace Jobs configuration:
```yaml
# For API models (OpenAI, Anthropic, etc.)
hardware: cpu-basic
# For 7B-13B local models
hardware: gpu-a10
# For 70B+ local models
hardware: gpu-h200
```
### 3. Enable Full Observability
```bash
# Capture everything
smoltrace-eval \\
--model your-model \\
--enable-otel \\
--enable-gpu-metrics \\
--enable-carbon-tracking
```
### 4. Organize Your Datasets
```bash
# Use descriptive repo names
--results-repo username/results-gpt4-tool-20251118
--traces-repo username/traces-gpt4-tool-20251118
--leaderboard-repo username/agent-leaderboard
```
---
## 🔍 Cost Estimation
Before running evaluations, estimate costs:
```python
from smoltrace import estimate_cost
# API model
api_cost = estimate_cost(
model="openai/gpt-4",
num_tests=1000,
agent_type="tool"
)
print(f"Estimated cost: ${api_cost.total_cost}")
# GPU job
gpu_cost = estimate_cost(
model="meta-llama/Llama-3.1-8B",
num_tests=1000,
hardware="gpu_h200"
)
print(f"Estimated cost: ${gpu_cost.total_cost}")
print(f"Estimated time: {gpu_cost.duration_minutes} minutes")
```
---
## 📐 Architecture
```
┌─────────────────────────────────────────┐
│ SMOLTRACE Core │
├─────────────────────────────────────────┤
│ │
│ ┌──────────────┐ ┌──────────────┐ │
│ │ LiteLLM │ │ Transformers │ │
│ │ Provider │ │ Provider │ │
│ └──────┬───────┘ └──────┬───────┘ │
│ │ │ │
│ └────────┬──────────┘ │
│ ↓ │
│ ┌──────────────┐ │
│ │ TraceVerde │ │
│ │ (OTEL) │ │
│ └──────┬───────┘ │
│ ↓ │
│ ┌──────────────┐ │
│ │ Dataset │ │
│ │ Generator │ │
│ └──────┬───────┘ │
│ ↓ │
│ ┌───────────────────────┐ │
│ │ HuggingFace Upload │ │
│ └───────────────────────┘ │
│ │
└─────────────────────────────────────────┘
```
---
## 🔗 Resources
- **GitHub**: [github.com/Mandark-droid/SMOLTRACE](https://github.com/Mandark-droid/SMOLTRACE)
- **PyPI**: [pypi.org/project/smoltrace](https://pypi.org/project/smoltrace/)
- **Documentation**: [SMOLTRACE README](https://github.com/Mandark-droid/SMOLTRACE#readme)
---
## 🐛 Troubleshooting
### Common Issues
**Q: Evaluation is slow?**
```bash
# Use GPU for local models
--hardware gpu_h200
# Or reduce test count
--num-tests 10
```
**Q: Traces not captured?**
```bash
# Make sure OTEL is enabled
--enable-otel
```
**Q: Upload to HF failing?**
```bash
# Check HF token
export HF_TOKEN=your_token_here
# Verify repo exists or allow auto-create
```
---
## 📄 License
**AGPL-3.0** - Open source and free to use
---
## 🤝 Contributing
We welcome contributions!
- Add new agent types
- Support more frameworks
- Improve evaluation metrics
- Optimize performance
---
*SMOLTRACE - Lightweight evaluation for heavyweight results* 📊
""")
def create_mcp_server_tab():
"""Create the TraceMind-MCP-Server documentation tab"""
return gr.Markdown("""
# 🔌 TraceMind-MCP-Server
<div align="center">
<img src="https://raw.githubusercontent.com/Mandark-droid/TraceMind-mcp-server/assets/Logo.png" alt="TraceMind MCP Server Logo" width="300"/>
</div>
<br/>
**Building MCP: Intelligent Analysis Tools for Agent Evaluation**
<div align="center" style="display: flex; flex-wrap: wrap; justify-content: center; gap: 5px;">
<a href="https://github.com/modelcontextprotocol"><img src="https://img.shields.io/badge/MCP%27s%201st%20Birthday-Hackathon-blue" alt="MCP's 1st Birthday Hackathon"></a>
<a href="https://github.com/modelcontextprotocol/hackathon"><img src="https://img.shields.io/badge/Track-Building%20MCP%20(Enterprise)-blue" alt="Track 1"></a>
<a href="https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server"><img src="https://img.shields.io/badge/HuggingFace-TraceMind--MCP--Server-yellow?logo=huggingface" alt="HF Space"></a>
<a href="https://ai.google.dev/"><img src="https://img.shields.io/badge/Powered%20by-Google%20Gemini%202.5%20Pro-orange" alt="Google Gemini"></a>
</div>
> **🎯 Track 1 Submission**: Building MCP (Enterprise)
> **📅 MCP's 1st Birthday Hackathon**: November 14-30, 2025
---
## 📖 Table of Contents
- [What is TraceMind-MCP-Server?](#what-is-tracemind-mcp-server)
- [MCP Tools Provided](#️-mcp-tools-provided)
- [analyze_leaderboard](#1-analyze_leaderboard)
- [estimate_cost](#2-estimate_cost)
- [debug_trace](#3-debug_trace)
- [compare_runs](#4-compare_runs)
- [analyze_results](#5-analyze_results)
- [Accessing the MCP Server](#-accessing-the-mcp-server)
- [Use Cases](#-use-cases)
- [Architecture](#️-architecture)
- [Configuration](#-configuration)
- [Dataset Requirements](#-dataset-requirements)
- [Learning Resources](#-learning-resources)
- [Troubleshooting](#-troubleshooting)
- [Links](#-links)
- [License](#-license)
- [Contributing](#-contributing)
- [MCP's 1st Birthday Hackathon](#-mcps-1st-birthday-hackathon)
---
## What is TraceMind-MCP-Server?
TraceMind-MCP-Server is a **Track 1 (Building MCP)** submission that provides MCP tools for intelligent agent evaluation analysis.
