Add ViDoRe V3 (MTEB embed)

#14
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import gradio as gr
2
 
3
- from app.utils import add_rank_and_format, filter_models, get_refresh_function, deprecated_get_refresh_function
 
4
  from data.deprecated_model_handler import DeprecatedModelHandler
5
  from data.model_handler import ModelHandler
6
 
@@ -80,98 +81,31 @@ def main():
80
 
81
  with gr.Blocks(css=css) as block:
82
  with gr.Tabs():
83
- with gr.TabItem("ViDoRe V1"):
84
- gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark 1 📚🔍")
85
- gr.Markdown("### From the paper - ColPali: Efficient Document Retrieval with Vision Language Models 👀")
86
 
87
  gr.Markdown(
88
  """
89
- Visual Document Retrieval Benchmark 1 leaderboard. To submit results, refer to the corresponding tab.
90
 
91
- Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
 
 
 
92
  """
93
  )
94
- datasets_columns_1 = list(data_benchmark_1.columns[4:])
95
-
96
- with gr.Row():
97
- metric_dropdown_1 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
98
- research_textbox_1 = gr.Textbox(
99
- placeholder="🔍 Search Models... [press enter]",
100
- label="Filter Models by Name",
101
- )
102
- column_checkboxes_1 = gr.CheckboxGroup(
103
- choices=datasets_columns_1, value=datasets_columns_1, label="Select Columns to Display"
104
- )
105
-
106
- with gr.Row():
107
- datatype_1 = ["number", "markdown"] + ["number"] * (num_datasets_1 + 1)
108
- dataframe_1 = gr.Dataframe(data_benchmark_1, datatype=datatype_1, type="pandas")
109
-
110
- def update_data_1(metric, search_term, selected_columns):
111
- model_handler.get_vidore_data(metric)
112
- data = model_handler.render_df(metric, benchmark_version=1)
113
- data = add_rank_and_format(data, benchmark_version=1, selected_columns=selected_columns)
114
- data = filter_models(data, search_term)
115
- if selected_columns:
116
- data = data[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + selected_columns]
117
- return data
118
-
119
- with gr.Row():
120
- refresh_button_1 = gr.Button("Refresh")
121
- refresh_button_1.click(
122
- get_refresh_function(model_handler, benchmark_version=1),
123
- inputs=[metric_dropdown_1],
124
- outputs=dataframe_1,
125
- concurrency_limit=20,
126
- )
127
-
128
- # Automatically refresh the dataframe when the dropdown value changes
129
- metric_dropdown_1.change(
130
- get_refresh_function(model_handler, benchmark_version=1),
131
- inputs=[metric_dropdown_1],
132
- outputs=dataframe_1,
133
- )
134
- research_textbox_1.submit(
135
- lambda metric, search_term, selected_columns: update_data_1(metric, search_term, selected_columns),
136
- inputs=[metric_dropdown_1, research_textbox_1, column_checkboxes_1],
137
- outputs=dataframe_1,
138
- )
139
- column_checkboxes_1.change(
140
- lambda metric, search_term, selected_columns: update_data_1(metric, search_term, selected_columns),
141
- inputs=[metric_dropdown_1, research_textbox_1, column_checkboxes_1],
142
- outputs=dataframe_1,
143
- )
144
 
145
- gr.Markdown(
146
- f"""
147
- - **Total Datasets**: {num_datasets_1}
148
- - **Total Scores**: {num_scores_1}
149
- - **Total Models**: {num_models_1}
150
- """
151
- + r"""
152
- Please consider citing:
153
-
154
- ```bibtex
155
- @misc{faysse2024colpaliefficientdocumentretrieval,
156
- title={ColPali: Efficient Document Retrieval with Vision Language Models},
157
- author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
158
- year={2024},
159
- eprint={2407.01449},
160
- archivePrefix={arXiv},
161
- primaryClass={cs.IR},
162
- url={https://arxiv.org/abs/2407.01449},
163
- }
164
- @misc{macé2025vidorebenchmarkv2raising,
165
- title={ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval},
166
- author={Quentin Macé and António Loison and Manuel Faysse},
167
- year={2025},
168
- eprint={2505.17166},
169
- archivePrefix={arXiv},
170
- primaryClass={cs.IR},
171
- url={https://arxiv.org/abs/2505.17166},
172
- }
173
-
174
- ```
175
  """
176
  )
177
  with gr.TabItem("ViDoRe V2"):
@@ -180,7 +114,7 @@ def main():
180
 
