File size: 2,307 Bytes
e289681
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Issue about installation of pointnet2_ops_lib
## `TORCH_CUDA_ARCH_LIST`

Sometimes you may see an error message like this:

```

#11 [7/7] RUN pip install ./pointnet2_ops_lib        

#11 16.92   error: subprocess-exited-with-error      

#11 16.92                                            

#11 16.92   × python setup.py bdist_wheel did not run successfully.
#11 16.92   │ exit code: 1
#11 16.92   ╰─> [101 lines of output]
#11 16.92       No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda-12.4'

#11 16.92       running bdist_wheel

...
...
...

#11 16.92       /opt/conda/envs/HoLa-Brep/lib/python3.10/site-packages/torch/utils/cpp_extension.py:1965: UserWarning: TORCH_CUDA_ARCH_LIST is not set, all archs for visible cards are included for compilation.
#11 16.92       If this is not desired, please set os.environ['TORCH_CUDA_ARCH_LIST'].

```



This error message indicates that the torch library could not find any CUDA hardware (the Docker context cannot locate CUDA hardware), resulting in the absence of any *Compute Capabilities*. Thus, you need to manually modify `setup.py` to ensure that the Docker image supports CUDA.



Please check line 19 in `setup.py`:

```

os.environ["TORCH_CUDA_ARCH_LIST"] = "3.7+PTX;5.0;6.0;6.1;6.2;7.0;7.5"
```



Use the command `/usr/local/cuda-xx.x/nvcc --list-gpu-arch` to check the GPU architecture supported by your GPUs. The output may look like this:

```
compute_50

compute_52
compute_53

compute_60
compute_61

compute_62
compute_70

compute_72
compute_75

compute_80
compute_86

compute_87
compute_89

compute_90
```



According to the results of this command, you can check your GPU's architecture name **[here](https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#gpu-feature-list)**. To specify the compute capabilities, this **[link](https://developer.nvidia.com/cuda-gpus)** will be helpful.



After specifying everything, you can edit line 19 in `setup.py`.



For instance, if your GPU is an *Nvidia 4090*.



```
os.environ["TORCH_CUDA_ARCH_LIST"] = "5.0;6.0;6.1;6.2;7.0;7.5;8.6;8.9;9.0"

```



You can check **[here](https://pytorch.org/docs/stable/cpp_extension.html)** and **[here](https://github.com/pytorch/extension-cpp/issues/71)** for more details about `TORCH_CUDA_ARCH_LIST`