**Key Features:**
- 🤖 Powered by Google Gemini 2.5 Pro
- 🔌 Standards-compliant MCP implementation
- 📊 Analyzes HuggingFace evaluation datasets
- 💡 Provides actionable insights and recommendations
- 🌐 Accessible via SSE transport for Gradio integration
---
<details>
<summary><h2>🛠️ MCP Tools Provided</h2></summary>
### 1. `analyze_leaderboard`
**Purpose**: Generate AI-powered insights about evaluation leaderboard data
**Input Schema:**
```json
{
"leaderboard_repo": "string", // HF dataset (default: kshitijthakkar/smoltrace-leaderboard)
"metric_focus": "string", // "overall" | "accuracy" | "cost" | "latency" | "co2"
"time_range": "string", // "last_week" | "last_month" | "all_time"
"top_n": "integer" // Number of top models to highlight
}
```
**What It Does:**
1. Fetches leaderboard dataset from HuggingFace
2. Filters by time range
3. Analyzes trends based on metric focus
4. Uses Gemini to generate insights
5. Returns markdown-formatted analysis
**Example Output:**
```markdown
Based on 247 evaluations in the past week:
**Top Performers:**
- GPT-4 leads in accuracy at 95.8% but costs $0.05 per run
- Llama-3.1-8B offers best cost/performance at 93.4% accuracy for $0.002
- Qwen3-MoE is fastest at 1.7s average duration
**Trends:**
- API models dominate accuracy rankings
- GPU models are 10x more cost-effective
- H200 jobs show 2x faster execution vs A10
**Recommendations:**
- For production: Consider Llama-3.1-8B for cost-sensitive workloads
- For maximum accuracy: GPT-4 remains state-of-the-art
- For eco-friendly: Claude-3-Haiku has lowest CO2 emissions
```
---
### 2. `estimate_cost`
**Purpose**: Estimate evaluation costs with hardware recommendations
**Input Schema:**
```json
{
"model": "string", // Model name (e.g., "openai/gpt-4")
"agent_type": "string", // "tool" | "code" | "both"
"num_tests": "integer", // Number of test cases (default: 100)
"hardware": "string" // "cpu" | "gpu_a10" | "gpu_h200" (optional)
}
```
**What It Does:**
1. Determines if model is API or local
2. Calculates token usage estimates
3. Computes costs (API pricing or GPU time)
4. Estimates duration and CO2 emissions
5. Provides hardware recommendations
**Example Output:**
```markdown
## Cost Estimation: openai/gpt-4 (Tool Agent, 100 tests)
**Hardware**: CPU (API model)
**Cost Breakdown:**
- Total Tokens: ~15,000
- Prompt Tokens: ~5,000 ($0.03)
- Completion Tokens: ~10,000 ($0.06)
- **Total Cost: $0.09**
**Time Estimate:**
- Average per test: 3.2s
- Total duration: ~5.3 minutes
**CO2 Emissions:**
- Estimated: 0.45g CO2e
**Recommendations:**
- ✅ Good choice for accuracy-critical applications
- ⚠️ Consider Llama-3.1-8B for cost savings (10x cheaper)
- 💡 Use caching to reduce repeated API calls
```
---
### 3. `debug_trace`
**Purpose**: Answer questions about agent execution traces
**Input Schema:**
```json
{
"trace_dataset": "string", // HF dataset with OTEL traces
"trace_id": "string", // Specific trace to analyze
"question": "string", // Question about the trace
"include_metrics": "boolean" // Include GPU metrics (default: true)
}
```
**What It Does:**
1. Fetches trace data from HuggingFace
2. Parses OpenTelemetry spans
3. Analyzes execution flow
4. Uses Gemini to answer questions
5. Provides span-level details
**Example Output:**
```markdown
## Why was the tool called twice?
Based on trace analysis for `trace_abc123`:
**First Tool Call (span_003)**:
- Time: 14:23:19.000
- Tool: `search_web`
- Input: {"query": "latest AI news"}
- Result: 5 results returned
- Issue: Results were 2 days old
**Second Tool Call (span_005)**:
- Time: 14:23:21.200
- Tool: `search_web`
- Input: {"query": "latest AI news today"}
- Reasoning: LLM determined first results were outdated
- Duration: 1200ms
**Why Twice?**
The agent's reasoning chain shows it initially received outdated results.
The LLM then decided to refine the query with "today" keyword to get
more recent data.
**Performance Impact:**
- Added 2.09s to total execution
- Cost increase: +$0.0003
- This is normal for agents with iterative reasoning
**Recommendation:**
Consider adding date filters to initial tool calls to avoid retries.
```
---
### 4. `compare_runs`
**Purpose**: Side-by-side comparison of evaluation runs
**Input Schema:**
```json
{
"leaderboard_repo": "string", // HF leaderboard dataset
"run_id_1": "string", // First run ID
"run_id_2": "string", // Second run ID
"comparison_focus": "string" // "overall" | "cost" | "accuracy" | "speed"
}
```
**What It Does:**
1. Fetches data for both runs
2. Compares key metrics
3. Identifies strengths/weaknesses
4. Provides recommendations
**Example Output:**
```markdown
## Comparison: GPT-4 vs Llama-3.1-8B
| Metric | GPT-4 | Llama-3.1-8B | Winner |
|--------|-------|--------------|--------|
| Success Rate | 95.8% | 93.4% | GPT-4 (+2.4%) |
| Avg Duration | 3.2s | 2.1s | Llama (+34% faster) |
| Cost per Run | $0.05 | $0.002 | Llama (25x cheaper) |
| CO2 Emissions | 0.22g | 0.08g | Llama (64% less) |
**Analysis:**
- GPT-4 has slight accuracy edge but at significant cost premium
- Llama-3.1-8B offers excellent cost/performance ratio
- For 1000 runs: GPT-4 costs $50, Llama costs $2
**Recommendation:**
Use Llama-3.1-8B for production unless 95%+ accuracy is critical.