181
  gr.Markdown(
182
  """
183
- Visual Document Retrieval Benchmark 2 leaderboard. To submit results, refer to the corresponding tab.
184
 
185
  Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics and models.
186
  """
@@ -223,7 +157,7 @@ def main():
223
  with gr.Row():
224
  gr.Markdown(
225
  """
226
- **Note**: For now, all models were evaluated using the vidore-benchmark package and custom retrievers on our side.
227
  Those numbers are not numbers obtained from the organisations that released those models.
228
  """
229
  )
@@ -256,24 +190,118 @@ def main():
256
 
257
  ```bibtex
258
  @misc{faysse2024colpaliefficientdocumentretrieval,
259
- title={ColPali: Efficient Document Retrieval with Vision Language Models},
260
  author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
261
  year={2024},
262
  eprint={2407.01449},
263
  archivePrefix={arXiv},
264
  primaryClass={cs.IR},
265
- url={https://arxiv.org/abs/2407.01449},
266
  }
267
 
268
  @misc{macé2025vidorebenchmarkv2raising,
269
- title={ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval},
270
  author={Quentin Macé and António Loison and Manuel Faysse},
271
  year={2025},
272
  eprint={2505.17166},
273
  archivePrefix={arXiv},
274
  primaryClass={cs.IR},
275
- url={https://arxiv.org/abs/2505.17166},
276
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277
  ```
278
  """
279
  )
@@ -310,7 +338,7 @@ def main():
310
 
311
  gr.Markdown(
312
  """
313
- Visual Document Retrieval Benchmark 1 leaderboard. To submit results, refer to the corresponding tab.
314
 
315
  Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
316
  """
@@ -378,23 +406,23 @@ def main():
378
 
379
  ```bibtex
380
  @misc{faysse2024colpaliefficientdocumentretrieval,
381
- title={ColPali: Efficient Document Retrieval with Vision Language Models},
382
  author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
383
  year={2024},
384
  eprint={2407.01449},
385
  archivePrefix={arXiv},
386
  primaryClass={cs.IR},
387
- url={https://arxiv.org/abs/2407.01449},
388
  }
389
-
390
  @misc{macé2025vidorebenchmarkv2raising,
391
- title={ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval},
392
  author={Quentin Macé and António Loison and Manuel Faysse},
393
  year={2025},
394
  eprint={2505.17166},
395
  archivePrefix={arXiv},
396
  primaryClass={cs.IR},
397
- url={https://arxiv.org/abs/2505.17166},
398
  }
399
  ```
400
  """
@@ -413,7 +441,7 @@ def main():
413
 
414
  gr.Markdown(
415
  """
416
- Visual Document Retrieval Benchmark 2 leaderboard. To submit results, refer to the corresponding tab.
417
 
418
  Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics and models.
419
  """
@@ -456,7 +484,7 @@ def main():
456
  with gr.Row():
457
  gr.Markdown(
458
  """
459
- **Note**: For now, all models were evaluated using the vidore-benchmark package and custom retrievers on our side.
460
  Those numbers are not numbers obtained from the organisations that released those models.
461
  """
462
  )
@@ -489,23 +517,23 @@ def main():
489
 
490
  ```bibtex
491
  @misc{faysse2024colpaliefficientdocumentretrieval,
492
- title={ColPali: Efficient Document Retrieval with Vision Language Models},
493
  author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
494
  year={2024},
495
  eprint={2407.01449},
496
  archivePrefix={arXiv},
497
  primaryClass={cs.IR},
498
- url={https://arxiv.org/abs/2407.01449},
499
  }
500
 
501
  @misc{macé2025vidorebenchmarkv2raising,
502
- title={ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval},
503
  author={Quentin Macé and António Loison and Manuel Faysse},
504
  year={2025},
505
  eprint={2505.17166},
506
  archivePrefix={arXiv},
507
  primaryClass={cs.IR},
508
- url={https://arxiv.org/abs/2505.17166},
509
  }
510
  ```
511
  """
 
1
  import gradio as gr
2
 
3
+ from app.utils import (add_rank_and_format, deprecated_get_refresh_function,
4
+ filter_models, get_refresh_function)
5
  from data.deprecated_model_handler import DeprecatedModelHandler
6
  from data.model_handler import ModelHandler
7
 
 
81
 
82
  with gr.Blocks(css=css) as block:
83
  with gr.Tabs():
84
+ with gr.TabItem("ViDoRe V3"):
85
+ # embed in hmtl https://mteb-leaderboard.hf.space/?benchmark_name=ViDoRe(v3)
86
+ gr.Markdown("# ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-case 👷‍♂️")
87
 
