metadata
license: mit
task_categories:
- time-series-forecasting
- tabular-regression
tags:
- traffic-prediction
- time-series
- graph-neural-networks
- transportation
size_categories:
- 1M<n<10M
METR-LA Traffic Dataset
Dataset Description
This dataset contains traffic flow data for time series forecasting tasks, commonly used with Graph Neural Networks and specifically the Diffusion Convolutional Recurrent Neural Network (DCRNN) model.
Dataset Structure
Data Format
- Format: Parquet files for efficient loading and analysis
- Splits: train (70%), validation (10%), test (20%) - temporal splits preserving chronological order
- Features: Time series traffic flow data with temporal and spatial dimensions
Split Strategy
- Temporal splitting: Data is split chronologically to prevent data leakage
- All sensors included: Each split contains data for all sensors at each time step
- Training period: Earliest 70% of time samples across all sensors
- Validation period: Next 10% of time samples across all sensors
- Test period: Latest 20% of time samples across all sensors
- Graph structure preserved: Spatial relationships maintained in all splits
Data Schema
node_id: Sensor/node identifier (0-206 for METR-LA, 0-324 for PEMS-BAY)t0_timestamp: ISO 8601 timestamp of the reference time point (t+0) for each sequencex_t*_d*: Input features at different time offsets and dimensionsx_t-11_d0tox_t+0_d0: Traffic flow values at 12 historical time stepsx_t-11_d1tox_t+0_d1: Time-of-day features (normalized 0-1)
y_t*_d*: Target values at future time steps and dimensionsy_t+1_d0toy_t+12_d0: Traffic flow predictions for next 12 time stepsy_t+1_d1toy_t+12_d1: Time-of-day features for prediction horizon
Dataset Statistics
- Total time series samples: ~34K (METR-LA) / ~52K (PEMS-BAY)
- Total records: ~7M (METR-LA) / ~17M (PEMS-BAY)
- Records per sample: 207 (METR-LA) / 325 (PEMS-BAY) sensors
- Temporal resolution: 5-minute intervals
- Prediction horizon: 1 hour (12 time steps)
Usage
from datasets import Dataset, DatasetDict
import pandas as pd
# Load from local parquet files
train_df = pd.read_parquet("METR-LA/train.parquet")
val_df = pd.read_parquet("METR-LA/val.parquet")
test_df = pd.read_parquet("METR-LA/test.parquet")
ds = DatasetDict({
"train": Dataset.from_pandas(train_df, preserve_index=False),
"val": Dataset.from_pandas(val_df, preserve_index=False),
"test": Dataset.from_pandas(test_df, preserve_index=False)
})
print(f"Train records: {len(ds['train']):,}")
print(f"Val records: {len(ds['val']):,}")
print(f"Test records: {len(ds['test']):,}")
Citation
If you use this dataset, please cite the original DCRNN paper:
@inproceedings{li2018dcrnn_traffic,
title={{Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting}},
author={{Li, Yaguang and Yu, Rose and Shahabi, Cyrus and Liu, Yan}},
booktitle={{International Conference on Learning Representations}},
year={{2018}}
}
Dataset Generation
The code used to generate this Hugging Face-compatible dataset can be found at witgaw/DCRNN, a fork of the original DCRNN repository with enhanced data processing capabilities.
Original Data Source
This dataset is derived from the original METR-LA dataset used in the DCRNN paper.
License
MIT License - See the original repository LICENSE for details.