Consider hybrid approach: Llama for routine tasks, GPT-4 for complex ones.
```
---
### 5. `analyze_results`
**Purpose**: Deep dive into test case results
**Input Schema:**
```json
{
"results_repo": "string", // HF results dataset
"run_id": "string", // Run to analyze
"focus": "string" // "failures" | "successes" | "all"
}
```
**What It Does:**
1. Loads results dataset
2. Filters by success/failure
3. Identifies patterns
4. Suggests optimizations
</details>
---
## 🌐 Accessing the MCP Server
### Via TraceMind-AI (This App!)
The **Agent Chat** screen uses TraceMind-MCP-Server automatically:
```python
# Happens automatically in the Chat screen
from mcp_client.sync_wrapper import get_sync_mcp_client
mcp = get_sync_mcp_client()
insights = mcp.analyze_leaderboard(
metric_focus="overall",
time_range="last_week"
)
```
### Via SSE Endpoint (for smolagents)
```python
from smolagents import MCPClient, ToolCallingAgent
# Connect to MCP server via SSE
mcp_client = MCPClient(
"https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/sse"
)
# Create agent with MCP tools
agent = ToolCallingAgent(
tools=[],
model="hfapi",
additional_authorized_imports=["requests", "pandas"]
)
# Tools automatically available!
agent.run("Analyze the leaderboard and show top 3 models")
```
### Via MCP SDK (for other clients)
```python
from mcp import ClientSession, StdioServerParameters
# For local development
session = ClientSession(
StdioServerParameters(
command="python",
args=["-m", "mcp_tools"]
)
)
# Call tools
result = await session.call_tool(
"analyze_leaderboard",
arguments={"metric_focus": "cost"}
)
```
---
## 🎯 Use Cases
### 1. Interactive Analysis (Agent Chat)
Ask natural language questions:
- "What are the top 3 models by accuracy?"
- "Compare GPT-4 and Claude-3 on cost"
- "Why is this agent slow?"
### 2. Automated Insights (Leaderboard)
Get AI summaries automatically:
- Weekly trend reports
- Cost optimization recommendations
- Performance alerts
### 3. Debugging (Trace Detail)
Understand agent behavior:
- "Why did the agent fail?"
- "Which tool took the longest?"
- "Why was the same tool called twice?"
### 4. Planning (Cost Estimator)
Before running evaluations:
- "How much will 1000 tests cost?"
- "Should I use A10 or H200?"
- "What's the CO2 impact?"
---
## 🏗️ Architecture
```
┌─────────────────────────────────────────────────────┐
│ TraceMind-MCP-Server (HF Space) │
├─────────────────────────────────────────────────────┤
│ │
│ ┌─────────────────┐ ┌──────────────────┐ │
│ │ Gradio App │ │ MCP Protocol │ │
│ │ (UI + SSE) │◄──────►│ Handler │ │
│ └─────────────────┘ └────────┬─────────┘ │
│ │ │
│ ┌────────▼─────────┐ │
│ │ Tool Router │ │
│ └────────┬─────────┘ │
│ │ │
│ ┌─────────────────────────────┼──────────┐ │
│ │ │ │ │
│ ┌──────▼──────┐ ┌─────────▼───────▼──┐ ┌──▼──▼──┐
│ │ Leaderboard │ │ Cost Estimator │ │ Trace │
│ │ Analyzer │ │ │ │Debugger│
│ └─────────────┘ └───────────────────┘ └────────┘
│ │ │ │ │
│ └─────────────────────┴──────────────────┘ │
│ │ │
│ ┌─────────▼──────────┐ │
│ │ Gemini 2.5 Pro │ │
│ │ (Analysis Engine) │ │
│ └────────────────────┘ │
│ │
└────────────────────────────────────────────────────────┘
│
│ MCP Protocol (SSE)
│
▼
┌──────────────────────────┐
│ TraceMind-AI (UI) │
│ Agent Chat Screen │
└──────────────────────────┘
```
---
## 🔧 Configuration
### Environment Variables
```env
# Google Gemini API (required)
GEMINI_API_KEY=your_api_key_here
# HuggingFace Token (for dataset access)
HF_TOKEN=your_token_here
# Default Leaderboard (optional)
DEFAULT_LEADERBOARD_REPO=kshitijthakkar/smoltrace-leaderboard
```
---
## 📊 Dataset Requirements
MCP tools expect datasets with specific schemas:
### Leaderboard Dataset
```python
{
"run_id": "string",
"model": "string",
"success_rate": "float",
"total_cost_usd": "float",
"timestamp": "string",
# ... other metrics
}
```
### Results Dataset
```python
{
"run_id": "string",
"task_id": "string",
"success": "boolean",
"trace_id": "string",
# ... other fields
}
```
### Traces Dataset
```python
{
"trace_id": "string",
"spans": [
{
"spanId": "string",
"name": "string",
"attributes": {},
# ... OTEL format
}
]
}
```
---
## 🎓 Learning Resources
### MCP Documentation
- [Model Context Protocol Spec](https://modelcontextprotocol.io)
- [MCP Python SDK](https://github.com/modelcontextprotocol/python-sdk)