88
  gr.Markdown(
89
  """
90
+ Visual Document Retrieval Benchmark 3 leaderboard. To submit results, refer to the corresponding tab.
91
 
92
+ Refer to:
93
+ - 🤗 The [blogpost](https://huggingface.co/blog/QuentinJG/introducing-vidore-v3) for all the details on the datasets,
94
+ - 🤗 The [dataset collection](https://huggingface.co/collections/vidore/vidore-benchmark-v3),
95
+ - 📝 The [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics.
96
  """
97
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
 
99
+ gr.Markdown("""
100
+ As the reference results are now hosted on the [MTEB Leaderboard](https://mteb-leaderboard.hf.space/?benchmark_name=ViDoRe(v3)),
101
+ we embed it here.
102
+ """ )
103
+ gr.HTML(
104
+ """
105
+ <iframe
106
+ src="https://mteb-leaderboard.hf.space/?benchmark_name=ViDoRe(v3)"
107
+ style="width:100%; height:1000px; border:2px solid black; border-radius:10px;"
108
+ ></iframe>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
  """
110
  )
111
  with gr.TabItem("ViDoRe V2"):
 
114
 
115
  gr.Markdown(
116
  """
117
+ Visual Document Retrieval Benchmark 2 leaderboard. To submit results, refer to the corresponding tab.
118
 
119
  Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics and models.
120
  """
 
157
  with gr.Row():
158
  gr.Markdown(
159
  """
160
+ **Note**: For now, all models were evaluated using the vidore-benchmark package and custom retrievers on our side.
161
  Those numbers are not numbers obtained from the organisations that released those models.
162
  """
163
  )
 
190
 
191
  ```bibtex
192
  @misc{faysse2024colpaliefficientdocumentretrieval,
193
+ title={ColPali: Efficient Document Retrieval with Vision Language Models},
194
  author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
195
  year={2024},
196
  eprint={2407.01449},
197
  archivePrefix={arXiv},
198
  primaryClass={cs.IR},
199
+ url={https://arxiv.org/abs/2407.01449},
200
  }
201
 
202
  @misc{macé2025vidorebenchmarkv2raising,
203
+ title={ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval},
204
  author={Quentin Macé and António Loison and Manuel Faysse},
205
  year={2025},
206
  eprint={2505.17166},
207
  archivePrefix={arXiv},
208
  primaryClass={cs.IR},
209
+ url={https://arxiv.org/abs/2505.17166},
210
  }
211
+ ```
212
+ """
213
+ )
214
+ with gr.TabItem("ViDoRe V1"):
215
+ gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark 1 📚🔍")
216
+ gr.Markdown("### From the paper - ColPali: Efficient Document Retrieval with Vision Language Models 👀")
217
+
218
+ gr.Markdown(
219
+ """
220
+ Visual Document Retrieval Benchmark 1 leaderboard. To submit results, refer to the corresponding tab.
221
+
222
+ Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
223
+ """
224
+ )
225
+ datasets_columns_1 = list(data_benchmark_1.columns[4:])
226
+
227
+ with gr.Row():
228
+ metric_dropdown_1 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
229
+ research_textbox_1 = gr.Textbox(
230
+ placeholder="🔍 Search Models... [press enter]",
231
+ label="Filter Models by Name",
232
+ )
233
+ column_checkboxes_1 = gr.CheckboxGroup(
234
+ choices=datasets_columns_1, value=datasets_columns_1, label="Select Columns to Display"
235
+ )
236
+
237
+ with gr.Row():
238
+ datatype_1 = ["number", "markdown"] + ["number"] * (num_datasets_1 + 1)
239
+ dataframe_1 = gr.Dataframe(data_benchmark_1, datatype=datatype_1, type="pandas")
240
+
241
+ def update_data_1(metric, search_term, selected_columns):
242
+ model_handler.get_vidore_data(metric)
243
+ data = model_handler.render_df(metric, benchmark_version=1)
244
+ data = add_rank_and_format(data, benchmark_version=1, selected_columns=selected_columns)
245
+ data = filter_models(data, search_term)
246
+ if selected_columns:
247
+ data = data[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + selected_columns]
248
+ return data
249
+
250
+ with gr.Row():
251
+ refresh_button_1 = gr.Button("Refresh")
252
+ refresh_button_1.click(
253
+ get_refresh_function(model_handler, benchmark_version=1),
254
+ inputs=[metric_dropdown_1],
255
+ outputs=dataframe_1,
256
+ concurrency_limit=20,
257
+ )
258
+
259
+ # Automatically refresh the dataframe when the dropdown value changes
260
+ metric_dropdown_1.change(
261
+ get_refresh_function(model_handler, benchmark_version=1),
262
+ inputs=[metric_dropdown_1],
263
+ outputs=dataframe_1,
264
+ )
265
+ research_textbox_1.submit(
266
+ lambda metric, search_term, selected_columns: update_data_1(metric, search_term, selected_columns),
267
+ inputs=[metric_dropdown_1, research_textbox_1, column_checkboxes_1],
268
+ outputs=dataframe_1,
269
+ )
270
+ column_checkboxes_1.change(
271
+ lambda metric, search_term, selected_columns: update_data_1(metric, search_term, selected_columns),
272
+ inputs=[metric_dropdown_1, research_textbox_1, column_checkboxes_1],
273
+ outputs=dataframe_1,
274
+ )
275
+
276
+ gr.Markdown(
277
+ f"""
278
+ - **Total Datasets**: {num_datasets_1}
279
+ - **Total Scores**: {num_scores_1}
280
+ - **Total Models**: {num_models_1}
281
+ """
282
+ + r"""
283
+ Please consider citing:
284
+
285
+ ```bibtex
286
+ @misc{faysse2024colpaliefficientdocumentretrieval,
287
+ title={ColPali: Efficient Document Retrieval with Vision Language Models},
288
+ author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
289
+ year={2024},
290
+ eprint={2407.01449},
291
+ archivePrefix={arXiv},
292
+ primaryClass={cs.IR},
293
+ url={https://arxiv.org/abs/2407.01449},
294
+ }
295
+ @misc{macé2025vidorebenchmarkv2raising,
296
+ title={ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval},
297
+ author={Quentin Macé and António Loison and Manuel Faysse},
298
+ year={2025},
299
+ eprint={2505.17166},
300
+ archivePrefix={arXiv},
301
+ primaryClass={cs.IR},
302
+ url={https://arxiv.org/abs/2505.17166},
303
+ }
304
+
305
  ```
306
  """
307
  )
 
