Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
PLSemanticsBench / README.md
Auditt's picture
Update README.md
9694177 verified
|
raw
history blame
6.19 kB

PLSemanticsBench

Hugging Face

Table of Contents

About

PLSemanticsBench is the first benchmark for evaluating LLMs as programming language interpreters. We introduce three tasks to evaluate this:

Task Description
PredState Predicts the final program state
PredRule Predicts the ordered sequence of semantic rules needed to evaluate a program
PredTrace Predicts the step-by-step execution of a program

Installation

System Requirements

  • Python 3.11 or higher
  • OpenAI API key (for running experiments)

Step-by-Step Installation

  1. Create and activate the conda environment:
conda env create -f env.yaml
conda activate plsemanticsbench
  1. Set up your OpenAI API key:
export OPENAI_API_KEY='your-api-key-here'

Quick Start

Basic Example

Here's a minimal example to get started:

from plsemanticsbench import GPTRunner, GPT_MODEL_ENUM
from plsemanticsbench import ExperimentArgs, LLMEvaluator
from plsemanticsbench import (
    PROMPT_STRATEGY,
    Task,
    Formalization,
    Semantics_Type,
    Language,
    PLDataset
)

# Model name
model_name = "o3-mini"

# Experiment args: Run the PredState task on the IMP language with
# standard semantics formalized using SOS and with direct prompting
exp_args = ExperimentArgs(
    dataset=PLDataset.Human_Written,
    task=Task.PredState,
    language=Language.IMP,
    formalization=Formalization.SOS,
    semantics_type=Semantics_Type.Standard,
    model_name=model_name,
    prompt_strategy=PROMPT_STRATEGY.DA,
    num_datapoints_to_run=2, # Run just 2 datapoints (omit to run entire dataset)
)
                        
# Run inference using the OpenAI API
gpt_runner = GPTRunner(
    gpt_model=GPT_MODEL_ENUM.O3_MINI,
    args=exp_args,
)

# If prediction file is provided, the predictions will be saved to the file
predictions = gpt_runner.do_experiment()
llm_eval = LLMEvaluator(exp_args)
evaluation_result = llm_eval.evaluate_from_list(results=predictions, model_name=model_name)
print(evaluation_result)

Expected Output

The evaluation results will look like:

{
    'accuracy': 1,
    'malformed-count': 0,
}

Benchmark

You can load the dataset using the datasets library. Here is an example:

from datasets import load_dataset

# Load PredState task with standard semantics (uk) and K-semantics formalization (K) and with the Human Written (human-written) dataset
predstate_IMP_K_uk_human_written = load_dataset("EngineeringSoftware/PLSemanticsBench", name="predstate-IMP-K-uk-human-written")

# Load PredRule task with nonstandard semantics (mk) ans SOS formalization (SOS) and with the LLM Translated (llm-translated) dataset
predrule_IMP_SOS_mk_llm_translated = load_dataset("EngineeringSoftware/PLSemanticsBench", name="predrule-IMP-SOS-mk-llm-translated")

# Load PredState task with no-semantics (nk) and with the Fuzzer Generated (fuzzer-generated) dataset
predstate_IMP_nk_fuzzer_generated = load_dataset("EngineeringSoftware/PLSemanticsBench", name="predstate-IMP-nk-fuzzer-generated")

Dataset Split

Task Split Description
PredState
(Final State Prediction)
predstate-IMP-nk-{dataset-name} No semantics
predstate-IMP-K-uk-{dataset-name} Standard semantics with K-semantics formalization
predstate-IMP-K-mk-{dataset-name} Nonstandard semantics with K-semantics formalization
predstate-IMP-SOS-uk-{dataset-name} Standard semantics with SOS formalization
predstate-IMP-SOS-mk-{dataset-name} Nonstandard semantics with SOS formalization
PredRule
(Semantic Rule Prediction)
predrule-IMP-K-uk-human-written Standard semantics with K-semantics formalization
predrule-IMP-K-mk-human-written Nonstandard semantics with K-semantics formalization
predrule-IMP-SOS-uk-human-written Standard semantics with SOS formalization
predrule-IMP-SOS-mk-human-written Nonstandard semantics with SOS formalization
PredTrace
(Execution Trace Prediction)
predtrace-IMP-K-uk-human-written Standard semantics with K-semantics formalization
predtrace-IMP-K-mk-human-written Nonstandard semantics with K-semantics formalization
predtrace-IMP-SOS-uk-human-written Standard semantics with SOS formalization
predtrace-IMP-SOS-mk-human-written Nonstandard semantics with SOS formalization

Data Example

One example of the dataset is as follows:

{
  "program": "int ans; ans = 1; ...",
  "syntax": "<program> :: ...",
  "semantics": "ℤ := Set of integers ...",
  "mutated-program": "int ans; ans = 1; ...",
  "mutation-pattern": "KeyWordSwap",
  "exec-trace": [
    {
      "linenumber": 1,
      "rule": ["Rule 38", "Rule 39"],
      "state": {"ans": 1}
    }
  ],
  "ground-truth": "<answer>...</answer>"
}

Citation

@article{ThimmaiahETAL25PLSemanticsBench,
  title={PLSemanticsBench: Large Language Models As Programming Language Interpreters},
  author={Aditya Thimmaiah, Jiyang Zhang, Jayanth Srinivasa, Junyi Jessy Li, Milos Gligoric},
  year={2025},
  archivePrefix={arXiv},
  url={https://arxiv.org/abs/2510.03415}, 
}

License

This project is licensed under the CC0-1.0 License.