|
|
--- |
|
|
license: mit |
|
|
task_categories: |
|
|
- time-series-forecasting |
|
|
- tabular-regression |
|
|
tags: |
|
|
- traffic-prediction |
|
|
- time-series |
|
|
- graph-neural-networks |
|
|
- transportation |
|
|
size_categories: |
|
|
- 1M<n<10M |
|
|
--- |
|
|
|
|
|
# METR-LA Traffic Dataset |
|
|
|
|
|
## Dataset Description |
|
|
|
|
|
This dataset contains traffic flow data for time series forecasting tasks, commonly used with Graph Neural Networks and specifically the Diffusion Convolutional Recurrent Neural Network (DCRNN) model. |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
### Data Format |
|
|
|
|
|
- **Format**: Parquet files for efficient loading and analysis |
|
|
- **Splits**: train (70%), validation (10%), test (20%) - **temporal splits** preserving chronological order |
|
|
- **Features**: Time series traffic flow data with temporal and spatial dimensions |
|
|
|
|
|
### Split Strategy |
|
|
|
|
|
- **Temporal splitting**: Data is split chronologically to prevent data leakage |
|
|
- **All sensors included**: Each split contains data for all sensors at each time step |
|
|
- **Training period**: Earliest 70% of time samples across all sensors |
|
|
- **Validation period**: Next 10% of time samples across all sensors |
|
|
- **Test period**: Latest 20% of time samples across all sensors |
|
|
- **Graph structure preserved**: Spatial relationships maintained in all splits |
|
|
|
|
|
### Data Schema |
|
|
|
|
|
- `node_id`: Sensor/node identifier (0-206 for METR-LA, 0-324 for PEMS-BAY) |
|
|
- `t0_timestamp`: ISO 8601 timestamp of the reference time point (t+0) for each sequence |
|
|
- `x_t*_d*`: Input features at different time offsets and dimensions |
|
|
- `x_t-11_d0` to `x_t+0_d0`: Traffic flow values at 12 historical time steps |
|
|
- `x_t-11_d1` to `x_t+0_d1`: Time-of-day features (normalized 0-1) |
|
|
- `y_t*_d*`: Target values at future time steps and dimensions |
|
|
- `y_t+1_d0` to `y_t+12_d0`: Traffic flow predictions for next 12 time steps |
|
|
- `y_t+1_d1` to `y_t+12_d1`: Time-of-day features for prediction horizon |
|
|
|
|
|
### Dataset Statistics |
|
|
|
|
|
- **Total time series samples**: ~34K (METR-LA) / ~52K (PEMS-BAY) |
|
|
- **Total records**: ~7M (METR-LA) / ~17M (PEMS-BAY) |
|
|
- **Records per sample**: 207 (METR-LA) / 325 (PEMS-BAY) sensors |
|
|
- **Temporal resolution**: 5-minute intervals |
|
|
- **Prediction horizon**: 1 hour (12 time steps) |
|
|
|
|
|
## Usage |
|
|
|
|
|
```python |
|
|
from datasets import Dataset, DatasetDict |
|
|
import pandas as pd |
|
|
|
|
|
# Load from local parquet files |
|
|
train_df = pd.read_parquet("METR-LA/train.parquet") |
|
|
val_df = pd.read_parquet("METR-LA/val.parquet") |
|
|
test_df = pd.read_parquet("METR-LA/test.parquet") |
|
|
|
|
|
ds = DatasetDict({ |
|
|
"train": Dataset.from_pandas(train_df, preserve_index=False), |
|
|
"val": Dataset.from_pandas(val_df, preserve_index=False), |
|
|
"test": Dataset.from_pandas(test_df, preserve_index=False) |
|
|
}) |
|
|
|
|
|
print(f"Train records: {len(ds['train']):,}") |
|
|
print(f"Val records: {len(ds['val']):,}") |
|
|
print(f"Test records: {len(ds['test']):,}") |
|
|
``` |
|
|
|
|
|
## Citation |
|
|
|
|
|
If you use this dataset, please cite the original DCRNN paper: |
|
|
|
|
|
```bibtex |
|
|
@inproceedings{li2018dcrnn_traffic, |
|
|
title={{Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting}}, |
|
|
author={{Li, Yaguang and Yu, Rose and Shahabi, Cyrus and Liu, Yan}}, |
|
|
booktitle={{International Conference on Learning Representations}}, |
|
|
year={{2018}} |
|
|
} |
|
|
``` |
|
|
|
|
|
## Dataset Generation |
|
|
|
|
|
The code used to generate this Hugging Face-compatible dataset can be found at [witgaw/DCRNN](https://github.com/witgaw/DCRNN), a fork of the original DCRNN repository with enhanced data processing capabilities. |
|
|
|
|
|
## Original Data Source |
|
|
|
|
|
This dataset is derived from the original METR-LA dataset used in the DCRNN paper. |
|
|
|
|
|
## License |
|
|
|
|
|
MIT License - See the [original repository LICENSE](https://github.com/liyaguang/DCRNN/blob/master/LICENSE) for details. |
|
|
|