voicebot / core /silero_vad.py
datbkpro's picture
Update core/silero_vad.py
01c964f verified
import io
import numpy as np
import soundfile as sf
import time
import traceback
import threading
import queue
import torch
from groq import Groq
from typing import Optional, Dict, Any, Callable
from config.settings import settings
class SileroVAD:
def __init__(self):
self.model = None
self.sample_rate = 16000
self.is_streaming = False
self.speech_callback = None
self.audio_buffer = []
self.speech_buffer = []
self.state = "silence"
self.speech_start_time = 0
self.last_voice_time = 0
# Cấu hình tối ưu
self.chunk_size = 512
self.speech_threshold = settings.VAD_THRESHOLD
self.min_speech_duration = settings.VAD_MIN_SPEECH_DURATION
self.min_silence_duration = settings.VAD_MIN_SILENCE_DURATION
self.speech_pad_duration = settings.VAD_SPEECH_PAD_DURATION
self.pre_speech_buffer = settings.VAD_PRE_SPEECH_BUFFER
# Buffer cho pre-speech
self.pre_speech_samples = int(self.pre_speech_buffer * self.sample_rate)
self.pre_speech_buffer_data = []
# Double buffer system để tránh mất dữ liệu
self.active_speech_buffer = []
self.backup_speech_buffer = []
self._initialize_model()
def _initialize_model(self):
"""Khởi tạo Silero VAD model"""
try:
print("🔄 Đang tải Silero VAD model...")
self.model, utils = torch.hub.load(
repo_or_dir='snakers4/silero-vad',
model='silero_vad',
force_reload=False,
trust_repo=True
)
self.model.eval()
print("✅ Đã tải Silero VAD model thành công")
except Exception as e:
print(f"❌ Lỗi tải Silero VAD model: {e}")
self.model = None
def start_stream(self, speech_callback: Callable):
"""Bắt đầu stream với VAD"""
if self.model is None:
return False
self.is_streaming = True
self.speech_callback = speech_callback
self.audio_buffer = []
self.speech_buffer = []
self.pre_speech_buffer_data = []
self.active_speech_buffer = []
self.backup_speech_buffer = []
self.state = "silence"
self.speech_start_time = 0
self.last_voice_time = 0
print("🎙️ Bắt đầu VAD streaming với double buffer system...")
return True
def stop_stream(self):
"""Dừng stream"""
self.is_streaming = False
self.speech_callback = None
self.audio_buffer = []
self.speech_buffer = []
self.pre_speech_buffer_data = []
self.active_speech_buffer = []
self.backup_speech_buffer = []
self.state = "silence"
print("🛑 Đã dừng VAD streaming")
def process_stream(self, audio_chunk: np.ndarray, sample_rate: int):
"""Xử lý audio chunk với VAD và double buffer"""
if not self.is_streaming or self.model is None:
return
try:
# Resample nếu cần
if sample_rate != self.sample_rate:
audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
# Thêm vào audio buffer
self.audio_buffer.extend(audio_chunk)
# Đồng thời thêm vào backup buffer để tránh mất dữ liệu
if self.state == "speech":
self.backup_speech_buffer.extend(audio_chunk)
# Xử lý VAD theo chunks
while len(self.audio_buffer) >= self.chunk_size:
chunk = self.audio_buffer[:self.chunk_size]
self._process_vad_chunk(np.array(chunk))
self.audio_buffer = self.audio_buffer[self.chunk_size:]
except Exception as e:
print(f"❌ Lỗi xử lý VAD: {e}")
def _process_vad_chunk(self, audio_chunk: np.ndarray):
"""Xử lý VAD cho một chunk với double buffer"""
current_time = time.time()
# Chuẩn hóa audio
audio_chunk = self._normalize_audio(audio_chunk)
# Lấy xác suất speech
speech_prob = self._get_speech_probability(audio_chunk)
if self.state == "silence":
if speech_prob > self.speech_threshold:
print("🎤 Bắt đầu phát hiện speech")
self.state = "speech"
self.speech_start_time = current_time
self.last_voice_time = current_time
# Khởi tạo cả active và backup buffer
self.active_speech_buffer = self.pre_speech_buffer_data.copy()
self.active_speech_buffer.extend(audio_chunk)
self.backup_speech_buffer = self.active_speech_buffer.copy()
else:
# Lưu pre-speech buffer
self.pre_speech_buffer_data.extend(audio_chunk)
if len(self.pre_speech_buffer_data) > self.pre_speech_samples:
