Spaces:
Configuration error
Configuration error
| # IterVM: Iterative Vision Modeling Module for Scene Text Recognition | |
| The official code of [IterNet](https://arxiv.org/abs/2204.02630). | |
| We propose IterVM, an iterative approach for visual feature extraction which can significantly improve scene text recognition accuracy. | |
| IterVM repeatedly uses the high-level visual feature extracted at the previous iteration to enhance the multi-level features extracted at the subsequent iteration. | |
|  | |
| ## Runtime Environment | |
| ``` | |
| pip install -r requirements.txt | |
| ``` | |
| Note: `fastai==1.0.60` is required. | |
| ## Datasets | |
| <details> | |
| <summary>Training datasets (Click to expand) </summary> | |
| 1. [MJSynth](http://www.robots.ox.ac.uk/~vgg/data/text/) (MJ): | |
| - Use `tools/create_lmdb_dataset.py` to convert images into LMDB dataset | |
| - [LMDB dataset BaiduNetdisk(passwd:n23k)](https://pan.baidu.com/s/1mgnTiyoR8f6Cm655rFI4HQ) | |
| 2. [SynthText](http://www.robots.ox.ac.uk/~vgg/data/scenetext/) (ST): | |
| - Use `tools/crop_by_word_bb.py` to crop images from original [SynthText](http://www.robots.ox.ac.uk/~vgg/data/scenetext/) dataset, and convert images into LMDB dataset by `tools/create_lmdb_dataset.py` | |
| - [LMDB dataset BaiduNetdisk(passwd:n23k)](https://pan.baidu.com/s/1mgnTiyoR8f6Cm655rFI4HQ) | |
| 3. [WikiText103](https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip), which is only used for pre-trainig language models: | |
| - Use `notebooks/prepare_wikitext103.ipynb` to convert text into CSV format. | |
| - [CSV dataset BaiduNetdisk(passwd:dk01)](https://pan.baidu.com/s/1yabtnPYDKqhBb_Ie9PGFXA) | |
| </details> | |
| <details> | |
| <summary>Evaluation datasets (Click to expand) </summary> | |
| - Evaluation datasets, LMDB datasets can be downloaded from [BaiduNetdisk(passwd:1dbv)](https://pan.baidu.com/s/1RUg3Akwp7n8kZYJ55rU5LQ), [GoogleDrive](https://drive.google.com/file/d/1dTI0ipu14Q1uuK4s4z32DqbqF3dJPdkk/view?usp=sharing). | |
| 1. ICDAR 2013 (IC13) | |
| 2. ICDAR 2015 (IC15) | |
| 3. IIIT5K Words (IIIT) | |
| 4. Street View Text (SVT) | |
| 5. Street View Text-Perspective (SVTP) | |
| 6. CUTE80 (CUTE) | |
| </details> | |
| <details> | |
| <summary>The structure of `data` directory (Click to expand) </summary> | |
| - The structure of `data` directory is | |
| ``` | |
| data | |
| βββ charset_36.txt | |
| βββ evaluation | |
| βΒ Β βββ CUTE80 | |
| βΒ Β βββ IC13_857 | |
| βΒ Β βββ IC15_1811 | |
| βΒ Β βββ IIIT5k_3000 | |
| βΒ Β βββ SVT | |
| βΒ Β βββ SVTP | |
| βββ training | |
| βΒ Β βββ MJ | |
| βΒ Β βΒ Β βββ MJ_test | |
| βΒ Β βΒ Β βββ MJ_train | |
| βΒ Β βΒ Β βββ MJ_valid | |
| βΒ Β βββ ST | |
| βββ WikiText-103.csv | |
| βββ WikiText-103_eval_d1.csv | |
| ``` | |
| </details> | |
| ## Pretrained Models | |
| Get the pretrained models from [GoogleDrive](https://drive.google.com/drive/folders/1C8NMI8Od8mQUMlsnkHNLkYj73kbAQ7Bl?usp=sharing). Performances of the pretrained models are summaried as follows: | |
| |Model|IC13|SVT|IIIT|IC15|SVTP|CUTE|AVG| | |
| |-|-|-|-|-|-|-|-| | |
| |IterNet|97.9|95.1|96.9|87.7|90.9|91.3|93.8| | |
| ## Training | |
| 1. Pre-train vision model | |
| ``` | |
| CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py --config=configs/pretrain_vm.yaml | |
| ``` | |
| 2. Pre-train language model | |
| ``` | |
| CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --config=configs/pretrain_language_model.yaml | |
| ``` | |
| 3. Train IterNet | |
| ``` | |
| CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py --config=configs/train_iternet.yaml | |
| ``` | |
| Note: | |
| - You can set the `checkpoint` path for vision model (vm) and language model separately for specific pretrained model, or set to `None` to train from scratch | |
| ## Evaluation | |
| ``` | |
| CUDA_VISIBLE_DEVICES=0 python main.py --config=configs/train_iternet.yaml --phase test --image_only | |
| ``` | |
| Additional flags: | |
| - `--checkpoint /path/to/checkpoint` set the path of evaluation model | |
| - `--test_root /path/to/dataset` set the path of evaluation dataset | |
| - `--model_eval [alignment|vision]` which sub-model to evaluate | |
| - `--image_only` disable dumping visualization of attention masks | |
| ## Run Demo | |
| [<a href="https://colab.research.google.com/drive/1XmZGJzFF95uafmARtJMudPLLKBO2eXLv?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>](https://colab.research.google.com/drive/1XmZGJzFF95uafmARtJMudPLLKBO2eXLv?usp=sharing) | |
| ``` | |
| python demo.py --config=configs/train_iternet.yaml --input=figures/demo | |
| ``` | |
| Additional flags: | |
| - `--config /path/to/config` set the path of configuration file | |
| - `--input /path/to/image-directory` set the path of image directory or wildcard path, e.g, `--input='figs/test/*.png'` | |
| - `--checkpoint /path/to/checkpoint` set the path of trained model | |
| - `--cuda [-1|0|1|2|3...]` set the cuda id, by default -1 is set and stands for cpu | |
| - `--model_eval [alignment|vision]` which sub-model to use | |
| - `--image_only` disable dumping visualization of attention masks | |
| ## Citation | |
| If you find our method useful for your reserach, please cite | |
| ```bash | |
| @article{chu2022itervm, | |
| title={IterVM: Iterative Vision Modeling Module for Scene Text Recognition}, | |
| author={Chu, Xiaojie and Wang, Yongtao}, | |
| journal={arXiv preprint arXiv:2204.02630}, | |
| year={2022} | |
| } | |
| ``` | |
| ## License | |
| The project is only free for academic research purposes, but needs authorization for commerce. For commerce permission, please contact [email protected]. | |
| ## Acknowledgements | |
| This project is based on [ABINet](https://github.com/FangShancheng/ABINet.git). | |
| Thanks for their great works. | |