338
 
339
  gr.Markdown(
340
  """
341
+ Visual Document Retrieval Benchmark 1 leaderboard. To submit results, refer to the corresponding tab.
342
 
343
  Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
344
  """
 
406
 
407
  ```bibtex
408
  @misc{faysse2024colpaliefficientdocumentretrieval,
409
+ title={ColPali: Efficient Document Retrieval with Vision Language Models},
410
  author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
411
  year={2024},
412
  eprint={2407.01449},
413
  archivePrefix={arXiv},
414
  primaryClass={cs.IR},
415
+ url={https://arxiv.org/abs/2407.01449},
416
  }
417
+
418
  @misc{macé2025vidorebenchmarkv2raising,
419
+ title={ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval},
420
  author={Quentin Macé and António Loison and Manuel Faysse},
421
  year={2025},
422
  eprint={2505.17166},
423
  archivePrefix={arXiv},
424
  primaryClass={cs.IR},
425
+ url={https://arxiv.org/abs/2505.17166},
426
  }
427
  ```
428
  """
 
441
 
442
  gr.Markdown(
443
  """
444
+ Visual Document Retrieval Benchmark 2 leaderboard. To submit results, refer to the corresponding tab.
445
 
446
  Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics and models.
447
  """
 
484
  with gr.Row():
485
  gr.Markdown(
486
  """
487
+ **Note**: For now, all models were evaluated using the vidore-benchmark package and custom retrievers on our side.
488
  Those numbers are not numbers obtained from the organisations that released those models.
489
  """
490
  )
 
517
 
518
  ```bibtex
519
  @misc{faysse2024colpaliefficientdocumentretrieval,
520
+ title={ColPali: Efficient Document Retrieval with Vision Language Models},
521
  author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
522
  year={2024},
523
  eprint={2407.01449},
524
  archivePrefix={arXiv},
525
  primaryClass={cs.IR},
526
+ url={https://arxiv.org/abs/2407.01449},
527
  }
528
 
529
  @misc{macé2025vidorebenchmarkv2raising,
530
+ title={ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval},
531
  author={Quentin Macé and António Loison and Manuel Faysse},
532
  year={2025},
533
  eprint={2505.17166},
534
  archivePrefix={arXiv},
535
  primaryClass={cs.IR},
536
+ url={https://arxiv.org/abs/2505.17166},
537
  }
538
  ```
539
  """
app/utils.py CHANGED
@@ -1,4 +1,3 @@
1
- from data.deprecated_model_handler import DeprecatedModelHandler
2
 