- [Gradio MCP Integration](https://www.gradio.app/guides/creating-a-custom-chatbot-with-blocks#model-context-protocol-mcp)
### Implementation Examples
- **This Server**: [HF Space Code](https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server/tree/main)
- **Client Integration**: [TraceMind-AI mcp_client/](https://github.com/Mandark-droid/TraceMind-AI/tree/main/mcp_client)
---
## 🐛 Troubleshooting
### Common Issues
**Q: MCP tools not appearing?**
```bash
# Verify MCP_SERVER_URL is correct
echo $MCP_SERVER_URL
# Should be: https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/sse
```
**Q: "Failed to load dataset" error?**
```bash
# Check HF token
export HF_TOKEN=your_token_here
# Verify dataset exists
huggingface-cli repo info kshitijthakkar/smoltrace-leaderboard
```
**Q: Gemini API errors?**
```bash
# Verify API key
curl -H "Authorization: Bearer $GEMINI_API_KEY" \\
https://generativelanguage.googleapis.com/v1beta/models
# Check rate limits (10 requests/minute on free tier)
```
---
## 🔗 Links
- **Live Server**: [HF Space](https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server)
- **Source Code**: [GitHub](https://github.com/Mandark-droid/TraceMind-mcp-server)
- **Client (This App)**: [TraceMind-AI](https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind)
- **MCP Spec**: [modelcontextprotocol.io](https://modelcontextprotocol.io)
---
## 🎬 Demo Videos
| Video | Duration | Description |
|-------|----------|-------------|
| **TraceMind-AI Full Demo** | 20 mins | [Watch on Loom](https://www.loom.com/share/70b9689b57204da58b8fef0d23c304fe) - Complete walkthrough of TraceMind-AI features and workflows |
| **MCP Server Quick Demo** | 5 mins | [Watch on Loom](https://www.loom.com/share/d4d0003f06fa4327b46ba5c081bdf835) - Quick overview of TraceMind-MCP-Server features |
| **MCP Server Full Demo** | 20 mins | [Watch on Loom](https://www.loom.com/share/de559bb0aef749559c79117b7f951250) - Comprehensive walkthrough with detailed explanations |
---
## 📄 License
**AGPL-3.0** - Open source and free to use
---
## 🤝 Contributing
Help improve TraceMind-MCP-Server:
- Add new MCP tools
- Improve analysis quality
- Optimize performance
- Add support for more datasets
---
## 🏆 MCP's 1st Birthday Hackathon
**Track 1 Submission: Building MCP (Enterprise)**
TraceMind-MCP-Server demonstrates:
- ✅ Standards-compliant MCP implementation
- ✅ SSE transport for Gradio integration
- ✅ Real-world use case (agent evaluation)
- ✅ Gemini 2.5 Flash integration
- ✅ Production-ready deployment on HF Spaces
**Used by**: TraceMind-AI (Track 2) for autonomous agent chat
---
*TraceMind-MCP-Server - Intelligent analysis, one tool at a time* 🔌
""")
def create_job_submission_tab():
"""Create the Job Submission tab with full details about Modal and HF Jobs"""
return gr.Markdown("""
# ☁️ Job Submission
**Run SMOLTRACE Evaluations on Cloud Infrastructure**
TraceMind-AI provides seamless integration with two cloud compute platforms, allowing you to run agent evaluations with automated hardware selection, cost estimation, and real-time monitoring.
---
## 📋 Table of Contents
- [Platform Overview](#-platform-overview)
- [HuggingFace Jobs Integration](#-huggingface-jobs-integration)
- [Modal Integration](#-modal-integration)
- [Hardware Auto-Selection](#-hardware-auto-selection)
- [Cost Estimation](#-cost-estimation)
- [Job Monitoring](#-job-monitoring)
- [Step-by-Step Guide](#-step-by-step-guide)
- [Troubleshooting](#-troubleshooting)
---
## 🌟 Platform Overview
### Supported Platforms
| Platform | Best For | Pricing Model | GPU Options | Free Tier |
|----------|----------|---------------|-------------|-----------|
| **HuggingFace Jobs** | Managed infrastructure, dataset integration | Per-second | T4, L4, A10, A100, V5e | ❌ ($9/mo Pro required) |
| **Modal** | Serverless compute, pay-per-second | Per-second | T4, L4, A10, A100-80GB, H100, H200, B200 | ✅ Free credits available |
### Key Differences
**HuggingFace Jobs**:
- ✅ Native HuggingFace ecosystem integration
- ✅ Managed infrastructure with guaranteed availability
- ✅ Built-in dataset storage and versioning
- ✅ Per-second billing (no minimums)
- ⚠️ Requires Pro account ($9/month)
- ⚠️ Limited GPU options (no H100/H200)
**Modal**:
- ✅ Serverless architecture (no minimum charges)
- ✅ Pay-per-second billing
