fbmc-chronos2 / README.md
Evgueni Poloukarov
fix: revert to Gradio 4.44.0 (known working state)
306322f
---
title: FBMC Chronos-2 Forecasting
emoji:
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
tags:
- forecasting
- time-series
- electricity
- zero-shot
suggested_hardware: a100-large
suggested_storage: small
---
# FBMC Flow-Based Market Coupling Forecasting API
Zero-shot electricity cross-border flow forecasting for 38 European FBMC borders using Amazon Chronos-2.
## 🚀 Quick Start
This HuggingFace Space provides a **Gradio API** for GPU-accelerated zero-shot forecasting.
### How to Use (Web Interface)
1. **Select run date**: Choose the forecast date (YYYY-MM-DD format)
2. **Choose forecast type**:
- **Smoke Test**: 1 border × 7 days (~30 seconds)
- **Full Forecast**: All 38 borders × 14 days (~5 minutes)
3. **Click "Run Forecast"**
4. **Download results**: Parquet file with probabilistic forecasts
### How to Use (Python API)
```python
from gradio_client import Client
client = Client("evgueni-p/fbmc-chronos2")
result_file = client.predict(
run_date="2025-09-30",
forecast_type="smoke_test"
)
# Download and analyze locally
import polars as pl
df = pl.read_parquet(result_file)
print(df.head())
```
## 📊 Dataset
**Source**: [evgueni-p/fbmc-features-24month](https://huggingface.co/datasets/evgueni-p/fbmc-features-24month)
- **Rows**: 17,880 hourly observations
- **Date Range**: Oct 1, 2023 - Oct 14, 2025
- **Features**: 2,553 engineered features
- Weather: 375 features (52 grid points)
- ENTSO-E: ~1,863 features (generation, demand, prices, outages)
- JAO: 276 features (CNEC binding, RAM, utilization, LTA, net positions)
- Temporal: 39 features (hour, day, month, etc.)
- **Targets**: 38 FBMC cross-border flows (MW)
## 🔬 Model
**Amazon Chronos 2** (120M parameters)
- Pre-trained foundation model for time series
- Zero-shot inference (no fine-tuning)
- Multivariate forecasting with future covariates
- Dynamic time-aware data extraction (prevents leakage)
## ⚡ Hardware
**GPU**: NVIDIA A10G (24GB VRAM)
- Model inference: ~5 minutes for complete 14-day forecast
- Recommended for production workloads
## 📈 Performance Target
**D+1 MAE Goal**: <150 MW per border
This is a zero-shot baseline. Fine-tuning (Phase 2) expected to improve accuracy by 20-40%.
## 🔐 Requirements
Set `HF_TOKEN` in Space secrets to access the private dataset.
## 🛠️ Technical Details
### Feature Availability Windows
The system implements time-aware forecasting to prevent data leakage:
- **Full-horizon D+14** (603 features): Weather, CNEC outages, LTA
- **Partial D+1** (12 features): Load forecasts (masked D+2-D+14)
- **Historical only** (1,899 features): Prices, generation, demand
### Dynamic Forecast System
Uses `DynamicForecast` module to extract context and future covariates based on run date:
- Context window: 512 hours (historical data)
- Forecast horizon: 336 hours (14 days)
- Automatic masking for partial availability
## 📚 Documentation
- [Project Repository](https://github.com/evgspacdmy/fbmc_chronos2)
- [Activity Log](https://github.com/evgspacdmy/fbmc_chronos2/blob/main/doc/activity.md)
- [Feature Engineering Details](https://github.com/evgspacdmy/fbmc_chronos2/tree/main/src/feature_engineering)
## 🔄 Phase 2 Roadmap
Future improvements (not included in zero-shot MVP):
- Fine-tuning on FBMC data
- Ensemble methods
- Probabilistic forecasting
- Real-time data pipeline
- Production API
## 👤 Author
**Evgueni Poloukarov**
## 📄 License
MIT License - See LICENSE file for details
---
**Last Updated**: 2025-11-14
**Version**: 1.0.0 (Zero-Shot MVP)