dennohpeter's picture
End of training
e13c497 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-2b
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: wav2vec2-xls-r-2b-5e-sw-asr
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: sw
          split: test
          args: sw
        metrics:
          - name: Wer
            type: wer
            value: 0.999932730470214

wav2vec2-xls-r-2b-5e-sw-asr

This model is a fine-tuned version of facebook/wav2vec2-xls-r-2b on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Wer: 0.9999

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.7865 0.2179 400 inf 0.7489
0.599 0.4357 800 inf 0.7282
0.5505 0.6536 1200 inf 0.6650
0.5238 0.8715 1600 inf 0.7014
0.4933 1.0893 2000 inf 0.5907
0.4488 1.3072 2400 inf 0.5622
0.4442 1.5251 2800 inf 0.5664
0.4353 1.7429 3200 inf 0.5418
0.4059 1.9608 3600 inf 0.5334
0.3737 2.1786 4000 inf 0.5037
0.3547 2.3965 4400 inf 0.5097
0.3594 2.6144 4800 inf 0.5031
0.563 2.8322 5200 inf 0.8574
1.4779 3.0501 5600 inf 0.9908
2.4352 3.2680 6000 nan 0.9946
214.8165 3.4858 6400 nan 0.9998
0.0 3.7037 6800 nan 0.9996
0.0 3.9216 7200 nan 0.9999
0.0 4.1394 7600 nan 0.9997
0.0 4.3573 8000 nan 0.9997
0.0 4.5752 8400 nan 0.9996
0.0 4.7930 8800 nan 0.9999

Framework versions

  • Transformers 4.56.2
  • Pytorch 2.8.0+cu126
  • Datasets 3.6.0
  • Tokenizers 0.22.0