- ✅ Latest GPUs (H100, H200, B200 available)
- ✅ Free tier with credits
- ⚠️ Requires separate account setup
- ⚠️ Container cold start time (~2-3 minutes first run)
---
## 🤗 HuggingFace Jobs Integration
### Requirements
**1. HuggingFace Pro Account**
- Cost: $9/month
- Sign up: https://huggingface.co/pricing
- Includes compute credits and priority support
**2. HuggingFace Token with Run Jobs Permission**
```
Steps to create token:
1. Visit: https://huggingface.co/settings/tokens
2. Click "New token"
3. Name: "TraceMind Evaluation"
4. Permissions:
✅ Read (view datasets)
✅ Write (upload results)
✅ Run Jobs (submit evaluation jobs) ⚠️ REQUIRED
5. Copy token (starts with hf_)
6. Save in TraceMind Settings
```
### Hardware Options
| Hardware | vCPUs | GPU | Memory | Best For | Price/hr | Per-second |
|----------|-------|-----|--------|----------|----------|------------|
| `cpu-basic` | 2 | - | 16 GB | API models (OpenAI, Anthropic) | Free with Pro | - |
| `cpu-upgrade` | 8 | - | 32 GB | API models (high volume) | Free with Pro | - |
| `t4-small` | 4 | T4 (16GB) | 15 GB | Small models (4B-8B) | $0.40 | $0.000111 |
| `t4-medium` | 8 | T4 (16GB) | 30 GB | Small models (batched) | $0.60 | $0.000167 |
| `l4x1` | 8 | L4 (24GB) | 30 GB | Small-medium models | $0.80 | $0.000222 |
| `a10g-small` | 4 | A10G (24GB) | 32 GB | Medium models (7B-13B) | $1.00 | $0.000278 |
| `a10g-large` | 12 | A10G (24GB) | 92 GB | Medium models (high memory) | $1.50 | $0.000417 |
| `a100-large` | 12 | A100 (80GB) | 142 GB | Large models (70B+) | $2.50 | $0.000694 |
| `v5e-1x1` | 4 | TPU v5e | 16 GB | TPU-optimized workloads | TBD | TBD |
*Pricing from [HF Spaces GPU docs](https://huggingface.co/docs/hub/en/spaces-gpus). Billed **per-second** with no minimums.*
### Auto-Selection Logic
When you select `hardware: auto`, TraceMind applies this logic:
```python
# API models (LiteLLM/Inference)
if provider in ["litellm", "inference"]:
hardware = "cpu-basic"
# Local models (Transformers)
elif "70b" in model.lower() or "65b" in model.lower():
hardware = "a100-large" # Large models
elif "13b" in model.lower() or "34b" in model.lower():
hardware = "a10g-large" # Medium models
elif "7b" in model.lower() or "8b" in model.lower() or "4b" in model.lower():
hardware = "t4-small" # Small models
else:
hardware = "t4-small" # Default
```
### Job Workflow
```
1. Configure Settings
└─> Add HF Token (with Run Jobs permission)
└─> Add LLM provider API keys
2. Create Evaluation
└─> Select "HuggingFace Jobs" as infrastructure
└─> Choose model and configuration
└─> Hardware auto-selected or manually chosen
3. Submit Job
└─> TraceMind validates credentials
└─> Submits job via HF Jobs API
└─> Returns job ID for monitoring
4. Job Execution
└─> Container built with dependencies
└─> SMOLTRACE runs evaluation
└─> Results uploaded to HF datasets
└─> Leaderboard updated automatically
5. Monitor Progress
└─> Track at: https://huggingface.co/jobs
└─> Or use Job Monitoring tab in TraceMind
```
---
## ⚡ Modal Integration
### Requirements
**1. Modal Account**
- Free tier: $30 free credits per month
- Sign up: https://modal.com
**2. Modal API Credentials**
```
Steps to get credentials:
1. Visit: https://modal.com/settings/tokens
2. Click "Create token"
3. Copy:
- Token ID (starts with ak-)
- Token Secret (starts with as-)
4. Save in TraceMind Settings:
- MODAL_TOKEN_ID: ak-xxxxx
- MODAL_TOKEN_SECRET: as-xxxxx
```
### Hardware Options
| Hardware | GPU | Memory | Best For | Price/sec | Equivalent $/hr |
|----------|-----|--------|----------|-----------|-----------------|
| `CPU` | - | 16 GB | API models | $0.0000131/core | ~$0.05 |
| `T4` | T4 (16GB) | 16 GB | Small models (4B-8B) | $0.000164 | ~$0.59 |
| `L4` | L4 (24GB) | 24 GB | Small-medium models | $0.000222 | ~$0.80 |
| `A10G` | A10G (24GB) | 32 GB | Medium models (7B-13B) | $0.000306 | ~$1.10 |
| `L40S` | L40S (48GB) | 48 GB | Large models (optimized) | $0.000542 | ~$1.95 |
| `A100` | A100 (40GB) | 64 GB | Large models | $0.000583 | ~$2.10 |
| `A100-80GB` | A100 (80GB) | 128 GB | Very large models (70B+) | $0.000694 | ~$2.50 |
| `H100` | H100 (80GB) | 192 GB | Latest generation inference | $0.001097 | ~$3.95 |
| `H200` | H200 (141GB) | 256 GB | Cutting-edge, highest memory | $0.001261 | ~$4.54 |
| `B200` | B200 (192GB) | 384 GB | Next-gen, massive memory | $0.001736 | ~$6.25 |