self.pre_speech_buffer_data = self.pre_speech_buffer_data[-self.pre_speech_samples:]
elif self.state == "speech":
# Thêm vào cả hai buffers
self.active_speech_buffer.extend(audio_chunk)
self.backup_speech_buffer.extend(audio_chunk)
# Cập nhật thời gian voice cuối cùng
if speech_prob > self.speech_threshold:
self.last_voice_time = current_time
# Tính toán thời gian
silence_duration = current_time - self.last_voice_time
speech_duration = current_time - self.speech_start_time
# Logic kết thúc thông minh
is_short_response = speech_duration < self.min_speech_duration
is_long_silence_after_short = silence_duration >= self.min_silence_duration
if is_short_response and is_long_silence_after_short:
print(f"🎯 Phát hiện phản hồi ngắn: {speech_duration:.2f}s, im lặng: {silence_duration:.2f}s")
self._finalize_speech()
elif (speech_duration >= self.min_speech_duration and
silence_duration >= self.min_silence_duration):
print(f"🎯 Kết thúc speech dài: {speech_duration:.2f}s")
self._finalize_speech()
elif speech_duration > settings.MAX_AUDIO_DURATION:
print(f"⏰ Speech timeout ({speech_duration:.2f}s) - xử lý dù đang nói")
self._finalize_speech()
elif self.state == "processing":
# Trong khi đang xử lý, vẫn tiếp tục ghi vào backup buffer
self.backup_speech_buffer.extend(audio_chunk)
def _finalize_speech(self):
"""Hoàn thành xử lý speech segment với buffer switching"""
if not self.active_speech_buffer:
self._reset_buffers()
return
# Chuyển sang state processing
self.state = "processing"
# Sử dụng active buffer cho xử lý hiện tại
speech_audio = np.array(self.active_speech_buffer, dtype=np.float32)
# Gọi callback trong thread riêng
if self.speech_callback:
threading.Thread(
target=self.speech_callback,
args=(speech_audio, self.sample_rate),
daemon=True
).start()
# Chuẩn bị cho lần tiếp theo: chuyển backup buffer thành active buffer
self.active_speech_buffer = self.backup_speech_buffer.copy()
self.backup_speech_buffer = []
# Quay lại state speech để tiếp tục nhận dữ liệu
self.state = "speech"
self.last_voice_time = time.time()
def _reset_buffers(self):
"""Reset tất cả buffers"""
self.active_speech_buffer = []
self.backup_speech_buffer = []
self.audio_buffer = []
self.state = "silence"
def _normalize_audio(self, audio: np.ndarray) -> np.ndarray:
"""Chuẩn hóa audio"""
if audio.dtype != np.float32:
audio = audio.astype(np.float32)
if np.max(np.abs(audio)) > 1.0:
audio = audio / 32768.0
return np.clip(audio, -1.0, 1.0)
def _get_speech_probability(self, audio_chunk: np.ndarray) -> float:
"""Lấy xác suất speech"""
try:
if len(audio_chunk) != self.chunk_size:
return 0.0
audio_tensor = torch.from_numpy(audio_chunk).float().unsqueeze(0)
with torch.no_grad():
return self.model(audio_tensor, self.sample_rate).item()
except Exception as e:
print(f" Lỗi speech probability: {e}")
return 0.0
def _resample_audio(self, audio: np.ndarray, orig_sr: int, target_sr: int) -> np.ndarray:
"""Resample audio"""
if orig_sr == target_sr:
return audio
try:
from scipy import signal
duration = len(audio) / orig_sr
new_length = int(duration * target_sr)
resampled_audio = signal.resample(audio, new_length)
return resampled_audio.astype(np.float32)
except Exception:
return audio
def is_speech(self, audio_chunk: np.ndarray, sample_rate: int) -> bool:
"""Kiểm tra speech (cho compatibility)"""
if self.model is None:
return True
try:
if sample_rate != self.sample_rate:
audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
audio_chunk = self._normalize_audio(audio_chunk)
chunk_size = 512
speech_probs = []
for i in range(0, len(audio_chunk), chunk_size):
chunk = audio_chunk[i:i+chunk_size]
if len(chunk) == chunk_size:
prob = self._get_speech_probability(chunk)
speech_probs.append(prob)
return np.mean(speech_probs) > self.speech_threshold if speech_probs else False
except Exception as e:
print(f" Lỗi kiểm tra speech: {e}")
return True