3
 
4
  def make_clickable_model(model_name, link=None):
 
 
1
 
2
 
3
  def make_clickable_model(model_name, link=None):
data/dataset_handler.py CHANGED
@@ -108,7 +108,7 @@ def deprecated_get_datasets_nickname(dataset_name) -> str:
108
  return "ESG Restaurant Human"
109
 
110
  elif ("rse_restaurant" in dataset_name and "multilingual" in dataset_name) or (
111
- "esg_reports" in dataset_name and not "_eng_" in dataset_name
112
  ):
113
  return "ESG Restaurant Synthetic Multilingual"
114
 
@@ -116,7 +116,7 @@ def deprecated_get_datasets_nickname(dataset_name) -> str:
116
  return "ESG Restaurant Synthetic"
117
 
118
  elif ("mit_biomedical" in dataset_name and "multilingual" in dataset_name) or (
119
- "biomedical_lectures" in dataset_name and not "_eng_" in dataset_name
120
  ):
121
  return "MIT Biomedical Multilingual"
122
 
@@ -124,7 +124,7 @@ def deprecated_get_datasets_nickname(dataset_name) -> str:
124
  return "MIT Biomedical"
125
 
126
  elif ("economics_macro" in dataset_name and "multilingual" in dataset_name) or (
127
- "economics_reports" in dataset_name and not "_eng_" in dataset_name
128
  ):
129
  return "Economics Macro Multilingual"
130
 
 
108
  return "ESG Restaurant Human"
109
 
110
  elif ("rse_restaurant" in dataset_name and "multilingual" in dataset_name) or (
111
+ "esg_reports" in dataset_name and "_eng_" not in dataset_name
112
  ):
113
  return "ESG Restaurant Synthetic Multilingual"
114
 
 
116
  return "ESG Restaurant Synthetic"
117
 
118
  elif ("mit_biomedical" in dataset_name and "multilingual" in dataset_name) or (
119
+ "biomedical_lectures" in dataset_name and "_eng_" not in dataset_name
120
  ):
121
  return "MIT Biomedical Multilingual"
122
 
 
124
  return "MIT Biomedical"
125
 
126
  elif ("economics_macro" in dataset_name and "multilingual" in dataset_name) or (
127
+ "economics_reports" in dataset_name and "_eng_" not in dataset_name
128
  ):
129
  return "Economics Macro Multilingual"
130
 
data/deprecated_model_handler.py CHANGED
@@ -5,7 +5,11 @@ from typing import Any, Dict
5
  import pandas as pd
6
  from huggingface_hub import HfApi, hf_hub_download, metadata_load
7
 
8
- from .dataset_handler import DEPRECATED_VIDORE_2_DATASETS_KEYWORDS, DEPRECATED_VIDORE_DATASETS_KEYWORDS, deprecated_get_datasets_nickname
 
 
 
 
9
 
10
  BLOCKLIST = ["impactframes"]
11
 
 
5
  import pandas as pd
6
  from huggingface_hub import HfApi, hf_hub_download, metadata_load
7
 
8
+ from .dataset_handler import (
9
+ DEPRECATED_VIDORE_2_DATASETS_KEYWORDS,
10
+ DEPRECATED_VIDORE_DATASETS_KEYWORDS,
11
+ deprecated_get_datasets_nickname,
12
+ )
13
 
14
  BLOCKLIST = ["impactframes"]
15
 
data/model_handler.py CHANGED
@@ -1,11 +1,12 @@
1
- from git import Repo
2
- import shutil
3
- import os
4
  import json
 
 
5
  import pandas as pd
 
6
 
7
  from .dataset_handler import VIDORE_V1_MTEB_NAMES, VIDORE_V2_MTEB_NAMES, get_datasets_nickname
8
 
 
9
  class ModelHandler:
10
 
11
  def __init__(self):
 
 
 
 
1
  import json
2
+ import os
3
+
4
  import pandas as pd
5
+ from git import Repo
6
 
7
  from .dataset_handler import VIDORE_V1_MTEB_NAMES, VIDORE_V2_MTEB_NAMES, get_datasets_nickname
8
 
9
+
10
  class ModelHandler:
11
 
12
  def __init__(self):