Full pricing: https://modal.com/pricing
**💡 Both platforms use per-second billing!** Choose Modal for H100/H200/B200 GPUs or if you don't have HF Pro.
### Auto-Selection Logic
When you select `hardware: auto`, TraceMind applies this logic:
```python
# API models
if provider in ["litellm", "inference"]:
gpu = None # CPU only
# Local models (Transformers)
elif "70b" in model.lower() or "65b" in model.lower():
gpu = "A100-80GB" # Large models need 80GB
elif "13b" in model.lower() or "34b" in model.lower():
gpu = "A10G" # Medium models
elif "7b" in model.lower() or "8b" in model.lower():
gpu = "A10G" # Small models efficient on A10G
else:
gpu = "A10G" # Default
```
### Modal-Specific Features
**Dynamic Python Version Matching**
```python
# Automatically matches your environment
python_version = f"{sys.version_info.major}.{sys.version_info.minor}"
# Example: "3.10" on HF Space, "3.12" locally
```
**Optimized Docker Images**
```python
# GPU jobs: CUDA-optimized base
image = "nvidia/cuda:12.6.0-cudnn-devel-ubuntu22.04"
# CPU jobs: Lightweight
image = "debian-slim"
```
**Smart Package Installation**
```python
# GPU jobs get full stack
packages = [
"smoltrace",
"transformers",
"torch",
"accelerate", # For device_map
"bitsandbytes", # For quantization
"hf_transfer", # Fast downloads
"nvidia-ml-py" # GPU metrics
]
# CPU jobs get minimal dependencies
packages = ["smoltrace", "litellm", "ddgs"]
```
### Job Workflow
```
1. Configure Settings
└─> Add Modal Token ID + Secret
└─> Add HF Token (for dataset upload)
└─> Add LLM provider API keys
2. Create Evaluation
└─> Select "Modal" as infrastructure
└─> Choose model and configuration
└─> Hardware auto-selected
3. Submit Job
└─> TraceMind creates dynamic Modal app
└─> Submits job in background thread
└─> Returns Modal Call ID
4. Job Execution
└─> Image builds (or uses cache)
└─> Model downloads to Modal storage
└─> SMOLTRACE runs evaluation
└─> Results uploaded to HF datasets
5. Monitor Progress
└─> Track at: https://modal.com/apps
└─> View real-time streaming logs
```
---
## 🎯 Hardware Auto-Selection
### How It Works
TraceMind **automatically selects optimal hardware** based on:
1. **Provider type**: LiteLLM/Inference (API) vs Transformers (local)
2. **Model size**: Extracted from model name (e.g., "70b", "13b", "8b")
3. **Platform**: Modal or HuggingFace Jobs
### Selection Matrix
| Model Type | Model Size | HF Jobs | Modal |
|------------|------------|---------|-------|
| API (OpenAI, Anthropic) | Any | `cpu-basic` | `CPU` |
| Transformers | 4B-8B | `t4-small` | `A10G` |
| Transformers | 13B-34B | `a10g-large` | `A10G` |
| Transformers | 70B+ | `a100-large` | `A100-80GB` |
### Override Auto-Selection
You can manually select hardware if needed:
```
Reasons to override:
- You know your model needs more memory
- You want to test performance on different GPUs
- You want to optimize cost vs speed tradeoff
```
### Cost Estimation Shows Auto-Selection
When you click **"💰 Estimate Cost"** with `auto` hardware:
**Modal Example**:
```
Hardware: auto → **A100-80GB** (Modal)
Estimated Cost: $0.45
Duration: 15 minutes
```
**HF Jobs Example**:
```
Hardware: auto → **a100-large** (HF Jobs)
Estimated Cost: $0.75
Duration: 15 minutes
```
---
## 💰 Cost Estimation
### How Cost Estimation Works
TraceMind provides **AI-powered cost estimation** before you submit jobs:
**Data Sources**:
1. **Historical Data** (preferred): Analyzes past runs from leaderboard
2. **MCP Server** (fallback): Uses `estimate_cost` MCP tool with Gemini 2.5 Flash
### Estimation Process
```
1. User clicks "💰 Estimate Cost"
2. TraceMind checks for historical data
└─> If found: Use average cost/duration from past runs
└─> If not found: Call MCP Server for AI analysis
3. Auto-selection applied
└─> Determines actual hardware that will be used
└─> Maps to pricing table
4. Display estimate
└─> Cost breakdown
└─> Duration estimate
└─> Hardware details
```
### Cost Estimate Components
**Historical Data Estimate**:
```markdown
## 💰 Cost Estimate
**📊 Historical Data (5 past runs)**
| Metric | Value |
|--------|-------|
| Model | meta-llama/Llama-3.1-70B |
| Hardware | auto → **A100-80GB** (Modal) |
| Estimated Cost | $0.45 |
| Duration | 15.2 minutes |
---
*Based on 5 previous evaluation runs in the leaderboard.*
```
**MCP AI Estimate**:
```markdown
## 💰 Cost Estimate - AI Analysis
**🤖 Powered by MCP Server + Gemini 2.5 Flash**
*This estimate was generated by AI analysis since no historical
data is available for this model.*
**Hardware**: auto → **A100-80GB** (Modal)
---
Based on the model size (70B parameters) and evaluation
configuration, I estimate:
**Cost Breakdown**:
- Model download: ~5 minutes @ $0.0030/sec = $0.90
- Evaluation (100 tests): ~10 minutes @ $0.0030/sec = $1.80
- **Total estimated cost**: $2.70
**Duration**: 15-20 minutes
**Recommendations**:
- For cost savings, consider using A10G with quantization
- For faster inference, H200 reduces duration to ~8 minutes
```
### Accuracy of Estimates
**Historical estimates**: ±10% accuracy
- Based on actual past runs
- Accounts for model-specific behavior
**MCP AI estimates**: ±30% accuracy
- Uses model knowledge and heuristics
- Conservative (tends to overestimate)
**Factors affecting accuracy**:
- Model download time varies (network speed, caching)
- Evaluation complexity depends on dataset
- GPU availability can affect queue time
---
## 🔍 Job Monitoring
### HuggingFace Jobs Monitoring
**Built-in Tab**: Go to **"🔍 Job Monitoring"** in TraceMind
**Features**:
```
📋 Inspect Job
└─> Enter HF Job ID
└─> View status, hardware, timestamps
└─> See next steps based on status
📜 Job Logs
└─> Load execution logs
└─> Auto-refresh option
└─> Search and filter
📑 Recent Jobs
└─> List your recent jobs
└─> Quick status overview
└─> Click to inspect
```
**Job Statuses**:
- ⏳ **QUEUED**: Waiting to start
- 🔄 **STARTING**: Initializing (1-2 min)
- ▶️ **RUNNING**: Executing evaluation
- ✅ **SUCCEEDED**: Completed successfully
- ❌ **FAILED**: Error occurred (check logs)
- 🚫 **CANCELLED**: Manually stopped
**External Monitoring**:
- HF Dashboard: https://huggingface.co/jobs
- CLI: `hf jobs ps` and `hf jobs logs <job_id>`
### Modal Monitoring
**Modal Dashboard**: https://modal.com/apps
**Features**:
- Real-time streaming logs
- GPU utilization graphs
- Cost tracking
- Container status
**Log Visibility**:
TraceMind uses streaming output for Modal jobs:
```python
# You'll see in real-time:
================================================================================
Starting SMOLTRACE evaluation on Modal
Command: smoltrace-eval --model Qwen/Qwen3-8B ...
