ner-cyber-bert
This model is a fine-tuned version of dslim/bert-base-NER on an unknown dataset. It achieves the following results on the evaluation set:
Loss: 0.1597
F1: 0.6882
Classification Report: precision recall f1-score support
Indicator 0.77 0.81 0.79 270 Malware 0.70 0.79 0.74 238
Organization 0.71 0.50 0.59 133 System 0.56 0.53 0.54 236 Vulnerability 0.89 0.80 0.84 10
micro avg 0.69 0.69 0.69 887
macro avg 0.73 0.69 0.70 887
weighted avg 0.69 0.69 0.68 887
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Classification Report |
|---|---|---|---|---|---|
| 0.0714 | 1.0 | 1332 | 0.0983 | 0.7004 | precision recall f1-score support |
Indicator 0.80 0.79 0.80 207
Malware 0.83 0.62 0.71 252
Organization 0.55 0.58 0.57 91 System 0.66 0.64 0.65 179 Vulnerability 0.83 0.56 0.67 9
micro avg 0.74 0.67 0.70 738
macro avg 0.74 0.64 0.68 738
weighted avg 0.75 0.67 0.70 738 | | 0.0829 | 2.0 | 2664 | 0.1173 | 0.7266 | precision recall f1-score support
Indicator 0.78 0.75 0.77 207
Malware 0.89 0.68 0.77 252
Organization 0.67 0.43 0.52 91 System 0.68 0.73 0.70 179 Vulnerability 0.88 0.78 0.82 9
micro avg 0.77 0.68 0.73 738
macro avg 0.78 0.67 0.72 738
weighted avg 0.78 0.68 0.72 738 | | 0.0295 | 3.0 | 3996 | 0.1451 | 0.7130 | precision recall f1-score support
Indicator 0.72 0.77 0.75 207
Malware 0.89 0.62 0.73 252
Organization 0.69 0.45 0.55 91 System 0.70 0.75 0.73 179 Vulnerability 0.64 0.78 0.70 9
micro avg 0.76 0.67 0.71 738
macro avg 0.73 0.67 0.69 738
weighted avg 0.77 0.67 0.71 738 | | 0.0228 | 4.0 | 5328 | 0.1244 | 0.7087 | precision recall f1-score support
Indicator 0.71 0.87 0.78 207
Malware 0.91 0.62 0.74 252
Organization 0.47 0.62 0.53 91 System 0.68 0.69 0.69 179 Vulnerability 0.86 0.67 0.75 9
micro avg 0.71 0.71 0.71 738
macro avg 0.72 0.69 0.70 738
weighted avg 0.74 0.71 0.71 738 | | 0.0309 | 5.0 | 6660 | 0.1340 | 0.7458 | precision recall f1-score support
Indicator 0.76 0.88 0.82 207
Malware 0.83 0.73 0.78 252
Organization 0.64 0.54 0.58 91 System 0.68 0.71 0.69 179 Vulnerability 0.70 0.78 0.74 9
micro avg 0.75 0.75 0.75 738
macro avg 0.72 0.73 0.72 738
weighted avg 0.75 0.75 0.74 738 | | 0.0068 | 6.0 | 7992 | 0.1710 | 0.7143 | precision recall f1-score support
Indicator 0.73 0.86 0.79 207
Malware 0.92 0.60 0.73 252
Organization 0.57 0.51 0.53 91 System 0.66 0.71 0.68 179 Vulnerability 0.88 0.78 0.82 9
micro avg 0.74 0.69 0.71 738
macro avg 0.75 0.69 0.71 738
weighted avg 0.76 0.69 0.71 738 | | 0.0033 | 7.0 | 9324 | 0.1669 | 0.7265 | precision recall f1-score support
Indicator 0.70 0.84 0.76 207
Malware 0.84 0.73 0.78 252
Organization 0.55 0.56 0.55 91 System 0.68 0.73 0.71 179 Vulnerability 0.58 0.78 0.67 9
micro avg 0.71 0.74 0.73 738
macro avg 0.67 0.73 0.69 738
weighted avg 0.72 0.74 0.73 738 | | 0.0003 | 8.0 | 10656 | 0.1820 | 0.7214 | precision recall f1-score support
Indicator 0.65 0.86 0.74 207
Malware 0.88 0.67 0.76 252
Organization 0.64 0.52 0.57 91 System 0.67 0.78 0.72 179 Vulnerability 0.64 0.78 0.70 9
micro avg 0.71 0.73 0.72 738
macro avg 0.69 0.72 0.70 738
weighted avg 0.73 0.73 0.72 738 | | 0.0001 | 9.0 | 11988 | 0.1766 | 0.7270 | precision recall f1-score support
Indicator 0.73 0.83 0.77 207
Malware 0.85 0.71 0.78 252
Organization 0.54 0.55 0.55 91 System 0.69 0.72 0.70 179 Vulnerability 0.54 0.78 0.64 9
micro avg 0.73 0.73 0.73 738
macro avg 0.67 0.72 0.69 738
weighted avg 0.73 0.73 0.73 738 | | 0.0018 | 10.0 | 13320 | 0.1781 | 0.7251 | precision recall f1-score support
Indicator 0.71 0.86 0.78 207
Malware 0.85 0.69 0.76 252
Organization 0.54 0.55 0.54 91 System 0.67 0.74 0.70 179 Vulnerability 0.58 0.78 0.67 9
micro avg 0.72 0.73 0.73 738
macro avg 0.67 0.72 0.69 738
weighted avg 0.73 0.73 0.73 738 |
Framework versions
- Transformers 4.52.2
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 8
Model tree for sssdddwd/ner-cyber-bert
Base model
dslim/bert-base-NER