blaiszik's picture
Upload README.md with huggingface_hub
03a39a3 verified
metadata
license: other
task_categories:
  - tabular-regression
  - tabular-classification
tags:
  - materials-science
  - chemistry
  - foundry-ml
  - scientific-data
size_categories:
  - 1K<n<10K

Machine-learning prediction of thermal expansion coefficient for perovskite oxides with experimental validation

Dataset containing 137 perovskite thermal expansion coefficients from experiment

Dataset Information

  • Source: Foundry-ML
  • DOI: 10.18126/avvr-p174
  • Year: 2023
  • Authors: McGuinness, Kevin P., Oliynyk, Anton O., Lee, Sangjoon, Molero-Sanchez, Beatriz, Addo, Paul Kwesi
  • Data Type: tabular

Fields

Field Role Description Units
Composition input Material composition with sites
Initial Temperature (degC) input Initial temperature degC
Final Temperature (degC) input Final temperature degC
TEC (x10^-6 K^-1) target Thermal expansion coefficient K^-1

Splits

  • train: train

Usage

With Foundry-ML (recommended for materials science workflows)

from foundry import Foundry

f = Foundry()
dataset = f.get_dataset("10.18126/avvr-p174")
X, y = dataset.get_as_dict()['train']

With HuggingFace Datasets

from datasets import load_dataset

dataset = load_dataset("Dataset_perovskite_tec")

Citation

@misc{https://doi.org/10.18126/avvr-p174
doi = {10.18126/avvr-p174}
url = {https://doi.org/10.18126/avvr-p174}
author = {McGuinness, Kevin P. and Oliynyk, Anton O. and Lee, Sangjoon and Molero-Sanchez, Beatriz and Addo, Paul Kwesi}
title = {Machine-learning prediction of thermal expansion coefficient for perovskite oxides with experimental validation}
keywords = {machine learning, foundry}
publisher = {Materials Data Facility}
year = {root=2023}}

License

other


This dataset was exported from Foundry-ML, a platform for materials science datasets.