Python version: 3.10.0
GPU: NVIDIA A10
GPU Memory: 23.68 GB
================================================================================
Note: Model download may take several minutes for large models (14B = ~28GB)
Downloading and initializing model...
[Download progress bars appear here]
[Evaluation progress appears here]
================================================================================
EVALUATION COMPLETED
Return code: 0
================================================================================
```
### Expected Duration
**CPU Jobs (API Models)**:
- Queue time: <1 minute
- Execution: 2-5 minutes
- **Total**: ~5 minutes
**GPU Jobs (Local Models)**:
- Queue time: 1-3 minutes
- Image build: 2-5 minutes (first run, then cached)
- Model download: 5-15 minutes (14B = ~10 min, 70B = ~15 min)
- Evaluation: 3-10 minutes (depends on dataset size)
- **Total**: 15-30 minutes
**Pro Tip**: Modal caches images and models, so subsequent runs are **much faster** (skip image build and model download).
---
## 📝 Step-by-Step Guide
### Complete Workflow Example
**Scenario**: Evaluate GPT-4 via LiteLLM on HuggingFace Jobs
#### Step 1: Configure API Keys
```
1. Go to "⚙️ Settings" tab
2. Under "HuggingFace Configuration":
- HF Token: [your token with Run Jobs permission]
- Click "Save API Keys"
3. Under "LLM Provider API Keys":
- OpenAI API Key: [your key]
- Click "Save API Keys"
```
#### Step 2: Navigate to New Evaluation
```
1. Click "🚀 New Evaluation" in sidebar
2. You'll see the evaluation form with multiple sections
```
#### Step 3: Configure Evaluation
**Infrastructure**:
```
Infrastructure Provider: HuggingFace Jobs
Hardware: auto (will select cpu-basic)
```
**Model Configuration**:
```
Model: openai/gpt-4
Provider: litellm
```
**Agent Configuration**:
```
Agent Type: both (tool + code)
Search Provider: duckduckgo
Tools: python_interpreter, visit_webpage, duckduckgo_search
```
**Test Configuration**:
```
Dataset: kshitijthakkar/smoltrace-tasks
Split: train
Difficulty: all
Parallel Workers: 1
```
**Output & Monitoring**:
```
Output Format: hub (HuggingFace datasets)
Enable OTEL: ✅
Enable GPU Metrics: ✅ (N/A for CPU)
Timeout: 1h
```
#### Step 4: Estimate Cost
```
1. Click "💰 Estimate Cost"
2. Review estimate:
- Hardware: auto → **cpu-basic** (HF Jobs)
- Cost: ~$0.08
- Duration: ~3 minutes
```
#### Step 5: Submit Job
```
1. Click "Submit Evaluation"
2. Confirmation appears:
✅ Job submitted successfully!
Job Details:
- Run ID: job_abc12345
- HF Job ID: kshitijthakkar/def67890
- Hardware: cpu-basic
- Platform: HuggingFace Jobs
```
#### Step 6: Monitor Job
**Option A: TraceMind Job Monitoring**
```
1. Go to "🔍 Job Monitoring" tab
2. Click "📋 Inspect Job"
3. Paste HF Job ID: kshitijthakkar/def67890
4. Click "🔍 Inspect Job"
5. View status and click "📥 Load Logs"
```
**Option B: HuggingFace Dashboard**
```
1. Visit: https://huggingface.co/jobs
2. Find your job by ID or timestamp
3. View logs and status
```
#### Step 7: View Results
```
When job completes (SUCCEEDED):
1. Go to "📊 Leaderboard" tab
2. Click "Load Leaderboard"
3. Find your run (job_abc12345)
4. Click row to view detailed results
```
---
## 🔧 Troubleshooting
### Common Issues & Solutions
#### 1. "Modal package not installed"
**Error**:
```
Modal package not installed. Install with: pip install modal
```
**Solution**:
```bash
pip install modal>=0.64.0
```
#### 2. "HuggingFace token not configured"
**Error**:
```
HuggingFace token not configured. Please set HF_TOKEN in Settings.
```
**Solution**:
1. Get token from: https://huggingface.co/settings/tokens
2. Add in Settings → HuggingFace Configuration
3. Ensure permissions include **Read**, **Write**, and **Run Jobs**
#### 3. "Modal authentication failed"
**Error**:
```
Modal authentication failed. Please verify your MODAL_TOKEN_ID
and MODAL_TOKEN_SECRET in Settings.
```
**Solution**:
1. Get credentials from: https://modal.com/settings/tokens
2. Add both:
- MODAL_TOKEN_ID (starts with `ak-`)
- MODAL_TOKEN_SECRET (starts with `as-`)
3. Save and retry
#### 4. "Job failed - Python version mismatch"
**Error** (in Modal logs):
```
The 'submit_modal_job.<locals>.run_evaluation' Function
was defined with Python 3.12, but its Image has 3.10.
