Datasets:
metadata
license: cc-by-4.0
task_categories:
- tabular-regression
- tabular-classification
tags:
- materials-science
- chemistry
- foundry-ml
- scientific-data
size_categories:
- 1K<n<10K
Machine learning modeling of superconducting critical temperature
Dataset containing experimentally measured superconducting critical temperatures for 16414 materials
Dataset Information
- Source: Foundry-ML
- DOI: 10.18126/xlfr-hjrn
- Year: 2022
- Authors: Stanev, Valentin, Oses, Corey, Kusne, A. Gilad, Rodriguez, Efrain, Paglione, Johnpierre, Curtarolo, Stefano, Takeuchi, Ichiro
- Data Type: tabular
Fields
| Field | Role | Description | Units |
|---|---|---|---|
| name | input | Material composition | |
| Tc | target | Experimental superconducting critical temperature | K |
Splits
- train: train
Usage
With Foundry-ML (recommended for materials science workflows)
from foundry import Foundry
f = Foundry()
dataset = f.get_dataset("10.18126/xlfr-hjrn")
X, y = dataset.get_as_dict()['train']
With HuggingFace Datasets
from datasets import load_dataset
dataset = load_dataset("superconductivity_v1.1")
Citation
@misc{https://doi.org/10.18126/xlfr-hjrn
doi = {10.18126/xlfr-hjrn}
url = {https://doi.org/10.18126/xlfr-hjrn}
author = {Stanev, Valentin and Oses, Corey and Kusne, A. Gilad and Rodriguez, Efrain and Paglione, Johnpierre and Curtarolo, Stefano and Takeuchi, Ichiro}
title = {Machine learning modeling of superconducting critical temperature}
keywords = {machine learning, foundry}
publisher = {Materials Data Facility}
year = {root=2022}}
License
CC-BY 4.0
This dataset was exported from Foundry-ML, a platform for materials science datasets.