metadata
base_model: hfl/chinese-macbert-base
datasets:
- CIRCL/Vulnerability-CNVD
library_name: transformers
license: apache-2.0
metrics:
- accuracy
tags:
- generated_from_trainer
- text-classification
- classification
- nlp
- chinese
- vulnerability
pipeline_tag: text-classification
language: zh
model-index:
- name: vulnerability-severity-classification-chinese-macbert-base
results: []
VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification (Chinese Text)
This model is a fine-tuned version of hfl/chinese-macbert-base on the dataset CIRCL/Vulnerability-CNVD.
For more information, visit the Vulnerability-Lookup project page or the ML-Gateway GitHub repository, which demonstrates its usage in a FastAPI server.
How to use
You can use this model directly with the Hugging Face transformers library for text classification:
from transformers import pipeline
classifier = pipeline(
"text-classification",
model="CIRCL/vulnerability-severity-classification-chinese-macbert-base"
)
# Example usage for a Chinese vulnerability description
description_chinese = "TOTOLINK A3600R是中国吉翁电子(TOTOLINK)公司的一款6天线1200M无线路由器。TOTOLINK A3600R存在缓冲区溢出漏洞,该漏洞源于/cgi-bin/cstecgi.cgi文件的UploadCustomModule函数中的File参数未能正确验证输入数据的长度大小,攻击者可利用该漏洞在系统上执行任意代码或者导致拒绝服务。"
result_chinese = classifier(description_chinese)
print(result_chinese)
# Expected output example: [{'label': '高', 'score': 0.9802}]
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
It achieves the following results on the evaluation set:
- Loss: 0.6258
- Accuracy: 0.7781
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 0.5987 | 1.0 | 3511 | 0.5940 | 0.7504 |
| 0.5362 | 2.0 | 7022 | 0.5571 | 0.7702 |
| 0.5547 | 3.0 | 10533 | 0.5589 | 0.7784 |
| 0.4246 | 4.0 | 14044 | 0.5903 | 0.7789 |
| 0.3994 | 5.0 | 17555 | 0.6258 | 0.7781 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.9.1+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1