```
**Solution**:
This is automatically fixed in the latest version! TraceMind now dynamically matches Python versions.
If still occurring:
1. Pull latest code: `git pull origin main`
2. Restart app
#### 5. "Fast download using 'hf_transfer' is enabled but package not available"
**Error** (in Modal logs):
```
ValueError: Fast download using 'hf_transfer' is enabled but
'hf_transfer' package is not available.
```
**Solution**:
This is automatically fixed in the latest version! TraceMind now includes `hf_transfer` in GPU job packages.
If still occurring:
1. Pull latest code
2. Modal will rebuild image with new dependencies
#### 6. "Job stuck at 'Downloading model'"
**Symptoms**:
- Logs show "Downloading and initializing model..."
- No progress for 10+ minutes
**Explanation**:
- Large models (14B+) take 10-15 minutes to download
- This is normal! Model size: 28GB for 14B, 140GB for 70B
**Solution**:
- Be patient - download is in progress (Modal's network is fast)
- Future runs will be cached and start instantly
- Check Modal dashboard for download progress
#### 7. "Job completed but no results in leaderboard"
**Symptoms**:
- Job status shows SUCCEEDED
- No entry in leaderboard
**Possible Causes**:
1. Results uploaded to different user's namespace
2. Leaderboard not refreshed
3. Job failed during result upload
**Solution**:
```
1. Refresh leaderboard: Click "Load Leaderboard"
2. Check HF dataset repos:
- kshitijthakkar/smoltrace-leaderboard
- kshitijthakkar/smoltrace-results-<timestamp>
3. Verify HF token has Write permission
4. Check job logs for upload errors
```
#### 8. "Cannot submit job - HuggingFace Pro required"
**Error**:
```
HuggingFace Pro Account ($9/month) required to submit jobs.
Free accounts cannot submit jobs.
```
**Solution**:
- Option A: Upgrade to HF Pro: https://huggingface.co/pricing
- Option B: Use Modal instead (has free tier with credits)
#### 9. "Modal job exits after image build"
**Symptoms**:
- Logs show: "Stopping app - local entrypoint completed"
- Job ends without running evaluation
**Solution**:
This was a known issue (fixed in latest version). The problem was using `.spawn()` with `with app.run()` context.
Current implementation uses `.remote()` in background thread, which ensures job completes.
If still occurring:
1. Pull latest code: `git pull origin main`
2. Restart app
3. Resubmit job
#### 10. "Cost estimate shows wrong hardware"
**Symptoms**:
- Selected Modal with 70B model
- Cost estimate shows "a10g-small" instead of "A100-80GB"
**Solution**:
This was a known issue (fixed in latest version). Cost estimation now applies platform-specific auto-selection logic.
Verify fix:
1. Pull latest code
2. Click "💰 Estimate Cost"
3. Should show: `auto → **A100-80GB** (Modal)`
---
## 📞 Getting Help
### Resources
**Documentation**:
- TraceMind Docs: This tab!
- SMOLTRACE Docs: [GitHub](https://github.com/Mandark-droid/SMOLTRACE)
- Modal Docs: https://modal.com/docs
- HF Jobs Docs: https://huggingface.co/docs/hub/spaces-sdks-docker
**Community**:
- GitHub Issues: [TraceMind-AI Issues](https://github.com/Mandark-droid/TraceMind-AI/issues)
- LinkedIn: [@kshitij-thakkar](https://www.linkedin.com/in/kshitij-thakkar-2061b924)
**Support**:
- For TraceMind bugs: Open GitHub issue
- For Modal issues: https://modal.com/docs/support
- For HF Jobs issues: /static-proxy?url=https%3A%2F%2Fdiscuss.huggingface.co%2F%3C%2Fspan%3E
---
*TraceMind-AI - Multi-cloud agent evaluation made simple* ☁️
""")
def create_documentation_screen():
"""
Create the complete documentation screen with tabs
Returns:
gr.Column: Gradio Column component for documentation (can be shown/hidden)
"""
with gr.Column(visible=False) as documentation_interface:
gr.Markdown("""
# 📚 TraceMind Documentation
Comprehensive documentation for the entire TraceMind ecosystem
""")
with gr.Tabs():
with gr.Tab("📖 About"):
create_about_tab()
with gr.Tab("🔭 TraceVerde"):
create_traceverde_tab()
with gr.Tab("📊 SmolTrace"):
create_smoltrace_tab()
with gr.Tab("🔌 TraceMind-MCP-Server"):
create_mcp_server_tab()
with gr.Tab("☁️ Job Submission"):
create_job_submission_tab()
gr.Markdown("""
---
### 💡 Quick Navigation
- **Getting Started**: Start with the "About" tab for ecosystem overview
- **Instrumentation**: See "TraceVerde" for adding observability to your agents
- **Evaluation**: Check "SmolTrace" for running evaluations
- **MCP Integration**: Explore "TraceMind-MCP-Server" for intelligent analysis
### 🔗 External Resources
- [GitHub Organization](https://github.com/Mandark-droid)
- [HuggingFace Spaces](https://huggingface.co/MCP-1st-Birthday)
- [MCP Specification](https://modelcontextprotocol.io)
*Built with ❤️ for MCP's 1st Birthday Hackathon*
""")
return documentation_interface
if __name__ == "__main__":
# For standalone testing
with gr.Blocks() as demo:
doc_screen = create_documentation_screen()
# Make it visible for standalone testing
doc_screen.visible = True
demo.launch()
|